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The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formu-
lated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic
hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective
minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed
complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers
comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse
problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy
and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of
the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The
capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in
restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer
template obtained during step and flash imprint lithography.
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1. Motivation

Considerable progress has been achieved recently in the
field of inverse problems and, as a result, this area is one
of the fastest growing domains in applied mathematics
and computer science. It is concerned with problems that
consist in finding an unknown property of a medium, or an
object, from the observation of a response of this medium,
or object, to a probing signal. A general framework for
inverse problems provides analytical means of estimating
constants in mathematical models given appropriate
measurements, building mathematical models, and giving
insight into the design of experiments (see, for instance,
the works of Banks and Kunisch (1989), Isakov (2006),
Tarantola (2005) and the references therein). Typically,
inverse problems lead to mathematical models which
are not well-posed in the sense of Hadamard, i.e., their
solution might not be unique and/or might be unstable
under data perturbations, and therefore they pose severe

numerical difficulties.

The growth of the area of inverse problems has
largely been driven by the needs of applications both in
sciences and in industry. We refer to Engl et al. (2000),
Samarski and Vabishchevich (2007) or Tikhonov et al.
(1995) for a description of inverse problems of different
types, including inverse problems in which the equation
is not specified completely as some equation coefficients
are unknown, boundary inverse problems in which
boundary conditions are unknown, and evolutionary
inverse problems in which initial conditions are unknown.

In this paper, we deal with a class of inverse
problems in linear elasticity in which the coefficients
of the partial differential equations are the unknowns.
Problems of this class have been frequently formulated
and solved in the frame of structural health monitoring
(SHM). The general scope of SHM contains a variety of
theoretical results, methods and technologies to design,


paszynsk@agh.edu.pl

amcs

B. Barabasz et al.

run and supervise monitoring systems that allow on-line
detection of structure damages. The particular SHM
tasks are designing and optimizing a system of sensors
set on the structure body, verification, statistical analysis
and classification of data obtained from sensors, finding
weakened structure regions by solving inverse problems
properly formulated. The survey of such results may be
found in many books (see, e.g., Garibaldi et al., 1999) and
scientific journals (see, e.g., Structural Health Monitor-
ing,http://shm.sagepub.com/).

An interesting characterization of inverse problems
in mechanics (hereafter referred to as IPMs) appearing
in SHM is given by Friswell and Mottershead (2001).
A typical IPM is associated here with the discrete
forward problem of elastic system vibration with or
without viscous damping. The system is assumed to
be already discretized, or is discrete itself (e.g., frame,
lattice). Usually, the decrement of some stiffness
matrix coefficients represents the damage. The IPM
consists in finding a weakening coefficient distribution by
minimizing the functional being the misfit of the answer
of the structure for vibrational forcing or/and the misfit of
eigenfrequencies. The damage identification in SHM is
sometimes called model updating.

The main difficulty in solving such IPMs is the
huge dimension of the admissible set. This problem
might be partially overcome by an initial selection of the
structure part (region, subdomain) in which the damage
may occur. In order to speed up the solving process,
the objective is frequently linearized and regularized.
The other problem is to obtain a discrete system in the
case of a massive, lumped structure. Proper FEM or
FDM approximation might be helpful, but the results
of monitoring are very sensitive to the quality of this
approximation. Chase Geoffrey et al. (2004) show sample
results of the least square regularization method tested
on the American Society of Civil Engineers (ASCE)
benchmarks of SHM problems.

As far as steepest descent (e.g., gradient) methods are
applicable for solving well posed IPMs, other methods
replacing or/and supporting these are in frequent use.
In the paper of Kirikera et al. (2008) a structural
artificial neural network (ANN) prototype Al system
with a parallel implementation identifying damages in
composite materials is presented. An input ANN layer
is connected to sensors, while the output layers deliver the
data classification information.

The application of machine learning for detecting
structural damages using a vibration-based damage
identification procedure is presented by Figueiredo et al.
(2011). Four learning algorithms are compared during the
process of learning an auto-associative neural network.

The Bayesian inference approach to solving the
inverse problem of locating structural damage based
on measured vibrational parameters is presented by

Huhtala and Sven (2011). The identified stiffness
coefficient decrements were improved by a-posteriori
stochastic analysis assuming a known distribution of the
measurement errors. Some examples of solving IPMs
motivated by SHM by genetic stochastic search are given
by Meruane and Heylen (2009) as well as Caicedo and
Yun (2011).

Perhaps the most tiring phenomenon appearing when
defining and solving an IPM is the multimodality of the
objective function, i.e., the existence of multiple local
minima. The main causes of multimodality may fall into
three groups:

o [nherent causes. The mathematical formulation of
the problem allows multiple solutions. Sometimes,
such a possibility might be formally proven (see, e.g.,
Cabib et al., 1990) and, more frequently, it is either
anticipated from the physical evidence or reflects
simply our inability to prove the uniqueness.

e Uncertainty of the objective function representation.
It appears because of both insufficient knowledge of
the problem and the errors in data measurements and
representation (see, e.g., Koper et al., 1999; Meruane
and Heylen, 2009; Caicedo and Yun, 2011).

e Uncertainty of methods for problem solving. Some
global optimization strategies (both deterministic and
stochastic) may produce artefacts in the form of
local objective extrema (see, e.g., Barabasz er al.,
2011b). Moreover, an unavoidable error of objective
evaluation makes it difficult to distinguish the global
extrema among many local ones.

One way of solving ill-posed inverse problems is
by using metaheuristics, which are solution methods that
orchestrate an interaction between local improvement
procedures and higher level strategies to create a pro-
cess capable of escaping from local optima and per-
forming a robust search of a solution space (Osman
and Kelly, 1996). There are multiple methods that
fulfill the above definition, for example, scatter search,
tabu search, simulated annealing, genetic algorithms, ant
colony optimization, and many others. An overview of
metaheuristics is given, e.g., by Osman and Kelly (1996)
or Glover and Kochenberger (2002); for an extensive list
of references on this topic, see the work of Osman and
Laporte (1996).

Among the existing metaheuristic search strategies,
we highlight evolutionary algorithms (EAs), which have
been applied to solve inverse problems (see Burczynski
and Beluch, 2011; Burczynski et al., 2004). In particular,
they deal with multiple material defects in mechanical
systems and identification of the shape and the position
of a tumour region in a biological tissue domain. Inverse
problems in engineering mechanics were the subject of
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many international symposia (see, e.g., Tanaka, 2003).
EAs were also applied to inverse problems, e.g., by
Rocca et al. (2009) (inverse scattering problems), Singh
et al. (2006) (inverse groundwater modelling), Lashin
and Likoshvai (2004) (gene networks identification) and
Xavier et al. (2006) (cardiac bidomain equations), who
compare two parallel genetic algorithms; for details
concerning this type of algorithms, refer to Canti-Paz
(2000).

Meruane and Heylen (2009) applied a real-coded
genetic algorithm to solve the SHM inverse problem
formulated as a nonlinear, global optimization one. The
main goal of this computationally expensive stochastic
approach is to handle the local minima. Fitness was based
on operational model data—it considers the initial errors
in the numerical model. False damage detection is avoided
by using damage penalization. A parallel implementation
prevents enormous execution time.

Our particular interest is devoted to EAs, which
can handle multimodality by finding all “reasonable”
local extrema and then perform proper post-processing
in order to distinguish essential ones. Some of them,
e.g., niching and sequential niching strategies (see, e.g.
Mahfoud, 1997), the hierarchic genetic strategy (HGS)
(see Schaefer and Kotodziej, 2003), adaptive, stochastic
multi-start (see, e.g., Cabib et al., 1998), are especially
robust when handling multimodality in the objective
function.

A novel evolutionary algorithm for finding multiple,
alternative solutions of the model update of a structural
system in the SHM process was presented by Caicedo and
Yun (2011). The genetic algorithm identifies global and
local minima of the objective function, giving the analyst
the option to choose the updated model from a set of
plausible ones.

Perhaps the main disadvantage of stochastic global
optimization strategies is their enormous computational
cost caused by a huge number of objective evaluations.
In the case of parametric inverse problems, the objective
evaluation requires the solution of a forward problem,
which is usually costly itself. The way of reducing
the computational cost of stochastic strategies is then to
reduce the number of objective evaluations and possibly
decrease the computational cost of the forward problem
solver.

