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In this paper, application of an evolutionary strategy to positioning a GI/M/1/N -type finite-buffer queueing system with
exhaustive service and a single vacation policy is presented. The examined object is modeled by a conditional joint transform
of the first busy period, the first idle time and the number of packets completely served during the first busy period. A
mathematical model is defined recursively by means of input distributions. In the paper, an analytical study and numerical
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1. Introduction

Applications of finite-buffer queueing systems (QSs) in
various areas of technical and economical sciences are
evident. In telecommunications, they are widely used in
modeling input/output traffic of data packets in Internet
routers, LAN switches and DNS or DHCP servers. QSs
help to manage data traffic and connections routing that
are passed between workstations, clients and servers.
In management, they can be applied in investigation
of particular stages of manufacturing processed like
accumulation in a magazine or transitions between
successive stages of production processes. QSs help to
simulate and optimize manufacturing from production to
delivery. They help to model and optimize the process
in examined real-life situations. One can use them to
simulate and position production lines in factories or
warehouse processes. In transport and logistics, they can
be helpful in modeling transport stages. QSs make it easier
to plan the route and necessary pit-stops to load a new
portion or unload some parts of delivery. Queuing models
are also important in security systems, fire alarms and
many other detection systems that must detect, predict or
prevent danger. In fire alarms they help to optimize the

process of data acquisition from heat or smoke sensors
placed in factories, markets or offices. Therefore, for
positioning we need best possible methods.

In this article we present an attempt to apply
computational intelligence (CI), particularly the
evolutionary strategy (ES), in the process of positioning
QSs. The presented research results may help us to
compare various methods of CI and indicate which of
them are tentatively best for positioning QSs. As an object
for modeling and positioning, a GI/M/1/N finite buffer
QS with an exhaustive service and a single vacation
policy is chosen.

Apparently due to emerging practical applications,
queueing models with different-type restrictions of
service processes are particularly significant. In the
article, a system with a vacation policy is considered.
In particular, we consider a single vacation policy with
exhaustive service. In this type of QS we have a randomly
distributed vacation (during which the service process
in blocked) only when the system empties at the end
of a busy period. Analyzing QSs with vacations can
be useful in modeling many real-life problems like
server maintenance in computer networks or temporary
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restrictions in LAN traffic or road traffic in transport and
logistics.

Since the paper of Doshi (1986), where an overview
of vacation models was presented, many articles devoted
to different types of service restrictions have published.
As one can notice, a majority of results concern the
system’s characteristics in a stationary state. However,
analysis of stochastic characteristics of QS in a transient
(non-stationary) state is often necessary. For example, due
to permanent changing parameters of Internet traffic, the
stationary state in practice does not occur. In a LAN,
clients are connecting and disconnecting simultaneously.
Data packets are of different sizes and types. Moreover,
clients may send many various requests at each moment.
Therefore, this situation makes it important to investigate
QSs of different types in transient mode.

In the paper, we present a GI/M/1-type QS with
finite buffer, a single vacation policy and exhaustive
service. Some interesting examples of QSs with
exhaustive service and a single vacation are presented
by Takagi (1993; 1994). Vacation cycles in a QS under
limited discipline are discussed in detail by Gupta et al.
(2005) as well as Gupta and Sikdar (2006), while a QS
with batch Markovian arrival processes is discussed by
Niu and Takahashi (1999) (for finite capacity QSs with
exhaustive vacation) and Niu et al. (2003) (for QSs with
additional setup and close-down times).

An obvious use of queue models and Markov chains
is modelling, analyzing and improving communication
and network systems. A Markov chain is also applied
to modeling biological systems such as phytoplankton
in oceans (Wieczorek, 2010). Application of a Markov
dynamic system in island modeling is discussed by
Schaefer et al. (2012).

In this paper, using the embedded Markov chain
approach and the formula of total probability, we find
an explicit formula for transforms of first vacation cycle
characteristics: durations of a busy period, idle time and
the number of packets completely served during the
first cycle. All formulas are written using a sequence
defined recursively by means of the system’s input
parameters. Which representations can be efficiently used
in numerical computations, as it was done in presented
evolutionary positioning, can be included in the cost of
work optimization. For a class of systems described by
exponential and Erlang distributions, we find an optimal
set of system parameters using an approach based on ES.

Infinite-buffer QSs with a vacation policy were
considered by Choudhury (2002) as well as Kim and
Yang (2011). In the work of Choudhury (2002), a
formula for steady-state busy period duration was found.
Kim and Yang (2011) derive a transform of a joint
distribution function of busy period duration, number
of packets completely served during a busy period and
residual interarrival time at the end of the busy period

for a GI/M/1 system with phase-type vacations. The
M/G/1/b queuing system for analyzing the dropping
function in an Internet router was used by Chydziński and
Chróst (2011).

In the work of Lee (1984), a steady-state busy period
distribution was found for a finite-buffer M/G/1-type
queue with vacations and exhaustive service. Transient
results for QSs with server vacations are rather rare.
In the works of Kempa (2004; 2010c; 2010a; 2010b;
2010d; 2011b), explicit representations for the 2-fold
transform of a departure counting process in an
infinite-bufferMX/G/1-type system with different kinds
of server vacations were derived. The transient queue-size
distribution in a system with an N -policy, multiple
vacations and setup times was investigated by Kempa
(2010b). A formula for the transform of a joint distribution
function of first vacation cycle components in the system
with an infinite buffer were obtained by Kempa (2009;
2010d) using two different approaches. Transient results
for distributions of the busy period and the idle time
in a system without limitations in service can be found,
e.g., in the works of Bratiichuk (2000) (finite-buffer case)
as well as Bratiichuk and Kempa (2003) (infinite-buffer
case). A non-stationary analysis of the virtual waiting time
distribution in an M/G/1/N -type system with an finite
buffer and single vacations is given by Kempa (2011b).

The idea of cost control in QSs was considered by
Teghem (1986), who introduced a classical linear cost
structure. The optimization cost problem was analyzed
by Kella (1990), Lillo (2000) and Teghem (1987), but
for the Poisson arrivals model only. In particular, in the
work of Lillo (2000) the existence of an optimal policy
was proved for a system with vacations and exhaustive
service. Piórkowski and Werewka (2010) try to optimize
the process of packet completion in asynchronous
communication. Woźniak et al. (2013) discuss efficient
NoSQL system positioning. Representation for a total
expected cost per time unit in the stationary state of a
M/G/1-type QS with a removable server and a finite
buffer was obtained by Teghem (1987). One can find
new results for the transient departure process in the
MX/G/1 infinite-buffer QS with different-type server
vacations e.g., in the works of Kempa (2010c; 2011a;
2013), who also gives explicit representations for Laplace
transforms of queue-size distribution in models with some
mixed vacation policies (Kempa, 2012a). Characteristics
of a vacation cycle were investigated also by Kempa
(2009; 2010a), who additionally analyzed the queueing
delay in a finite-buffer queue with single server vacations
(Kempa, 2012b).

In this paper we present a possible way to position
QSs using the evolutionary strategy (ES). Evolutionary
algorithms are a simple and effective way to simulate and
position examined objects. Computational intelligence,
in particular, evolutionary or genetic algorithms, can
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easily imitate the behavior of real life organisms applied
in processes of optimization or data acquisition. As
described by Nowak and Woźniak (2008a), Cpałka
(2009), Garyel et al. (2012; 2013), Woźniak (2013) or
Woźniak et al. (2014), CI can efficiently help in the
analysis and positioning of various types of objects. In
the work of Gabryel et al. (2012), application of an
evolutionary algorithm to modeling and data acquisition
in decision support systems was described. Nowak and
Woźniak (2008a) or Gabryel et al. (2012) describe
application of the genetic method to create learning sets
for control systems. Nowak and Woźniak (2008b; 2009)
discuss application of EC methods to positioning dynamic
mechanical systems.

Using these methods one can not only examine
the positioned object but also optimize values of input
parameters, which is very important in optimization.
Genetic or evolutionary algorithms enable testing objects
in conditions similar to normal or routine work. They
also help in analyzing extreme situations. We can easily
adopt CI to imitate a situation of the highest traffic or
the exhaustive service and therefore without problems
or constructing sophisticated mechanisms analyze the
examined object (here the queueing system) for the best
possible positioning. Even if calculation describes the
situation of destroying an object, we do not destroy a
real one. We simply apply corrections that come from
an analysis of numerical experiments into the model and
test it again. Evolutionary computation methods are easy
to implement and efficient in computations. The results
of these operations are of good accuracy. Therefore, this
is not only an easy, efficient but also less complicated
way of positioning modeled object. That is why we would
like to present application of the ES to the analyzing and
positioning of modeled G/M/1/N -type QSs.

2. Queueing model

In the paper we consider a finite-buffer GI/M/1/N -type
queueing system in which interarrival times are generally
distributed random variables with a distribution function
F (·) and service times have exponential distributions with
mean μ−1. The maximal system capacity equals N : we
have (N − 1) places in the buffer and one place in
service. We assume that the system starts working at
t = 0 with at least one packet present. After each busy
period the server takes compulsory single vacation, with
general-type distribution function V (·), during which the
service process is blocked. If at the end of vacation the
system is still empty, then the server is activated (is in
standby mode) and “waits” for the first arrival. If vacation
ends with some packets present in the system, then the
service process is initialized immediately and a new busy
period begins. We assume that sequences of successive
interarrival times, service times and single vacation

duration are totally independent random variables.
Let us introduce the following notation:

• τ1: the first busy period of the system (starting at t =
0);

• δ1: the first idle time of the system (consisting of the
first vacation time v1 and the first server standby time
q1);

• h(τ1): the number of packets completely served
during τ1;

• X(t): the number of packets present in the system at
time t.

In Fig. 1 we can see an example of time-line
operation of the system. The modeled QS starts working
with some packets present in the buffer. QS responds to
given requests and the number of packets is changing
in time. This period, when the server handles packets
continuously, is called a busy period and is marked with
τ1. Then we have a vacation time, marked with v1, when
service in the system is stopped. Next is q1, when the
system is gathering requests to serve. These two periods,
v1 and q1, build the idle time. Then a new busy period
starts. Each busy period τ1 and idle time δ1 compose the
operation period in the modeled QS, whose cost will be
modeled and optimized.

Fig. 1. Example of time-line operation of the modeled QS.

Let us now discuss an analytical model of these
operations. In the works of Korolyuk (1975) and Korolyuk
et al. (1987), the following system of equations is
considered:

n∑

k=−1

ak+1xn−k − xn = ψn, n ≥ 0, (1)

where (an), n ≥ 0, (a0 �= 0) and (ψn), n ≥ 0 are known
sequences and the sequence (xn), n ≥ 0, is unknown. As
it turns out, an explicit representation for xn can be found
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and written in terms of a sequence defined recursively
using the sequence (an) in the following way:

R0 = 0, R1 = a−1
0 ,

Rn+1 = R1(Rn −
n∑

k=0

ak+1Rn−k), n ≥ 1. (2)

According to Korolyuk (1975) and Korolyuk et al.
(1987), (Rn) is called the potential of (an). In this article,
we are interested in an explicit formula for a conditional
joint characteristic function of the random variables τ1, δ1
and h(τ1) defined as follows:

Bn(s, �, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = n}, (3)

where 1 ≤ n ≤ N, s ≥ 0, � ≥ 0 and
|z| ≤ 1. Using the formula of total probability written
with respect to the first arrival epoch after the opening of
the system, we will build a system of integral equations
forB1(s, �, z), . . . , BN (s, �, z). To find a solution, we use
results from Theorem 1.

Theorem 1. The solution of Eqn. (1) can be written expli-
citly in the following form:

xn = CRn+1 +
n∑

k=0

Rn−kψk, n ≥ 0, (4)

where C is a constant independent of n and (Rn) is defi-
ned in Eqn. (2).

Proof. Below we give a sketch of the proof only. For
more details, please refer to Korolyuk (1975). Firstly, the
operatorK is introduced, which is defined on an arbitrary
sequence (θn) as follows:

K{θn} =
n∑

k=−1

an−kθn−k − θn.

It is easy to note that now the system (1) can be rewritten
in the form

K{xn} = ψn, n ≥ 0.

Next it is shown that, by definition,K{Rk} = 0, and
moreover,

K
{ n∑

k=0

Rn−kψk

}
= ψn

which proves the formula (4). Finally, it is proved that
any solution of (1) has the form (4). Indeed, writing (1)
in another form, we get

xn+1 = a−1
0

(
ψn + xn −

n∑

k=0

ak+1xn−k

)
, n ≥ 0,

so any sequence (xn) satisfying (1) is uniquely
determined by its first “zero” term, namely, x0. From
(4) it follows that x0 = CR1, so, in consequence, it is
possible to obtain any x0 ∈ R by taking a proper C, i.e.,
C = R−1

1 x0. �

After operations on subscripts, the corollary below
follows from Theorem 1.

Corollary 1. The general solution of the following system
of equations:

n−2∑

k=−1

ak+1xn−k − xn = ψn, n ