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1. Introduction

Integrodifferential equations arise in many fields of
science and engineering such as fluid dynamics, biological
models, and chemical kinetics. A detailed investigation
of integrodifferential equations and their solution via the
Laplace transform method can be found in the work of
Burton (1983). Recently, fractional integrodifferential
equations have been used to model various physical
phenomena such as heat conduction in materials with
memory, combined conduction, convection and radiation
problems (Caputo, 1967; Olmstead and Handelsman,
1976; Sabatier et al., 2007), and numerical methods
for such equations can be found in the works of
Mittal and Nigam (2008) as well as Rawashdeh (2011).
Models represented by neutral differential equations are
encountered in theoretical epidemiology, physiology and
population dynamics. It is interesting to introduce a
fractional derivative for these models and study their
qualitative behaviors.

Controllability is one of the fundamental concepts
in control theory and plays a major role in many control
problems such as stabilization of unstable systems by
feedback or optimal control (Klamka, 1993). This
problem can be studied by using different techniques,
among which the fixed-point technique is the most
powerful method for establishing the controllability
results of nonlinear dynamical systems (see Balachandran
and Dauer, 1987; Klamka, 1975a; 1975b; 1975c; 1999;
2001; 2008). Dacka (1980) introduced a method based
on the measure of non compactness of a set and Darbo’s

fixed-point theorem for studying the controllability of
nonlinear systems with an implicit derivative. This
method was extended to a larger class of dynamical
systems by Balachandran (1988).

Anichini et al. (1986) addressed the controllability
problem for nonlinear systems through the notion of
the measure of noncompactness, the condensing operator
and the Sadovskii fixed point theorem (Sadovskii, 1972),
whereas Balachandran and Balasubramaniam (1992;
1994) considered the same problem for nonlinear Volterra
integrodifferential systems with an implicit derivative.
Klamka (2010) discussed the minimum energy control
problem of infinite-dimensional fractional-discrete time
linear systems and established necessary and sufficient
conditions for exact controllability of such systems.
Recently, Balachandran et al. (2012a; 2013a; 2013b;
2012b; 2012c; 2012d) studied the controllability problem
for various types of nonlinear fractional dynamical
systems by using fixed point theorems.

However, no work has been reported on
the controllability of nonlinear implicit fractional
integrodifferential systems in the literature. Therefore,
in this paper we study the controllability of nonlinear
implicit fractional integrodifferential systems and neutral
fractional integrodifferential systems by using the
measure of non compactness of a set and the Darbo
fixed-point theorem.
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2. Preliminaries

In this section we give some basic definitions and
properties of fractional operators, the special function and
the solution representation of fractional integrodifferential
equations (Kexue and Jigen, 2011; Kilbas et al., 2006;
Miller and Ross, 1993; Oldham and Spanier, 1974;
Podlubny, 1999; Samko et al., 1993; Kaczorek, 2011).

For α, β > 0, with n − 1 < α < n, n − 1 < β <
n, and n ∈ N, D is the usual differential operator and
suppose that f ∈ L1(R+), R+ = [0,∞).

The Riemann–Liouville fractional integral operator
is defined as

(Iα
0+f)(t) =

1
Γ(α)

∫ t

0

(t − s)α−1f(s) ds,

(Dα
0+f)(t) = Dn(In−α

0+ f)(t),

and the Caputo fractional derivative is taken as

CDα
0+f(t) = (In−α

0+ Dnf)(t), 0 < α < 1,

and, in particular, Iα
0+

CDα
0+f(t) = f(t) − f(0).

The following is a well-known relation for the
Riemann–Liouville and the Caputo derivative:

CDα
0+f(t) = Dα

0+f(t) −
n−1∑
k=0

tk−α

Γ(k − α + 1)
f (k)(0+),

n = �(α) + 1.

An interesting class of functions introduced by
Mittag-Leffler is

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
for α, β > 0, z ∈ C

and, in particular, for β = 1,

Eα,1(azα) = Eα(azα) =
∞∑

k=0

akzαk

Γ(αk + 1)
, a, z ∈ C.

Further, the Laplace transform of the Caputo
fractional derivative and the Mittag-Leffler function are

(i) L{CDα
0+f(t)}(s) = sαF (s) −

n−1∑
k=0

fk(0+)sα−k−1,

(ii) L{tβ−1Eα,β(±atα)}(s) =
sα−β

sα ∓ a
for �(s) > |a| 1

α and �(β) > 0,

(iii) L{Eα(±atα)}(s) =
sα−1

sα ∓ a
for β = 1.

For brevity, let us take Iα
0+ as Iα and CDα

0+ as CDα.
Consider the linear fractional integrodifferential

equation of the form

CDαx(t) = Ax(t) +
∫ t

0

H(t − s)x(s) ds,

x(0) = x0,

(1)

where t ∈ [0, T ] := J, 0 < α < 1, x(t) ∈ R
n, A is an n×

n matrix and H is an n×n continuous matrix. Taking the
Laplace transform on both the sides of the above equation
and using the Laplace transform of the Caputo derivative,
we get

sαX(s) − sα−1x(0) = AX(s) + H(s)X(s),

X(s) = sα−1(sαI − A − H(s))−1x0.

Taking the inverse Laplace transform on both the sides of
the above equation, we have

L−1{X(s)}(t)
= L−1{sα−1(sαI − A − H(s))−1}(t)x0,

x(t) = Rα(t)x0,

where Rα(t) is an n × n matrix satisfying the following
conditions:

(a) Rα(0) = I,

(b) CDαRα(t) = ARα(t) +
∫ t

0 H(t − s)Rα(s) ds,

(c) L{Rα(t)}(s) =
∫ t

0
e−stRα(t) dt := sα−1(sαI−A−

H(s))−1.

Consider the linear fractional dynamical system
represented by the following fractional integrodifferential
equation:

⎧⎪⎪⎨
⎪⎪⎩

CDαx(t) = Ax(t) +
∫ t

0

H(t − s)x(s) ds

+Bu(t), t ∈ J, 0 < α < 1,
x(0) = x0,

(2)

where A, B are n×n, n×m matrices, respectively, x(t) ∈
R

n and u(t) ∈ R
m are the state and control vectors of the

system and H is an n×n continuous matrix. The solution
of the system (2) is given by

x(t) = Rα(t)+
∫ t

0

(t−s)α−1Rα,α(t−s)Bu(s) ds, (3)

where

Rα,α(θ) = θ1−α d
dθ

( ∫ t

0

(θ − τ)α−1

Γ(α)
Rα(τ) dτ

)
.

Definition 1. The system (2) is said to be controllable on
J if, for every x0, x1 ∈ R

n, there exists a control u(t)
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such that the solution x(t) of the system (2) satisfies the
condition x(0) = x0 and x(T ) = x1.

Define the controllability Grammian matrix G as

G

=
∫ T

0

(T −s)α−1[Rα,α(T −s)B][Rα,α(T −s)B]∗ds,

where ∗ denotes the matrix transpose. It is proved that the
linear system (2) is controllable on J if and only if the
controllability Grammian matrix G is positive definite for
some T > 0 (Balachandran and Kokila, 2013a).

3. Fractional integrodifferential systems

In this section we consider the fractional system
represented by the fractional integrodifferential equation
with an implicit fractional derivative of the form

CDαx(t) = Ax(t) +
∫ t

0

H(t − s)x(s) ds + Bu(t)

+ f(t, x(t),CDαx(t), u(t)),
x(0) = x0,

(4)

where 0 < α < 1, t ∈ J , x ∈ R
n, u ∈ R

m, A, B
are respectively n × n, n × m matrices, H is an n × n
continuous matrix and the nonlinear function f : J×R

n×
R

n × R
m → R

n is continuous.
In order to study this problem, we need some basic

facts about the measure of noncompactness and the related
fixed-point theorem due to Darbo.

Definition 2. Let (X, ‖ · ‖) be a Banach space and S be
a bounded subset of X. Then the measure of noncompact-
ness of a set S is defined by μ(S)=inf{r > 0; S can be
covered by a finite number of balls whose radii are smaller
than r}.

Let us adopt the following settings:

• Let Cn(J) be the space of continuous functions with
the norm ‖x‖ = max{xi(t) : i = 1, 2, . . . , n, t ∈
J}. Then the measure of noncompactness of a
bounded subset E in X is given by

μ(E) =
1
2
θ0(E) =

1
2

lim
h→0+

θ(E, h), (5)

where

θ(E, h) = sup
x∈E

{
sup |x(t) − x(s)| : |t − s| ≤ h

}

is the common modulus of the continuity of the
functions which belong to the set E.

• We may proceed in a similar way in the case where
the space considered is the space Cα

n (J) with the
norm

‖x‖Cα
n

= ‖x‖Cn + ‖CDαx‖Cn .

Then the measure of the noncompactness of a set E
is given by

μ(E) =
1
2
θ0(CDαE), (6)

where
CDαE = {CDαx; x ∈ E}.

• Set the space of Cartesian product Cα
n+m(J) =

Cα
n (J) × Cm(J) with the norm

‖(x, u)‖Cα
n+m

= max{‖x‖Cα
n
, ‖u‖Cm}.

Then the measure of noncompactness of any
bounded set E in Cα

n+m(J) is given by the relation

μ(E) = max[μ(E1), μ(E2)], (7)

where E1, E2 denote the natural projections of the
set E on the spaces Cα

n (J) and Cm(J), respectively.

Assume that there exist constants K > 0, k > 0 such
that{ |f(t, x, y, u)| ≤ K,

|f(t, x, y, u) − f(t, x, ȳ, u)| ≤ k|y − ȳ|, (8)

for all x, y, ȳ ∈ R
n, u ∈ R

m, and t ∈ J.

The following version of Darbo’s fixed point
theorem, being a generalization of the Schauder
fixed-point theorem, shows the usefulness of the measure
of noncompactness.

Theorem 1. (Darbo’s theorem (Dacka, 1980)). If M is
a nonempty bounded closed convex subset of X and P :
M → M is a continuous mapping such that for any set
E ⊂ M we have μ(PE) ≤ kμ(E) where k is a constant
0 ≤ k < 1, then P has a fixed point.

For each fixed point (z, v) ∈ Cα
n+m(J), consider the

fractional integrodifferential system of the form

CDαx(t) = Ax(t) +
∫ t

0

H(t − s)x(s) ds + Bu(t)

+ f(t, z(t),CDαz(t), v(t)).
(9)

The solution of the above system with x(0) = x0 can be
written as (Balachandran and Kokila, 2013a)

x(t) = Rα(t)x0

+
∫ t

0

(t − s)α−1Rα,α(t − s)Bu(s) ds

+
∫ t

0

(t − s)α−1Rα,α(t − s)

× f(s, z(s),CDαz(s), v(s)) ds.

(10)
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Now we prove the main result of the paper.

Theorem 2. If the linear system (2) is controllable on
J and the function f satisfies the condition (8), then the
nonlinear system (9) is controllable on J.

Proof. Define the operator Ψ : Cα
n+m(J) → Cα

n+m(J)
as in the work of Balachandran and Kokila (2013b) by

Ψ(z, v) = (x, u),

where

u(t) = B∗R∗
α,α(T − t)G−1

[
x1 − Rα(T )x0

−
∫ T

0

(T − s)α−1Rα,α(T − s)

×f(s, z(s),CDαz(s), v(s)) ds

]
, (11)

x(t) = Rα(t)x0 +
∫ t

0

(t − s)α−1Rα,α(t − s)B

×B∗R∗
α,α(T − s)G−1

[
x1 − Rα(T )x0

−
∫ T

0

T α−1Rα,α(T − τ)

× f(τ, z(τ),CDαz(τ), v(τ)) dτ

]
ds

+
∫ t

0

(t − s)α−1Rα,α(t − s) (12)

×f(s, z(s),CDαz(s), v(s)) ds.

It can be easily verified that x(T ) = x1 by substituting t =
T in (12). Now we consider the right-hand side of (11) and
(12) as a pair of operators Ψ2([z, v])(t) and Ψ1([z, v])(t),
respectively, and define the operator Ψ : Cα

n+m(J) →
Cα

n+m(J) by

Ψ([z, v])(t) = [Ψ1([z, v])(t), Ψ2([z, v])(t)].

Since all the functions involved in the definition of
the operator Ψ are continuous, Ψ is continuous. To prove
that Ψ maps the space Cα

n+m(J) into itself, consider the
closed convex set E of Cα

n+m(J) defined by

E = {[z, v]; ‖v‖ ≤ N1, ‖z‖ ≤ N2, ‖CDαz‖ ≤ N3},

where the positive constants N1, N2 and N3 are defined
by

N1 = d2(|x1| + d1),
N2 = d1 + d3N1,

N3 = aN2 + b1N1 + dN2T + K,

and

a = ‖A‖, b1 = ‖B‖,
b2 = ‖G−1‖, d = sup ‖H(t)‖,
a1 = sup ‖Rα(T )‖,
a2 = sup ‖Rα,α(T )‖,
d1 = a1|x0| + a2KT αα−1,

d2 = a2b1b2,

d3 = a2b1T
αα−1.

Using the above notation, we have

‖u(t)‖ ≤ ‖B∗‖‖R∗
α,α(T − s)‖‖G−1‖[

|x1| + ‖Rα(T )‖|x0|

+
∫ T

0

(T − s)α−1‖Rα,α(T − s)‖

× ‖f(s, z(s),CDαz(s), v(s))‖ ds

]
,

≤ a2b1b2[x1 + a1|x0| + a2KT αα−1],
≤ d2(|x1| + d1) = N1,

‖x(t)‖ ≤ ‖Rα(T )‖|x0|

+
∫ t

0

(t − s)α−1‖Rα,α(t − s)‖‖B‖‖u(s)‖ ds

+
∫ t

0

(t − s)α−1‖Rα,α(t − s)‖

× ‖f(s, z(s),CDαz(s), v(s))‖ ds

≤ a1|x0| + a2KT αα−1 + a2b1N1T
αα−1

≤ d1 + d3N1 = N2

and

‖CDαx(t)‖ ≤ aN2 + b1N1 + dN2T + K = N3.

Hence the operator Ψ transforms the set E in
Cα

n+m(J) into itself. It can be easily seen that, for each
pair [z, v] ∈ E, we have

θ(Ψ2([z, v], h)) ≤ θ(S∗, h)k1,

where

S∗(T, s) = B∗R∗
α,α(T − s)

and

k1 = sup
[z,v]∈E

‖G−1‖
{
|x1| + ‖Rα(T )‖|x0|

+
∫ T

0

(T − s)α−1‖Rα,α(T − s)‖

× ‖f(s, z(s),CDαz(s), v(s))‖ ds

}
.
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Since the function S∗ does not depend on the
choice of the points in E, all the functions Ψ2([z, v](t))
have a uniformly bounded modulus of continuity and
hence they are equi-continuous. Also all the functions
involved in Ψ1([z, v](t)) are equicontinuous, since they
have uniformly bounded derivatives. Next we have to find
an estimate for the modulus of continuity of the functions
CDαΨ1([z, v](t)). For that, we have

|CDαΨ1([z, v](t)) −CDαΨ1([z, v](s))|
≤ |AΨ1([z, v](t)) − AΨ1([z, v](s))|

+ |BΨ2([z, v](t)) − BΨ2([z, v](s))|

+
∣∣ ∫ t

0

H(t − s)Ψ1([z, v](η)) dη

−
∫ s

0

H(s − η)Ψ1([z, v](η)) dη
∣∣

+ |f(t, z(t),CDαz(t), v(t))
− f(s, z(s),CDαz(s), v(s))|.

For the first three terms of the right side of the
inequality, we give the upper estimate as β0(|t − s|) and
limh→0 β0(h) = 0. Also, it may be chosen independent
of the choice of (z, v). For the fourth term, we give the
following estimate:

|f(t, z(t),CDαz(t), v(t)) − f(s, z(s),CDαz(s), v(s))|
≤ |f(t, z(t),CDαz(t), v(t))

− f(t, z(t),CDαz(s), v(t))|
+ |f(t, z(t),CDαz(s), v(t))
− f(s, z(s),CDαz(s), v(s))|.

For the first term, we have the upper estimate
k(|CDαz(t)−CDαz(s)|), whereas for the second term, we
may find an estimate β1(|t− s|) with limh→0 β1(h) = 0.
Hence

θ(CDαΨ1([z, v])(t), h) ≤ k(θ(CDαz, h) + β(h)),

where β = β0 + β1. Therefore, by (5)–(8), we conclude
that, for any set E ⊂ Cα

n+m(J),

θ0(Ψ2E) = 0, θ0(Ψ1E) ≤ kθ0(CDαE2),

where E2 is the normal projection of the set E on the
space Cα

n (J). Hence it follows that

μ(ΨE) ≤ kμ(E).

By the Darbo fixed-point theorem, the mapping T
has at least one fixed point, therefore there exist functions
u ∈ Cm(J) and x ∈ Cα

n (J) such that

(x, u) = (z, v) = [Ψ1([z, v](t)), Ψ2([z, v](t))].

This shows that x(t) is the solution of (10) for the control
u(t) and these functions are the required solution. Hence
the system (9) is controllable on J . �

4. Neutral fractional integrodifferential
systems

Consider the neutral fractional integrodifferential system
governed by the neutral fractional integrodifferential
equation with an implicit fractional derivative of the form

CDα[x(t) − g(t, x(t))]

= Ax(t) +
∫ t

0

H(t − s)x(s) ds

+ Bu(t) + f(t, x(t),CDαx(t), u(t)),
x(0) = x0,

(13)

where A, B, H and f are as in (4) and the function
g : J × R

n → R
n is continuously differentiable. As

before, for each fixed point (z, v) ∈ Cα
n+m(J), consider

the neutral fractional integrodifferential system

CDα[x(t) − g(t, x(t))]

= Ax(t) +
∫ t

0

H(t − s)x(s) ds

+ Bu(t) + f(t, z(t),CDαz(t), v(t)),

(14)

with x(0) = x0, and the solution of the system (14) is
(Balachandran and Kokila, 2013a)

x(t) = Rα(t)x0

+
∫ t

0

(t − s)α−1Rα,α(t − s)Bu(s) ds

+
∫ t

0

(t − s)α−1Rα,α(t − s)

× f(s, z(s),CDαz(s), v(s)) ds

+
1

Γ(1 − α)

∫ t

0

∫ s

0

(t − s)α−1(s − τ)−α

× Rα,α(t − s)g′(τ, x(τ)) dτ ds.

(15)

Assume the following additional condition.
The function g : J × R

n → R
n is continuously dif-

ferentiable and there exists a constant M > 0 such that

‖g′(t, x(t))‖ ≤ M for all t ∈ J and x ∈ R
n. (16)

Theorem 3. If the linear system (2) is controllable on
J and the functions f and g satisfy the condition (8) and
(16), then the nonlinear system (14) is controllable on J.

Proof. Define the operator Φ : Cα
n+m(J) → Cα

n+m(J),
as in the work of Balachandran and Kokila (2013b), by

Φ(z, v) = (x, u),
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where

u(t) = B∗R∗
α,α(T − t)G−1

[
x1 − Rα(T )x0

−
∫ T

0

(T − s)α−1Rα,α(T − s)

× f(s, z(s)CDαz(s), v(s)) ds

− 1
Γ(1 − α)

∫ T

0

∫ s

0

(T − s)α−1(s − τ)−α

Rα,α(T − s)g′(τ, x(τ)) dτ ds

]
,

(17)

x(t) = Rα(t)x0 +
∫ t

0

(t − s)α−1Rα,α(t − s)B

× B∗R∗
α,α(T − s)G−1

[
x1 − Rα(T )x0

−
∫ T

0

(T − τ)α−1Rα,α(T − τ)

× f(τ, z(τ),CDαz(τ), v(τ))dτ

− 1
Γ(1 − α)

∫ T

0

∫ s

0

(T − s)α−1(s − τ)−α

× Rα,α(t − s)g′(τ, x(τ))dτ

]
ds

+
∫ t

0

(t − s)α−1Rα,α(t − s)

× f(s, z(s),CDαz(s), v(s)) ds

+
1

Γ(1 − α)

∫ t

0

∫ s

0

(t − s)α−1(s − τ)−α

× Rα,α(t − s)g′(τ, x(τ)) dτ ds.

(18)

It can be easily verified that x(T ) = x1 by inserting
t = T in (18). We introduce the right-hand sides
of (17) and (18) as a pair of operators Φ2([z, v](t))
and Φ1([z, v](t)), respectively, and define the nonlinear
operator Φ : Cα

n+m(J) → Cα
n+m(J) by

Φ([z, v](t)) = [Φ1([z, v])(t), Φ2([z, v])(t)].

Obviously, this operator Φ is continuous, since all the
functions involved in the operator are continuous. To
prove that Φ maps the space Cα

n+m(J) into itself, define a
closed convex subset H by

H = {[z, v]; ‖v‖ ≤ M1, ‖z‖ ≤ M2, ‖CDαz‖ ≤ M3},

where the positive constants M1, M2 and M3 are defined
by

M1 = a2(|x1| + a1 + a4),
M2 = a1 + a3M1 + a4,

M3 = aM2 + λ1M1 + dM2T + K + a5,

and

a = ‖A‖, d = sup ‖H(t)‖,
λ1 = ‖B‖, λ2 = ‖G−1‖,
ω1 = sup ‖Rα(T )‖, ω2 = sup ‖Rα,α(T )‖,
a1 = ω1|x0| + ω2KT αα−1,

a2 = ω2λ1λ2, a3 = ω2λ1T
αα−1,

a4 = ω2MΓ(α)T, a5 =
1

Γ(1 − α)
T 1−αG−1.

Using the above, we have

‖u(t)‖ ≤ ω2λ1λ2[|x1| + ω1|x0| + ω2KT αα−1

+ ω2MΓ(α)T ]
≤ a2(|x1| + a1 + a4) = M1,

‖x(t)‖ ≤ ω1|x0| + ω2KT αα−1 + ω2λ1M1T
αα−1

+ ω2MΓ(α)T
≤ a1 + a3M1 + a4 = M2,

and

‖CDαx(t)‖ ≤ aM2 + λ1M1 + dN2T + K + a5 = M3.

Hence the operator Φ transforms H into itself. It can
be easily seen that, for each pair [z, v] ∈ H, we have

θ(Φ2([z, v], h)) ≤ θ(P ∗, h)k2,

where

P ∗(T, s) = B∗R∗
α,α(T − s)

and

k2 = sup
[z,v]∈H

‖G−1‖
{
|x1| + Rα(T )|x0|

+
∫ T

0

(T − s)α−1‖Rα,α(T − s)‖‖f‖ds

+
1

Γ(1 − α)

∫ T

0

∫ s

0

(T − s)α−1(s − τ)−α

× ‖Rα,α(T − s)‖‖g′(τ, x(τ))‖ dτ ds

}
.

We show that the operators are equicontinuous. Since
the function P ∗ does not depend on the choice of
the points in H, all the functions Φ2([z, v](t)) have a
uniformly bounded modulus of continuity, and hence
they are equicontinuous. Also, all the functions used
in Φ1([z, v](t)) are equicontinuous, since they have
uniformly bounded derivatives. Next we have to find an
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estimate for the modulus of continuity of the functions
CDαΦ1([z, v](t)). For that, we have

|CDαΦ1([z, v](t)) −CDαΦ1([z, v](s))|
≤ |AΦ1([z, v])(t) − AΦ1([z, v])(s)|

+ |BΦ2([z, v])(t) − BΦ2([z, v])(s)|

+
∣∣∣∣
∫ t

0

H(t − s)Φ1([z, v](η)) dη

−
∫ s

0

H(s − η)Φ1([z, v](η)) dη

∣∣∣∣
+ |f(t, z(t),CDαz(t), v(t))

− f(s, z(s),CDαz(s), v(s))|
+ |CDαg(t, x(t)) −CDαg(s, x(s))|

≤ |AΦ1([z, v])(t) − AΦ1([z, v](s))|

+
∣∣∣∣
∫ t

0

H(t − s)Φ1([z, v](η)) dη

−
∫ s

0

H(s − η)Φ1([z, v](η)) dη

∣∣∣∣
+ |BΦ2([z, v](t)) − BΦ2([z, v](s))|
+ |CDαg(t, x(t)) −CDαg(s, x(s))|
+ |f(t, z(t),CDαz(t), v(t))

− f(t, z(t),CDαz(s), v(t))|
+ |f(t, z(t),CDαz(s), v(t))

− f(s, z(s),CDαz(s), v(s))|.

For the first four terms of the right-hand side of the
inequality, we give the upper estimate as β0(|t − s|) and
the last term by k(|CDαz(t) −CDαz(s)|) + β1(|t − s|),
with limh→0 βi(h) = 0. Hence θ(CDαΦ1([z, v])(t), h) ≤
k(θ(CDαz, h) + β(h)), where β = β0 + β1. Therefore,
by (16) and (5)–(8), we conclude that, for any set H ⊂
Cα

n+m(J),

θ0(Φ2H) = 0, θ0(Φ1H) ≤ kθ(CDαH2),

where H2 is the normal projection of the set H on the
space Cα

n (J). Hence

μ(ΦH) ≤ kμ(H).

By the Darbo fixed-point theorem, the mapping Φ
has at least one fixed point. Therefore, there exist
functions u ∈ Cm(J) and x ∈ Cα

n (J) such that
Φ(x, u) = (x, u), that is,

u(t) = Φ2(x, u)(t), x(t) = Φ1(x, u)(t).

These functions give the required solution and satisfy
x(T ) = x1. Hence the system (14) is controllable. �

5. Examples

In this section we give two examples to illustrate the
theory developed in the previous sections.

Example 1. Consider the fractional integrodifferential
system with an implicit fractional derivative of the form

CDαx(t) = Ax(t) +
∫ t

0

H(t − s)x(s)ds + Bu(t)

+ f(t, x(t),CDαx(t), u(t)), t ∈ J,

x(0) = x0,

(19)

where

A =
(

2 0
0 2

)
, B =

(
1 0
1 1

)
,

H(t − s) =

⎛
⎜⎝

3(t−s)−1/2

Γ(1/2) 0

0 3(t−s)−1/2

Γ(1/2)

⎞
⎟⎠ ,

α = 1/2 and the nonlinear term f is given by

f(t, x(t),CD1/2x(t), u(t))

=

⎛
⎜⎝

0

t cosx(t) + sin
1
2
(CD1/2x(t))

⎞
⎟⎠ .

Here

x(t) =

⎛
⎝ x1(t)

x2(t)

⎞
⎠

with
x1(t) = x(t), CD1/4x1(t) = x2(t).

First, we consider the homogeneous part of the above
system,

CD1/2x(t)

=
(

2 0
0 2

)
x(t)

+
∫ t

0

⎛
⎝ 3(t−s)−1/2

Γ(1/2) 0

0 3(t−s)−1/2

Γ(1/2)

⎞
⎠x(s) ds. (20)

Using the Laplace transform, we find the solution of the
system (20) as

x(t) = R1/2(t)x(0), (21)

where

R1/2(t) =

⎛
⎝ Q(t) 0

0 Q(t)

⎞
⎠ .
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Here

Q(t) =
1
4
E1/2(t1/2) +

3
4
E1/2(−3t1/2)

and R1/2(t) is the resolvent matrix which satisfies the
following properties:

(i) R1/2(0) = I,

(ii) CD1/2R1/2(t)

= AR1/2(t) +
∫ t

0

H(t − s)R1/2(s) ds,

(iii) L{R1/2(t)}(s) =
∫ t

0

e−stR1/2(t) dt

:= s−1/2(s1/2I − A − L(H))−1.

Now, taking Laplace transform on (19) and using
the property (iii) as well as a simple partial fraction
method, we obtain the solution of (19) as (Balachandran
and Kokila, 2013a)

x(t)

= R1/2(t) +
∫ t

0

(t− s)−1/2R1/2,1/2(t− s)Bu(s) ds,

(22)

where

R1/2,1/2(t) =

⎛
⎝ L(t) 0

0 L(t)

⎞
⎠ ,

L(t) =
1
4
E1/2,1/2(t1/2) +

3
4
E1/2,1/2(−3t1/2).

By simple matrix calculation, one can see that the
controllability matrix

G =
∫ T

0

(T − s)α−1[Rα,α(T − s)B]

× [BRα,α(T − s)]∗ ds

=
∫ T

0

(T − s)−1/2

(
L2 L2

L2 2L2

)
ds

is positive definite for any T > 0. Furthermore,

|f(t, x, y, u) − f(t, x, ȳ, u)| = ‖ sin
y

2
− sin

ȳ

2
‖

≤ 1
2
|y − ȳ|

and there exists K > 0 such that |f(t, x, y, u)| ≤ K, so
the hypotheses of Theorem 2 are satisfied. Observe that

the control defined by

u(t) = B∗R∗
α,α(T − t)G−1

[
x1 − Rα(T )x0

−
∫ T

0

(T − s)α−1Rα,α(T − s)

× f(s, x(s),CDαx(s), u(s)) ds

]

steers the system (19) from x0 and x1 and hence the
fractional system (19) is controllable on [0, T ]. �
Remark 1. It should be noted that, for α = 1, the
fractional system (19) is reduced to integer order Volterra
integrodifferential systems with implicit derivative which
was studied by Balachandran and Balasubramaniam
(1992).

Example 2. Consider the following neutral fractional
integrodifferential system:

CDα[x(t) − g(t, x(t))]

= Ax(t) +
∫ t

0

H(t − s)x(s) ds + Bu(t)

+ f(t, x(t),CDαx(t), u(t)), t ∈ J,

x(0) = x0,

(23)

where A, B, H and f are as above, α = 1/2 and g is
taken as

g(t, x(t)) =

⎛
⎜⎜⎜⎜⎝

x1(t)
1 + x2

2(t)

x2(t)
1 + x2

1(t)

⎞
⎟⎟⎟⎟⎠ .

Note that g is differentiable and the derivative
is uniformly bounded. Further, the linear system is
controllable and f(t, x(t),CD1/2x(t), u(t)) satisfies the
hypotheses of Theorem 3, then the non-linear system (23)
is controllable on [0, T ]. �
Example 3. Consider the following nonlinear fractional
integrodifferential system represented by the matrix
fractional integrodifferential equation:

CDαx(t) = Ax(t) +
∫ t

0

H(t − s)x(s) ds + Bu(t)

+ f(t, x(t),CDαx(t), u(t)), t ∈ J,

x(0) = x0,

(24)

where A, B and H are as above, α = 1/2 and f is taken
as

f(t, x(t),CD1/2x(t), u(t)) =

⎛
⎝ 0

sinx(t) cos u(t)

⎞
⎠ ,
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since the linear system is controllable and the nonlinear
function f(t, x(t),CD1/2x(t), u(t)) does not satisfy the
condition stated in Theorem 2. However, by Theorem 3.1
of Balachandran et al. (2012c), the nonlinear system (24)
is controllable on [0, T ]. �
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