The main goal of this paper is to propose a
two-phase strategy that possesses an asymptotic guarantee
of success (see, e.g., Horst and Pardalos, 1995)
and can handle objective multimodality. = Moreover,
the strategy can deliver high final accuracy with a
moderate computational cost for solving parametric
inverse problems in elastostatics.

The first, global phase is performed by the hierarchic
genetic strategy (Schaefer and Kotodziej, 2003) combined
with the hp-adaptive finite element method hp-FEM

(Demkowicz, 2006; Demkowicz et al., 2007). The
hp-HGS develops a tree of dynamically adjustable
dependent demes. It starts with a root deme which
performs the most chaotic search with low accuracy. After
the metaepoch (the fixed number of epochs) the best fitted
individuals form a seed of a child deme. Sprouting child
demes is repeated concurrently for the root and all other
demes excluding leaves. It is performed conditionally, if
there is room among existing demes at the same level of
the hp-HGS tree (the distance of a seed to the centers of
existing demes is sufficiently large). Moreover, demes at
each level are periodically checked, and redundant demes
are reduced. Searches performed by child demes are
stopped if no progress in the evolution is observed. The
whole strategy is stopped if a sufficient number of well
fitted leaves is obtained.

In the second, local phase the satisfactorily fitted
individuals (at most one per leaf deme) are improved
by a quasi-Newton method, namely, the limited-memory
bound-constrained version of the very well-known
Broyden—Fletcher—Goldfarb—Shanno (L-BFGS-B) algo-
rithm (Zhu et al., 1997).

The imposed tree structure of demes decreases
the total fitness evaluations in comparison with a
single population algorithm searching with the maximum
accuracy (see, e.g., Schaefer and Kotodziej, 2003;
Wierzba et al., 2003). The root deme searches
permanently while branch and leaf demes, being much
smaller than the root-deme, are invoked only in the
promising regions found by their parental demes. Child
demes are quickly terminated, just after they stop to search
effectively. Two mechanisms, i.e., redundancy reduc-
tion and conditional sprouting, significantly reduce the
number of active demes. Finally, well fitted leaf demes
concurrently cover separate basins of attractions of local
and global minimizers.

The main computational cost reduction is caused
by precise accuracy control of the forward self-adaptive
hp-FEM solver, which performs misfit evaluation
(fitness). This accuracy is adapted to the inverse error
at the particular level of the hp-HGS tree, which makes
the global phase significantly cheaper. An extensive but
necessary mathematical and algorithmic motivation for
this procedure is given in Section[2land Appendix.

Furthermore, only the necessary minimal number of
local searches is activated for finding all minimizers with
high accuracy. The local gradient searches are expensive
in the case of numerical gradient evaluation, which is
necessary if, for some reasons, it cannot be obtained
analytically (e.g., misfit irregularity or lack of its algebraic
formula).

Summing up, in contrast to traditional inversion
algorithms producing a unique solution, our two-phase
strategy may deliver multiple solutions, which enables an
expert in the field to determine the best possible one as
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well as its uncertainty level.

The idea of the hp-HGS was introduced by Paszynski
et al. (2007). Analysis of the asymptotic guarantee of
success and computational cost reduction with respect to
single- and multi-deme strategies without the common
scaling of forward and inverse errors is performed by
Schaefer and Barabasz (2008). Barbasz et al. (2011b;
2009) show the theory necessary for applying the Ap-HGS
to inverse, parameter problems in heat flow. They also
give computational examples of finding multiple solutions
by the hp-HGS method.

The novelty of this paper consists in applying the
two-phase strategy combining the hp-HGS and local
methods to inverse problems in elastostatics. Moreover,
we extend the formal verification of the hp-HGS to
the particular class of inverse parametric problems in
elastostatics. A crucial role in this analysis is played
by the verification of the Lipschitz continuity of the
elastic energy functional with respect to the unknown
parameters (see Theorem [AT] and Corollary [AT). Some
results of this paper were communicated by Barabasz
et al. (2011a). We also attach a benchmark example
consisting in solving a thermo-elastic IPM associated
with the step-and-flash imprint lithography process, which
illustrates the advantages coming from the adaptive
genetic search and the control of accuracy in the case
of ill-posed, inverse problems with the multimodal
functional being the composition of elastic energy and
boundary displacement misfits.

2. Forward and inverse problems

2.1. Definition of a forward problem. The class of
IPMs to be solved is related to the following class of
forward problems.

Let an open, bounded, and connected subset
Q c R%d = 1,2,3 coincide with the undeformed
configuration of a linear elastic body. Consider the
Sobolev space

V={ve H(Q;R?) |tr(v)=00nTp},

where T'p C 99 with meas(I'p) > 0 corresponding to
the mixed (Dirichlet and Neumann) boundary conditions.
Assuming small deformations, the weak equilibrium
(variational residual) equation takes the following form:
Find u € V such that

a(g,u,v)=1(w), YveV, (1)
where g € L>(;K,) is the stiffness tensor parameter.
Moreover, a(g;-,-) : V x V — R s bilinear, symmetric,
continuous and coercive form with respect to the second
and third variables uniformly for all g € L*({};K,).
The right-hand side mapping / : V' — R is linear and
continuous.

The space L>°(€2; K ),y > 0 gathers all symmetric
bounded tensor functions of fourth order,

K,y:{kGMd|]€TZTZ’}/”TH§d VTGSd},

and o: 7 is the product of tensors given by o; 7;; for o,
7 € S Moreover, for a constant 0 < M < +oo, we
define

S oMy = { k= (kijui) | kijni = kjint = kniij,

kijhl < My, i,5,h,l = 1,...,d},

where S is the space of symmetric d x d matrices.
The above conditions are sufficient for the

well-posedness of (1) for each ¢ € L*(;K,) and
enable us to rewrite (I) in the equivalent form

argmin £ (g;u), (2)
where 1
E(giu) = 5 a(g; u,u) — 1(u) (3)

stands for the total energy of the modelled physical
system; see, e.g., the work of Ciarlet (1978, Chapter 1),
and Appendix with references herein for an explanation
of necessary mathematical details.

2.2, Self hp-adaptive finite element method.
The finite element method (FEM) consists of
constructing a subspace V;, , C V with a finite basis
{ez,p}i:anNh,p’ Npp < +oo. The subspace V}, , is
constructed by partitioning the solution domain §2 into
a finite number of nonintersecting polyhedra (called
elements) and defining basis functions as polynomials
satisfying prescribed conditions over their vertices, edges,
faces, and interiors. Each non-zero restriction of the basis
function e}:h » to the element is called the shape function.

Usually, we restrict the representation of the stiffness
tensors (forward problem parameters) to some admissible
set D C L*(;K,) for both forward and inverse
numerical computations. Typically, D is a set of stepwise,
uniformly bounded functions on the predefined, regular
decomposition of the solution domain 2.

Assuming a value of the parameter ¢ € D, an
approximate solution uy, , to (1) is obtained by using a
linear combination of the basis functions

Nh,yp
Up,p = Z U, p €h p- )
i=1

Using (@) and a similar representation for v € Vip CV,
we can obtain for (I) the system of linear equations

N}hp . . . .
> uhpalgichpen,) =Ue,),
=1
j= 1,...,Nh,,,. 5)
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The coefficients ! hp are called the degrees of freedom. A
detailed mathematlcal description of the FEM applied to
elliptic variational problems may be found in the work of
Ciarlet (1978, Chapter 2), while the convergence of this
method for various FEM spaces is discussed by the same
author (Ciarlet, 1978, Chapters 3 and 4) or by Descloux
(1973).

The accuracy of the approximation depends on the
quality of the basis functions. The self-adaptive hp
finite element method is an algorithm for automatic
construction of the basis function delivering exponential
convergence of the accuracy with respect to the mesh size.
The algorithm has been formulated by Rachowicz et al.
(2006), Demkowicz (2006) and Demkowicz et al. (2007).
It can be summarized in the following steps:

1. Generate an initial basis function {e}ll}p}izL,“,Nh,p
span over the so-called initial mesh. The initial
mesh becomes the so-called coarse mesh for the first
iteration.

2. Solve the coarse mesh problem by computing the
degrees of freedom {uz’p}izl,m,Nw. After that
step, we obtain the coarse mesh approximate solution

— Nh,p
Uh,p = Z =1 uh,p eh,p
. 1/ .

3. Generate the fine basis {eg,p+1}1:17---ng,p+1
spanned over the so-called fine mesh. The fine
mesh is obtained from the coarse mesh by breaking
each coarse mesh element into eight elements and
incrementing the polynomial order of approximation
uniformly by one.

4. Solve the fine mesh problem by computing the
degrees of freedom {uh p+1}l LNy After
5P

that step, we obtain the fine mesh approximate
solution

5P+l

Uk py1 = Z uZ p+1 27p+1

5. Select an optimal refinement strategy for each finite
element from the coarse mesh. That should be
based on the error estimations ||e||?, where ey =
U i1~ Uhps computed by using the coarse and fine
mesh solutions (see Demkowicz, 2006). The norm
|| - || is equivalent to the energetic norm on the space
V (cf. Section[3for details). The optimal refinements
contain a list of A refinements (requests to break
some elements into either two, four, or eight new
elements) or p refinements (raising some polynomial
orders of approximations by one).

6. Execute all required h refinements.

7. Execute all required p refinements.

8. If the maximum relative error of the solution is
greater than the required accuracy, then go to Step 2.
The new optimal mesh becomes the coarse mesh for
the next iteration.

It has been proven that an appropriate selection of
element sizes h and polynomial orders of shape functions
p obtained using the above automatic hp-FEM results
in exponential convergence of the numerical error with
respect to the number of basis functions (degrees of
freedom) (Babuska, 1986a; 1986b; Schwab, 19998).
No matter how the convergence of hp-FEM holds by
h — 0 and p — 400, both parameters are dependent.
They should satisfy the syntactic rules of element mesh
refinement, taking the approximation appropriate for its
topology. In the computational practices p rarely exceeds
10, while h is bounded from below by the arithmetic error
of the particular implementation.

The self-adaptive hp-FEM algorithm has been also
redesigned by using the graph grammar approach (Ryszka
et al., 2013; Paszynski, 2009a; Strug et al, 2013;
Paszyniska et al, 2008; 2012a; 2012b; 2009) and
efficiently implemented on parallel machines (Paszynski,
2009b; Paszynski and Schaefer, 2010; Paszyriski and
Demkowicz, 2006).

2.3. Rate of hp-FEM convergence. In particular, the
exponential convergence of the self-adaptive goal oriented
hp-FEM is experimentally confirmed as the straight line
y = —az + b in the system of coordinates, where the
horizontal axis represents the cube root of the number
of degrees of freedom z = N'/3 and the vertical
axis represents the logarithm of the relative error y =
logyg([lerll); llerll < 1. where e = wn 1y — unp
denotes the relative error being the difference between two
consecutive approximate solutions, ||-|| denotes the proper
norm in the space problem solutions. The constants a
and b are positive and problem dependent. This implies
the relation log,o(|lewt]]) = —a(N'/3) 4 b, which in
turn entails N = —c;(logyo(cz |lewl]))? for [le] < 1,
where the constants are problem specific ¢; = a3, ¢y =
107® > 0. The computational cost of the solution
of the problem by using a forward solver over the two
dimensional mesh depends on the structure of the hp
refined mesh. For a regular mesh the cost is of order
0] (N 3/ 2). For meshes with pointwise singularities the
cost can be reduced down to linear O (N). Finally,

cost = O (—cl(loglo(CQ |\erel||))3r) , el < 1, (6)

where 7 € [1,3/2], and now ¢; = a=%", ¢y = 107% > 0.
2.4. Definition of a class of inverse problems. Let us

denote hereafter by u(g) € V and up,(g) € Vi, the
unique solutions to (1) and its FEM approximation in the
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space V}, ,, obtained for the particular parameter g € D,
respectively.

_ We assume that we can observe the total strain energy
£ and the boundary displacement 7 of the deformable
elastic body (2.

The inverse problem under consideration consists in
finding (approximating) an unknown physical parameter
5 € L>®(K,) resulting in the value of the strain
energy £(5:u(3)) = & (see the formula (3)) and the
boundary displacement tr(u(s)) = 7, where u(s) € V
stands for the exact solution to @) for the parameter
and tr: H'(Q;R?) — L2(0;R?) is the trace operator
(see, e.g., Penkowski et al., 2003b). The exact value
of energy £ can be measured in situ or in a laboratory
or computed by highly accurate molecular calculations,
while the observed value of 7 can be obtained by laser
scanning of the body surface 0f2.

We will formulate the misfit functional J: D — R
such as

T(g9) = | E(g;ulg)) — €|

2 )
+ w llex(u(9) = D22 oz
where w > 0 is a scaling factor. Note that the internal
strain energy (see (3)) is a square form of the forward
solution, so both misfit components are of the same
degree.

Since, in general, it is impossible to compute the
exact value of (7) for each 5§ € L>(;K,) effectively
(it would be available only if § € D), we intend to
find an approximation § € D of the exact parameter
5 e L>®(Q; K, ) so that for all g € D we have

. o < .
hﬂOPI)IE*_OO Jh,p(g) = h—»O%l;nH—l>+oo Jh,p(g)v (8)
where
Tnp(9) = | E(giunp(9)) — €
p(9) = |E(giunp(g) — €| ©

~N )12
+ w [[tr(unp(9)) = Nz200me)

and £(g; up,p(g)) stands for the energy of the approximate
solution uy, ,(g) obtained for the parameter g € D.

The inverse problem (8) may be classified as a global
optimization one because of the frequent ambiguity of
its solution (multiple solutions), manifested as objective
multimodality caused by its physical nature and/or the
uncertainty of the mathematical model, as well as errors
in numerical objective evaluation. As a result, not
only the global minimizers, but also the local ones with
sufficiently low objective values may represent physically
meaningful solutions. The other difficulty is often a high
computational cost of the approximated evaluation of the
misfit (9).

3. hp-HGS overview

3.1. Primitives. The HGS produces a tree-structured
dynamically changing set of dependent demes (see Fig.[T).
The depth of the HGS tree is bounded by m < +oc0. The
low-order demes (those closer to the root) perform a more
chaotic search with lower accuracy, while the high-order
demes perform a more accurate, local search.

Each deme, except leaf demes, sprouts a new child
deme after a constant number K of genetic epochs
called the metaepoch. A new child deme is activated
in a promising region of the evolutionary landscape
surrounding the best fitted individual, distinguished from
the parental deme at the end of the metaepoch.

The HGS also implements two mechanisms that
allow reduction in search redundancy. The first one,
called conditional sprouting, disables the sprouting of
new demes in regions already occupied or explored by
the brother-deme (another child-deme of the same order
sprouted by the same parent). The second mechanism,
called branch reduction, reduces the branches of the same
order that perform searches in the common landscape
region or in the regions already explored.

The HGS stopping policy is composed of a local
branch stopping condition that terminates the evolution in
leaves and branches and a global stopping condition that
evaluates the total maturity of the global search. Local
stopping conditions monitor the evolution progress in a
deme and stop it if it is unsatisfactory. The whole strategy
might be stopped if no new demes are sprouted after a
sufficiently large number of metaepochs and all active
leaves were stopped. The other possibility is to stop
the strategy when the satisfactory number of well fitted
individuals was already found.

We apply an HGS in order to solve the inverse
problem (8)). The fitness function for the particular deme
should be based on the misfit functional (0). We utilized
two type of encodings, obtaining two separate types of
strategies.

In the case of the binary encoding, the evolution
of each deme is governed by a separate instance of the
simple genetic algorithm (SGA) (see Vose, 1999). The
search accuracy is dictated by encoding precision and by
the length of binary strings used as the genotypes, which
are different for different-order demes. The unique deme
of the first order (the root) utilizes the shortest genotypes,
while the leaf utilizes the longest ones. To obtain search
coherency for demes of different orders, a special kind of
hierarchical and nested encoding is used. First, the densest
mesh of phenotypes in D for the demes of the m-th
order is defined. Next, the meshes for the lower order
demes are recursively defined by selecting some nodes
from the previous ones. The maximum diameter of mesh
0, associated with the demes of order j determines the
search accuracy at this level of the HGS tree. Obviously,
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g)
i=1 root deme
J 61
j=2 3,
J:3 83
leaf demes

Fig. 1. HGS tree and corresponding two-dimensional meshes.

the mesh parameters satisfy d,, < --- < d;.

In the real-number encoding version of the HGS, a
genotype is a vector of floating point numbers. In order
to introduce a sequence of increasing genetic spaces for
subsequent orders of branches, we use a sequence of
scaling coefficients +00 > 11 > 12 > -+ > 1, = 1. Let
us denote by D = Hf;l[ai ,bi] C RY a search domain,
where a;, b;; a; < b; are the lower and upper bounds for
the ¢-th decision variable. The genetic space at the ¢-th
level is defined as Hfil[O, bn;“] C RY. In this way,
we obtain genetic spaces that are smaller for lower level
branches, closer to the root. The genetic space for leaves
Hf\il[O, (b; — a;)] is of the same size as the admissible
domain D, and has the richest numerical representation. If
a target search accuracy in leaves equals d,,, the accuracy
in the underlying demes will be reduced to 6; = 1; 0,

fory=1,...,m—1.

3.2. Dynamic accuracy adjustment. Let us assume
that g represents the parameter value decoded from the
genotype that appears in the HGS deme of the j-th order,
j€{1,...,m}. LemmalA®l (see Appendix A.4) delivers
the following misfit evaluation:

J%,p-{-l(g)
= [&(gius 41(9) — €]

2
+ w Htr(u%’p+1(g)) - ’Y)‘ L2(9Q;R3) (10)

< A [Junp(g) — u%,p-‘,—l(Q)H%ﬂ(Q;Rd)
+ Ay [Junp(9) = w(@)llFr ouma)
+ Az lg = 5 Lk,

where wu(g) is the solution to the problem (),
E=¢ (5;u(s)) are the real displacement and energy,
respectively, and A1, A3 > 0 are two positive constants.
The first right-hand side component of (IQ)
contains the square of the error decrement |ew(g)|| =

Hu%w_l(g) — up,p(g)| in the single hp-FEM step (see
Demkowicz, 2006), while the last component represents
the error of the inverse problem solution that characterizes
the individuals belonging to the HGS demes of the j-th
order.

The main idea of the hAp-HGS is to adjust
dynamically the accuracy of the misfit evaluation to
the particular value of the parameter g encoded in an
individual’s genotype, as well as to the unavoidable error
of solving the inverse problem that characterizes the
current HGS branch. This may be obtained by balancing
the first and third components of the right-hand side of the
formula (TI0).

Assuming J; to be the accuracy of the inverse
problem solved by the branch of the j-th order, we
will perform the hp-adaptation of the FEM solution
of the forward problem while ||eq|| is greater than
Ratio \/E . The value of the strategy parameter Ratio
should correspond to the constant \/Az/A;, in view
of the rapid diminishing of the middle right-hand side
component of (I0) as a consequence of the fast hp-FEM
convergence.

Corollary verifies the same error scaling rule
for the case of the SFIL inverse problem discussed in
Section [l

Algorithm 1. Pseudo-code of the hp-HGS.
1: Initialize the root deme Pioo;
i AD = {Proot};
while global_stop_condition() = false do
AW = AD;
for P € AW do
Execute in parallel Metaepoch(P);
end for;
end while;
: STOP;

R A A ol

3.3. Algorithmic description. A draft of hp-HGS
activity is depicted in the pseudo-codes Algorithms[f]and
The function global_stop_condition() checks whether
a satisfactory solution has been found or if the Ap-HGS
cannot find any more local extremes. The function
branch_stop_condition(P) returns true if it detects a
lack of evolution progress of the current deme P. The
generic function fitness(i) computes fitness accordingly
to the position of P in the hp-HGS tree.

The conditional sprouting mechanism
is implemented as follows. The procedure
children_comparison(xz) compares the phenotype

averages (centroids) of all child demes with the phenotype
of the best fitted individual = distinguished from the
parental deme P. This procedure returns true if x is
sufficiently close to the centroids of the existing child
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demes. The generic function sprout(x, P) returns a new
child deme surrounding = using proper encoding and
sampling, according to the position of the parental deme
P in the hp-HGS tree.

Algorithm 2. Pseudo-code of the Metaepoch function.
1: t=0;

2: repeat
3. for (i € P)do
4: solve the forward problem for ¢ = code(i) on

the coarse and fine FEM meshes;

5: compute ||ewe(g)]];

6: while (||ewi(g)|| > Ratio x sqrt(d;)) do

7: execute one step of hp adaptivity;

8: solve the problem on the new coarse and fine

FEM meshes;

9: compute | el (9)]);

10: end while;

11: compute fitness(i) using the FEM mesh finally

established;

12 end for

13:  if (P # Pyo0t) then

14: if (branch_stop_condition(P)) then

15: AD = AD\ {P};

16: end if

17 end if

18:  if ((t = K) A (Pis not a leaf)) then

19: distinguish the best fitted individual x from deme

P,

20: if (— children_comparison(z)) then
21: AD = AD U {sprout(z, P)};
22: end if
23:  endif

24:  perform proportional selection,
multiset of parents;

25:  perform SGA genetic operations on the multiset of
parents;

26:  establish a new contents of population P after the
genetic epoch;

27 t=t+1;

28: until (t = K)

obtaining a

Statements 15 and 21 in Algorithm [2] are mutually
exclusive among all instances of Metaepoch(P) function
processing in parallel, because the set of active demes
AD constitutes common, shared data. A particular
implementation-based mechanism of critical section
handling is applied. The modifications of the set of
alive demes AD imposed by the particular deme P (see
Statements 15 and 21 in the Metaepoch routine) do not
affect changes performed by other demes, because of
their tree structure (see Fig. [0). The branch reduction
mechanism is omitted in Algorithms [Tl and 2] for the sake
of simplicity.

The presented general algorithmic description

constitutes a basis for various implementations. The
serial, trivial one forces to execute the loop 5-7 in
Algorithm[I] sequentially.

4. Case study

As a case study, we take step-and-flash imprint
lithography (SFIL) being a patterning process utilizing
photopolymerization to replicate the topography of a
template onto a substrate. During the SFIL process, the
shape of the template is transferred into the feature by
utilizing the photopolymerization process of the liquid
polymer (cf. Paszyniski et al., 2010a). Because of different
chemical compounds of the liquid polymer, we assume
that the resulting feature consists of two layers with
different mechanical properties, and the resulting material
may be described as the 3D linear elastic body loaded
by the thermal stresses (cf. Paszynski er al., 2010a).
The inverse problem consists of an identification of
all feasible Young modulus distributions minimizing the
misfit functional (@) for the two layers of the material,
while the Poisson ratio is assumed to be known.

Paszytiski et al. (2010a) deliver also a reliable value
of energy £ obtained by the exhaustive, highly accurate
simulation with a nanoscale molecular statics model with
different values of interparticle interactions for two layers
of the material (see Fig. ).

Fig. 2. Results of the nonlinear nano-scale molecular statics
model allowing large deformations with quadratic po-
tentials.

4.1. Step-and-flash imprint lithography. Step and
flash imprint lithography (SFIL) is a patterning process
utilizing photopolymerization used to replicate the
topography of a template onto a substrate (cf. Ahopelto
and Haatainen, 2002; Colburn et al., 2001; Burns
et al., 2004; Paszyniski et al., 2005). Nanolithography
methods like SFIL are utilized for the production of
microprocessors. The SFIL process can be described in
the following six steps, as illustrated in Fig. Bl

1. Dispense. The SFIL process employs a
template/substrate alignment scheme to bring
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template

Disp | *——transfer layer

Imprint &

UV Cure

Expose

T |
Breakthrough Etch [y
Transfer Etch [ —

Fig. 3. SFIL process.

Fig. 4. Example shrinkage of the feature measured after remov-
ing the template.

a rigid template and substrate into parallelism,
trapping the etch barrier in the relief structure of the
template.

2. Imprint. The gap is closed until the force that ensures
a thin base layer is reached.

3. Exposure. The template is then illuminated through
the backside to cure the etch barrier.

4. Separate.  The template is withdrawn, leaving
low-aspect ratio, high resolution features in the etch
barrier.

5. Breakthrough etch. The residual etch barrier (base
layer) is etched away with a short halogen plasma
etch.

6. Transfer etch. The pattern is transferred into the
transfer layer with an anisotropic oxygen reactive
ion etch, creating high-aspect ratio, high resolution
features in the organic transfer layer.

The steps mentioned above include various kinds of
physical processing: depositing a low viscosity, silicon
containing, photocurable etch barrier on to a substrate;
bringing the template into contact with the etch barrier;
curing the etch barrier solution through UV exposure;
releasing the template, while leaving high-resolution
features behind; a short, halogen break-through etch;
and finally an anisotropic oxygen reactive ion etch
to yield high aspect ratio, high resolution features.
Photopolymerization, however, is often accompanied by
densification. Densification of the SFIL photopolymer
(the etch barrier) may affect both the cross sectional
shape of the feature and the placement of relief

patterns. Example shrinkage of the feature measured after
removing the template is presented in Fig. [dl The linear
elasticity model with a thermal expansion coefficient
is used to verify the material response of polymerized
networks in cured etch-barrier layers that are formed
during the exposure and after removal of the template.

We focus on the simulation of the deformation of the
feature after removal of the template. It is assumed that the
polymer network has been damaged during the removal of
the template, and thus the interparticle forces are weaker
in one region. The problem has been solved in a 3D cube
shape domain, presented in Fig.

Undamaged

. Damaged

Fig. 5. SFIL problem domain.

4.2. Linear elasticity model with a thermal expan-
sion coefficient. The problem of linear elasticity with a
thermal expansion coefficient can be formulated as in the
work of Hughes (2000). We use the notation introduced
in Section[3l The elastic domain (2 is an open unit cube in
R3. The part of the boundary T'p = {z € T | z; = 0}
constitutes the bottom face of Q and 'y = '\ T'p. Given
0 € R, ayj € Rand f; = 0 fori, j = 1,2,3, the
problem under consideration reads as follows: Find the
displacement vector field u € C?(Q;R?) N CH(Q;R3)
satisfying Eqn. (A1), the boundary conditions

u; =0 on I'p,

O'ijnjzo on FN, (11)
and the constitutive law

Oij = kijhl (Ehl(u) +9ahl)7 i7j7h,l = 172a37 (12)
where k;;5; are the elasticity coefficients (known for a
given material), 6 is the temperature, and «y; are the
thermal expansion coefficients.

The solutions of the weak formulation for the SFIL
model will be sought in the space V = {v € H}(Q;R?) |
tr(v) = OonI'p}. For convenient implementation,
we use the notation equivalent to the one introduced in
Appendix [3] in which the strain tensor is rearranged into

@amcs
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the following form:
s(u) = (2 Ouz Ous Ouz , Ous
o 8.231 ’ 8.132 ’ 83?37 83?3 8.132 ’
8u1 8’LL3 8’U,1 8u2 T
B G e ) )

and the elasticity coefficients are represented by the
second order tensor field of the form

D
E
(1+v)(1—2v)

1—v v v 0 0 0
v 1-v v 0 0 0
o v v 1-v 0 0 0
0 0 0o = 0 0
0 0 0 0 == 0

0 0 0 0 0o L=z

(14)

The relation between the coefficients D;; and k;jn;
may be found in the work of Hughes (2000). We are
looking for u € V satisfying

a(D;u,w) = l(D;w) forallw eV, (15)

where

a(D;u,w) = / (w)" D&(u) dx

Dw——@/

In the following numerical simulation, we assume the
Poisson ratio v = 0.3, as provided by Colburn (1978).
We also assume # = 1 (the thermal expansion coefficient
expresses the volumetric contraction of the feature when
the temperature gradient is equal to 1 °C). Finally, based
on the results presented by Paszynski et al. (2007), we
set ag; = —0.06156k;. The distribution of the Young
modulus F is subject to the inverse analysis.

In the following experiments, there are nine
parameters, see Fig. g € DC R®. The first three
values of the Young modulus E1, E2, E3 correspond to
the undamaged polymer, while the next six values F4
to E9 of the Young modulus correspond to the damaged
material, on one half of the feature, from 20% to 40% of
its height. The top and bottom layers of the polymer are
assumed to have a constant value of the Young modulus
equal to Fiop = Fpoyom = 10°. The SFIL problem with
damaged material has also been solved by a molecular
statics model with weaker interparticle forces assumed
in the area of the domain where the damaged material
is present (Paszyniski, 2005; 2010a). The reference
energy £ has been computed based on molecular statics.
Displacements obtained in this way are shown in Fig.

(16)
"Dadaz.

(100,100,100)

MIDDLE
40 E7 | E8 |E9
20 E4 [E5 |E6
E1 | E2 |E3
60 60
40 40
(0.0,0)

Fig. 6. Location of nine Young modulus being subject to inverse
analysis.

4.3. Experiments. Through a computational example
we illustrate the advantages of the presented strategy
hp-HGS/L-BFGS-B. In particular, we selected a problem
with important and practical application and a high
computational difficulty. Its difficulty is mainly caused
by the irregularity and the shape of the landscape which
may result in many solutions, and thus mislocalization of
the solution by less accurate methods.

In our experiments we utilized the hybrid strategy
for the nine-parameter case, where the hp-HGS algorithm
with real-number encoding was used for the location
of candidate starting points for a local gradient
optimization method. Then, as a second phase, we
executed a limited-memory bound-constrained version of
the Broyden—Fletcher—Goldfarb—Shanno algorithm (Zhu
et al., 1997). It is a quasi-Newton method utilizing a
limited-memory approximation of the Hessian matrix.

The hp-HGS instance utilized in the a first phase
has two levels. The relative energy error accuracy of
the self-adaptive hp-FEM algorithm on particular levels
(see Section 2.3) was set to 70 and 30, respectively. We
used the real-number encoding of the Young modulus
(genotypes) in HGS populations (see Section [3). The
parameters of the hp-HGS (see Section[3)) are summarized
in Table [l  Scaling coefficients 7); shows accuracy
degradation at the consecutive HGS levels: the root
level and the leaf level. Population sizes on both the
levels are small to reduce the number of forward solver
calls. The crossing rate is the probability of selecting
a genetic individual for reproduction. Analogously,
the mutation rate is the probability of selecting an
individual for mutation. During the mutation a
new (mutated) individual is sampled according to the
normal distribution centered in the parent and with
the given standard deviation. The sprout distance and
the sprout standard deviation parameters are used in
procedures children_comparison(x) and sprout(x, P) of
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Table 1. Parameters of the hp-HGS tree.

Root  Leaves

Scaling coefficients n; 128.0 1.0
Population size 12 6
Crossing rate 0.5 0.5
Mutation rate 0.1 0.01
Mutation standard deviation 1.0 0.2
Sprout distance 0.5

Sprout standard deviation 0.1

Solver accuracy 70 30

Young modulus

1,80E409 -
1,60E+08
1,40E+09
1,208409
1,00E+09
8,00E+08 | Point12
o008 - =" Pointl0
4,00E+08 I . 7 poointd
2,00E+08
1,00E+06 =
1 2 3

Parameters Ej s

Fig. 7. Individuals found by the first phase (the genetic algo-
rithm). All presented points were taken from the second
level of the tree of populations and calculated with accu-
racy 30.

Algorithm[2]

After several metaepochs we collected individuals
from the leaves of the tree of populations. These
individuals are presented in Fig. [/l The self-adaptive
hp-FEM accuracy for all of these individuals was better
than 30. Clearly, all the results have a larger Young
modulus in the E7-E9 area, and the lowest Young
modulus in the EF1-E6 area, as expected. The fitness
of these 12 individuals is presented in Table The
absolute fitness values are so high because the parameters
of the fitness formula () are expressed in nano-scale
physical units.

In the second phase, the L-BFGS-B local method
was started from the twelve points obtained from the first
phase, and converged on five of them. The self-adaptive
solver relative accuracy was set to 10 percent, e.g.,

Table 2. Fitness of the individuals found by the first phase.

Point  Fitness | Point Fitness | Point Fitness

1 79335 2 82995 3 89526
4 75204 5 34031 6 96797
7 79220 8 89871 9 74177
10 72895 11 48410 12 24984

~—

80000 ~__

60000 m Pointl

40000 - m Point2

20000 T M Point7
o1k - mPoint8

m Point10

Iteration

) Pointg  Foint10
Point2 Point7
Pointl

Fig. 8. Convergence of the fitness in the local phase for five in-
dividuals found by the first phase.
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Fig. 9. Relative fitness during convergence in the local phase for
five individuals found by the first phase.
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Fig. 10. Results of the second phase.
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Fig. 11. Second phase convergence history for the first individ-
ual found in the first phase.

100% ||u%7p+1 - uh,p||2/||u%7p_|r1||2 = 100% x
Here]||2/||u%7pJrl | = 10%. This is the percentage of the
relative error between the coarse and fine mesh solutions.

The summary of the L-BFGS-B convergence results
is presented in Fig. 8] where we plot the convergence of
the fitness function as well as in Fig. [0 in which we show
the evolution of the relative fitness (the difference of the
fitness value between two particular individuals from two
consecutive iterations). The plot reflects the fact that we
reached the minimum value of the fitness function that
can be provided by the hp-FEM algorithm with relative
accuracy of 10%. In that sense all five results converged
to the lowest fitness value possible to obtain with such
accuracy of the hp-FEM solver.

Let us now focus on the analysis of the values of
the parameters obtained after the second phase. All
five individuals that converged in the second phase
are presented in Fig. [0l Their final fitness values
are presented in Table [£3] This fitness represents an
integral computed at nano-scale on the boundary of the
cubic domain from the difference between the known
reference displacement field and the field coming from the
numerical experiment.

We may observe that the displacement fields for
two sets of parameters computed with the same hp-FEM
relative accuracy 10% looks similar (see Figs. and
13). Thus such values of the fitness of the order of 10*
guarantee small differences between the obtained results
and the reference solution. To illustrate the converge
process, in Fig. [[T] we present exemplary iterations for
the first point found at the global stage. We can
clearly see that there are three parameters representing the
undamaged material and six parameters representing the
damaged material. The differences in distribution of small
and big values of the Young modulus obtained by these
five results illustrate that the problem has many solutions.

4.3.1. Computational cost. We conclude the
experimental section with the discussion on the
computational cost of the proposed algorithm. The
cost of the first phase is related to the number of calls

Table 3. Fitness of the individuals found by the first phase.

Point  Fitness | Point Fitness | Point Fitness
1 28587 2 54730 7 42163
8 61891 9 57880

to the self-adaptive hp-FEM solver, as well as to the
requested accuracy. The experimental measurements of
the computational time for six example individuals are
presented in Fig. [[4l

5.504 I

-5.518 I

L

6.879 I

-7.829 I

»‘[‘\«

0.388 I

Fig. 12. z,y, z components of the displacement vector field for
the first individual.

The hp-HGS algorithm is parallelizable on the level
of metaepochs, which means that the total execution time
can be reduced to the number of required metaepochs
multiplied by the execution time needed to obtain the
solution with assumed accuracy. For example, for the
accuracy of 30 percent of the relative objective error, the
time is of the order of 100 seconds, and the number of
metaepochs is around 8. This implies 8 x 100 seconds
which is about 14 minutes. The execution time can
be further reduced by using the parallel self-adaptive
hp-FEM code (Paszynski er al., 2006; Paszynski and
Demkowicz, 2006), delivering 60% efficiency over 16
cores. In other words, the computational time can be
further reduced to 14/(16 x 60%) = 14/9.6 = 1.5
minutes.
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Table 4. Number of calls to the self-adaptive hp-FEM solver.

5.046 I

Fig. 13. The z, y, z components of the displacement vector field
for the second individual.

The computational cost of the second phase is
different since we use a sequential gradient algorithm
working for each starting point separately. We can
parallelize the computations on the level of particular
starting points, but the solver calls for a given point for
each iteration of the local algorithms must be performed
in sequential mode.

The number of self-adaptive solver calls is higher
than that of iterations, since the L-BFGS-B algorithm
utilizes the finite difference method for approximation
of the Jacobian in the inverse space. The number of
iterations of the L-BFGS-B algorithm and the number
of calls for particular individuals in the local phase is
summarized in Table[£.3.1l The particular points required
between 77-286 solver calls (150 in average), except the
expensive first point, which we iterated for 12 iterations in
L-BFGS-B without having any significant improvement
of the accuracy after the 4th step. Thus, on the average,
we can estimate the computational time of the second
phase by 150 x 250 seconds (where 250 is the average
time for the solver call with 10 percent accuracy), which
is around 10.5 hours. This time can be further reduced
by using parallel implementation to 10.5/(16 x 60%) =
10.5/9.6 = 1 hours.

It should be emphasized that we actually performed
sequential computations and the above estimates are for
the theoretical parallel execution case. The sequential

| Point Iterations  Solver calls |
1 12 1221
2 4 286
I 7 4 110
-5.907
8 4 77
- 9 2 234
7.115 I
Execution 1000
time [s]
900
800 /N
5.808 I 700 4 ——Exemplary point 1
’ 600 ——Exemplary point2
f
- 500 / /7/ ——Exemplary point 3
0.407 l 400 //// ——Exemplary point4
300 ——Exemplary point5
200 ——Exemplary point6
100
0 / : : T )
70 30 10 6 1 01 0,01
-10.772 Accuracy

Fig. 14. Computational times for six example points for differ-
ent accuracies of the self-adaptive hp-FEM solver.

computations took about 8 x 20 x 200 = 32000s = 8.8
h in the first phase (since we had 8 metaepochs with
around 20 evaluations each), and 5 x 150 x 200 =
150000 = 41.6 h in the second phase (taking the average
number of solver calls equal to 150 and 5 local points
being investigated, not including the first point, which was
iterated much longer).

5. Conclusions

The proposed strategy can recognize multiple objective
minimizers.  This allows studying ill-posed inverse
problems, which is difficult or even impossible to obtain
by other methods. In the case of a finite number of
minimizers, all of them can be found. If the set of
minimizers is infinite or even continuous, then its volume
and shape can be characterized and approximated by the
finite number of Ap-HGS results.

The hp-HGS minimizes the computational cost in
several ways. The number of forward problem solver
invocations in the global phase decreases due to the
hierarchic structure of demes. The main computational
cost reduction is obtained by common scaling of the
forward and inverse search accuracy (see Section [3.2).
Additional computational cost reduction is obtained by
restricting the number of local searches. Only one local
search is started in each basin of attraction recognized in
the global phase.
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The applicability of the hp-HGS is restricted to
problems with Lipschitz continuous misfit functionals
with respect to the unknown parameters. The current
hp-HGS implementation combined with the local search
method can be applied to problems with a moderate
number of design variables (moderate dimension).
The massively parallel implementation will extend
the applicability of the method to more complicated
problems with a larger number of inverse parameters.
A further significant extension might be obtained by
economical computing of the misfit gradient and Hessian
(Alvarez-Aramberri et al., 2013; Oden and Prudhomme,
2001).

The simple computational example consists in
restoring feasible Young modulus distributions in the 3D
domain of a photo polymer template obtained during
step and flash imprint lithography satisfying the minimum
condition (8). The difficulty of this problem is mainly
caused by the irregularity and shape of the landscape,
which may result in mislocalization of the solution by
less accurate methods. The presented approach allows
a low-cost landscape analysis, hence a more accurate
and expensive search in the most promising regions is
available (see Table 2, Fig. [7land Table 3, Fig. [I0).

We showed that the problem of restoring the
Young modulus based on the energy and boundary
displacement measurements has many solutions, and thus
the application of the classical gradient based method may
produce misleading results.

The hp-HGS algorithm is parallelizable on the level
of metaepochs, and for the accuracy used in the numerical
experiments for 8 utilized metaepochs the computational
time can be reduced down to 14 minutes. Using the
parallel version of the self-adaptive hp-FEM (Paszyniski
et al., 2006; Paszyriski and Demkowicz, 20006), this time
can be further reduced down to 1.5 minutes.

The reduction of the computational cost can be
obtained by switching to the local gradient search, e.g.,
by means of the L-BFGS-B algorithm in the areas found
in the global phase. In the hybrid case, the second phase
executed per individual requires around 10.5 hours. Using
the parallel version of the self-adaptive hp-FEM, this time
can be also further reduced down to 1 hour per individual.

The hp-HGS can be extended to other cases of global
optimization problems in continuous domains in which
the computational cost of the objective evaluation depends
monotonically on its accuracy.
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Appendix
Verification of dynamic accuracy adjustment

A.1. Direct problem features. Let us consider a linear
elastic body, which in its undeformed state occupies an
open, bounded, and connected subset 2 of R d > 1.
Within the framework of linear elasticity theory, assuming
small deformations, the equilibrium equation takes the
form

9% 4 {20 inq, (A1)
8.13j

(f;) is the volume force. The

where f =

amcs
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strain—displacement relationship can be written as
8’Uq + ou j
Ox; Oz

in Q, where v = (u;) denotes the displacement. The
constitutive equation is given by the Hooke law,

gij(u) =

oij(u) = kijn en(u) in Q, (A2)

where k = (kijni), 4, j, h, | = 1,...,d is the elasticity
tensor. Let S? be the space of symmetric d x d matrices
and

Ma = {k = (kijnt) | kijnt = kjint = kniaj,
kijni < My, 1,5,h,l=1,...,d}, (A3)
with entries uniformly bounded by a constant 0 < M}, <
+00.

Given v > 0, we introduce the space L>°(2; K, ) of
admissible fourth order tensors k = k(z) with

K,={keMy|k7:7>v|7|3 forall 7 €S},

(A4)
where the product of tensors is given by o: 7 = 0y; 75
for o, 7 € S Consider the space V. = {v €

HY(Q;R?) | tr(v) = 0 on 'p }, where T'p C 9 with
meas(I'p) > 0. This space corresponds to the mixed
boundary conditions in the elasticity problem. Since
meas(I'p) > 0, the following Korn inequality holds:

vl 71 (iray < clle()L2(s9), (AS)
where ¢ > 0 depends only on 2 and I'. This implies that
the norm || - || = |le(*)[| 2(q;s4) is equivalent on V' to the
norm || - || g1 (q;re). For future convenience, let us denote

the norm equivalence constants as 0 < kg < K1 < 400,
so that

Kollvll g1 ouray < 0|l < Fallv| gioraey forall v e V.
(A6)
The weak formulation of the problem is as follows:
Find u € V such that a(k;u,v) = I(v) forall v € V,
where a: L®(;K,) x V xV — Rand: V — Rare
given by

a(k;u,v) /k (v) dzx
(A7)
for k € L= (4 K,), w,v eV,

:/f-vda: for v eV, (A8)
Q

where f € V*and f-v = f;v;. Then it is clear that, for all
ke L>(; K,), the form a(k; -, -) is bilinear, continuous
onV xV (.e., |a(k;u,v)| < M |ul||v|| foru, v € V
with M > 0), coercive uniformly with respect to k (i.e.,
a(k;v,v) > v|jv||? for v € V) and the linear functional

l is continuous (i.e., [ € V™). Therefore, by application
of the Lax—Milgram lemma (cf. Denkowski ef al., 2003a,
Chapter 2.7), for every f € V*and k € L>°(; K,) there
exists u = u(k) € V a unique solution to the problem,

a(k;u,v) =1(v) forall veV (A9)
and
V*
) < 170 (A10)
Y
Moreover, since for all k& € L>(;K,) the bilinear
form a(k;-,-) is symmetric on V' x V (i.e. a(k;u,v) =

a(k;v,u) for u, v € V) and coercive uniformly with
respect to k, it is well known (cf. Denkowski et al., 2003a,
Chapter 2.7) that for all k € L>°(£2; K,) the problem (A9)
is equivalent to the following minimization one:

E(k;u) < E(k;v) forall v eV,

with the elasticity energy functional £: L>(Q;K,) x
V — R given by

E(k;v) = = a(k;v,v) —1(v)

for k€ L*°(LK,), ve Vo (All)
Let us observe that because both constants M} and
~ in the formulas (A3) and (Ad) defining the set of
admissible parameter functions are universal (Descloux,
1973), we may select the constants v and M uniform
for the whole family of bilinear forms {a(k;-,-)}, k €
L>(; K,) such that for all k£ € L*>°(; K, ) we have

ylvl* < alk;v,v) < M |jv]|* forallv € V. (A12)

A.2. Lipschitz continuity of the elastic energy func-
tional.

Theorem Al. Let the energy functional £ be of the form
(ATI) with a and | defined by (A7) and (AY), respectively.
Then there exists a constant L > 0 such that for all k-,
ko € L>(Q;Ky), we have
| E(ks u(ky)) — E(k2; u(kz))|
< Llky = kel L~ @ik, )5

where u(k;) € V is the unique solution to (A9) corre-
sponding to k; fori =1, 2.

Proof. Let ki, ko € LOO(Q;K»Y) and u; = ’U,(k‘l), Ug =
u(ks) be the unique solutions to (A9) which correspond
to k1 and ko, respectively.

Since 11, us € V are solutions to (A9), we have
a(ky;ui,v) = l(v) and a(ka; ug,v) = l(v) for all v €
V. Hence a(ki;u; — uz,v) = —a(ky — ke;ug, v) for all
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v € V. From the latter, using the coercivity of the form a,
(AT0) and the Holder inequality, we obtain

7 [lur = us?
<la(kr — k2; u2, u1 — us)|
< k1 — k2|l Le k. luzl| [[ur — ual|

fllv-
< %nkl kol g — ]

which implies the following lemma.

Lemma Al. The solution of the forward problem (A9) is
Lipschitz continuous with respect to the parameter

lur — ual| < Co[lk1 — k2|l L=(ax,) (A13)

where Co =y 72|| fllv+ and || - | = le()l| 2 (54
Subsequently, using (A10Q), we have

la(k1;ur,u1) — a(kz; u, ur)

- |/Q(k;1 ~ ko) e(un): e(ur) dal

< b — kol ey / () |2 de
Q

= ||k1 - k2||L°°(Q;K~,)||U'1||2

(A14)

< M ki — k
<z Ik 2|l oo (k) -

From (AT3), the triangle inequality for the norm and the
elementary inequality [|£]|2, — [|7]|3. < [|€ — nl|2. for all
£, n € S? we deduce

la(ko; w1, ur) — a(ka; uz, ug)|
-y /Q ke (leCun) 2 — [le(ua)|12.) daf

< ol o ey / e — u2) |2 de
Q

= k2l Lo (k) lu1 — ug||?

<cC? (12| e (i) [[F1 — k2||%°@(9;ﬂ<7)

<c? 12| L= (%) (HleL&(Q;KW)
k2l Lo ik,)) k1 — kel ik,

<2802 |k — kel Lok, )

where
B = max{||k||L=x,) | k € LZ(%K,)}
Similarly, from (AT3)), it follows that

[ 1(ug — )| < [y
<Cl|f

ug — 1|

V* kl - Ifg”Loo(Q;K_y). (A15)

Finally, by the inequalities (AT4) and (AT3), we have
|5(k1;u1) - 5(’@;“2”
= %Ia(/ﬁ;ul,ul) — a(kz; u1, uy)|
+ %|a(l€2;u1,u1) — a(ka; ua, uz)| + |l(uz — uq)]

15
22

<

k1 — k2|lL@k,)

+ 2

L ISR
v

Rl
4

k1 — k2|lL>@k,)

5 I1k1 = K2l Lo (k)

_ (%)2(3 + (%)2) k1 — ka2l Lo~ @ik,

which completes the proof. [ ]

A.3. Lipschitz continuity of the energy functional for
the SFIL model. Under the hypotheses that # and v
are known positive constants, and « is a known positive
diagonal matrix, both forms a and ! can be written as
follows:

a(E;u,w):/QEé(w)TPé(u)dx

I(B;w) = / E&(w)" (—0Pa)dr, (A16)
Q
where P is a constant matrix
B 1
(1 +v)(1-2v)
1—v v v 0 0 0
v 1—v v 0 0 0
o v v 1—v 0 0 0
0 0 0o =& o0 0
0 0 0 0o == o0
0 0 0 0 0 L=
(A17)

We are looking for a Young modulus F that belongs to
the space L>°(Q; [E, E]), where 0 < E < E < +o0 are
some prescribed positive constants.

Both forms given by (AI6) inherit all features
analogously to the proof in Section [3 i.e., a(E;-,-) is
bilinear and continuous on V' x V, and coercive with the
constant v > 0, and [(E;-) is continuous on V for all
E € L>®(;[E, E]). Therefore, by the Lax-Milgram
lemma, there exists u(E) € V a unique solution to the
problem

a(E;u,v) =1(F;v) forall v eV, (A18)
forall E € L>(Q; [E, E]), where
V={ve  H' (R |tr(v)=00onTp}. (Al9)
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Furthermore, we have the following uniform estimate:
There is a constant C; > 0 such that

1
[u(BE)]l < = max [1(H; )|
Y HeL>~(Q;[E,E])

v+ = (). (A20)

The next important property of the functional [ is its
Lipschitz continuity with respect to the Young modulus,
i.e. there is a constant L; > 0 such that for all F1,
Es € L*°(Q; [E, E]) and all v € V we have

[ [(E1;0) — 1(Ba;v)
=[U(Er — E2;v))|

< Li||Ey (A21)

- E2||Loo(Q;[QE]) [[v]l.

From the arguments used in the proof of Theorem
[ATl we have the following result:

Corollary Al. Let the energy functional for the SFIL
model be of the form
E(E;v) =

—a(E;v,v) —l(E;v)

for E€ L*(%[E,E]), veV, (A22)

where a and | are given by (A106), (A17) and V is defined
by (AI9). Then there exists a constant L > 0 such that for
all By, By € L™ (S |E, E]), we have

| E(Ev; u(Er)) —
<L|E—

E(E2;u(E»))|

Bollp~uem), (A2

where u(E;) € V is the unique solution of (AI8) corre-
sponding to E; fori =1,2.

Proof. 1t is analogous to the proof of Theorem[ATl and
thus we indicate only the main differences with that result.
First, we observe that for all Ey, Fy € L>(€; [E, E]) and
v € V wehave a(FE1;u; —uz2,v) = —a(FEy — Eo;ug,v) —
I(Ey — E1;v). Using and (A21)), we obtain

7 lur = ualf?

< a(Er;u1 — ug,u; — ug)

<[a(Er — E2;uz,u1 — uz)|
+ | I(E1 — Eg;ur — ug)]

< (Cr+4 L)l By = Ea|| poc (.7 lur — u2]]

so the following inequality, analogous to (AI3) in the
proof of Theorem[AT] remains valid:

Ci+ L

|ur — ual| < 1E1 — B2l oo (0,5 (A24)
Next, from (A20) and (A24)), we deduce
la(E1;ur,ur) — a(E2;ur, u)
< CP | Br = Bl poe 0 7)) (A25)

| a(Eo;ur,u1) — a(Fa; ug, us)]
C+L\?
<26° <%> 1By = Bal| o ,m.))» (A20)

respectively. Moreover, from (A24), it follows that
[(Ea;ug — u1)|
= |/ E&(ug —uy) (—0Pa)dx|

<OE|r(uz —ui)| <OE|

Ci+ L
v < S > 1By = Eall oo 0y2,7))»
(A27)
where r(v) = fQ TPadz. From the inequalities
(AZ1), (2 m we have

|E(E1;u1) — E(Fa;uz)
1
< §| a(Ev;ur,ur) — a(Ba;ur, ug)

1
+ §| a(Ea;ur,ur) — a(Eo;ug, us)|

+ | U(Ea;ur —ug)| + | I(E7 —
< (T (221)

Ez;uy)|

gl

— Ci+L
0l (952 v o)

X By = Bzl oo (0i2,5))»
which completes the proof of the corollary. [ ]

A.4. Misfit estimation. Let us denote by up (k) €
Vipandun (k) € Vi 1y two consecutive hp-FEM
solutions obtained in the hp-adaptation process (see
Section [2), where &k € L°°(€;K,) is an admissible
parameter function. Notice that hp-adaptation rule forces
Vip C V%,p+1 C V (see, e.g., Demkowicz, 2006).

Lemma A2. Forall k € L>(Q;K,) we have

2 |& (ks un,p(k)) = € (ks u(k))]

< M up (k) — u(k)|?, (A28)

where u(k) is the solution to the exact problem (A9) and

2 |& (ks unp(k) = € (Ksuy s (0)]

< M lunp(k) —up 0 (R)P, (A29)
where M is the uniform continuity constant (see (A12))).

Proof. We start the proof with a simple lemma.
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Lemma A3. (Descloux, 1973, Theorem 1.1.1.) Let U be
a linear space over R and b : U x U — R a bilinear, con-
tinuous, symmetric and positively defined form, whereas
¢ : U — R is a linear, continuous functional. More-
over, let F' : U — R be the quadratic functional given by
F(v) = $b(v,v) — ¢(v) forv € U.

Ifu € U is a solution of the variational equation

b(u,v) = ¢(v) forall veU,

then

F(v)—F(u) = %b(v—u,v—u) forall veU. (A30)

Taking into account that Vj,, C V, Lemma [A3]
together with (AT2)), allows rewriting the left-hand side
of (A28) in the form

2 |& (k;unp(k)) = € (ks u(k))]
= a(k; un,p(k) — w(k), unp(k) — u(k))
< M|lupp(k) = u (k).

Analogously, since u bopy1isa solution of (A9) on V% 1

and since V}, ,, C Vh p+1, We have

2[€ (Kity 12 () = € (ks (k)

= a(k 2 p+1(k) - uhﬁv(kj)a u%,erl(k) - uhﬁv(k))
< M”U” p-‘,—l(k) - uh,p(k)HQ
which concludes the proof of Lemmal[A2] [

Lemma A4. Forallk,g € L>(Q;K,) we have

1€ (93105 p11(9)) = € Ui (k)
< M un,p(g) — Un p+1( )”%P(Q;Rd)
+ M |un,p(g9) —
+ Llg — kll L o:k,);

w(9)||F1 (may
(A31)

where u(g) is the solution to the problem (A9) and L the
Lipschitz continuity constant (see Theorem [A]). More-
over, M' = %M/i% where M is the uniform continuity
constant (see [AI12)) and k1 norm equivalence constant

(see (AB)).

Proof. The left-hand side of (A3I)) might be rewritten in
the form

|E (95 Un p+1 ) E (g3 unp(9))

+& (g5 unp(9)) — € (g;ulg))
+& (g5 ulg)) — € (ku(k)) |-

It is enough to apply Lemma to the first and second
difference, the norm equivalence condition in H!(Q;R?)
to the second one and Theorem[ATl to the last difference.
So, using we obtain M’ = T M?x3. ]

(A32)

In the sequel we derive a similar evaluation for the
boundary part of the misfit functional.

Lemma AS5. There are constants Cy,Cy > 0 such that
forallk,g € L=(;K,) we have
[tr(uy ,i1(9) — tr(u(k))|72o0re)
< C1llunp(g) — un p—‘,—l( )”?LP(Q;W)
+ Ot lunp(9) = (@) oy
+ C2lg — Kl L~k (A33)
where u(g) is the solution to the problem (A9).

Proof. Because the trace operator tr: L2(99;R?) —
H'(Q;R?) is linear and continuous, there exists Cyy > 0
such that

[tr(uy p11(9)) — tr(u(k))ll L2 (paime)
< CU' ||U’h p+1(g)

Now, by the Lemma[AT] we obtain

(k) || g may-

[tr(un ,y1(9)) — tr(u(k))l|L2o0ra)
< Cu |lunp(g) — un p+1( )HHl(Q;Rd)
+ Cu lun,p(9) — w(g)| 1 (@;ra)

+ Collg = kllL=(ax,)- (A34)

Applying twice the elementary inequality (a + b)? <
2a% + 2b? to the right-hand side of the formula (A34),
we obtain
[tr(uy ,i1(9) = tr(ulk)72(a0;za)
< 4Ctr [un.p(9) = ws pia (9l
+ 4CT lunp(g) - u(g)”ill(Q;Rd)

+ 205 |9 = k= (o, ) (A35)

Finally, it is enough to observe that there exists a constant
C’" > O such that ||g—k||? w@x,) < Cllg=klL=x,)
so we have C = 4C? and Cy = 2C'C3. ]

Summing up the above, we may state the following
inequality, which may be useful in the misfit functional
evaluation ().

Lemma A6. Forall k,g € L>(Q;K,) we have

1€ (9510 pi1(9)) = € Ui (k)
+ wltr(us 41 (9)) — tr(u(k))llr2@00re)
< Ai[lunp(9) = s i1 (9170 :pa)
+ Ay [lunp(g) —
+ Az [|g = El[ ook, )

U(Q)H?ﬂll(Q;Rd)
(A36)

(@ﬁ,amxs
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where u(g) is the solution to the problem (A9), w > 0
an arbitrary positive scaling parameter and A1 = M’ +

wCh, As = L + wCy are two positive constants (see
Lemmas[A4] and[A3).

Using a similar approach, we may obtain the misfit
evaluation for the case study associated with the forward
SFIL problem (see Section ). The energy functional in
the SFIL problem (A22) satisfies the same conditions as
(ATI) (see Corollary [AT) while the space L>°(€); [E, E]
is a special case of the space L>°(; K., ).

Corollary A2. For all By, E; € L>®(Q; [E, E)) it fol-
lows that

€ (Briug i1 (B1)) = € (Bxsu(Ey))
+ wltr(uy i1 (E1)) = tr(u(E))l| L2 (00m2)
< A ||uh,p(E1) - U%,p+1(E1)||%{1(Q;1R3)
+ At [Junp(Er) = u(E)| o)
+ A2 |By = Bl e (5. (A37)
where u(E;) € V is the unique solution of (AI8) corre-

sponding to E; for i = 1,2 and Ay, Ay are two positive
constants.
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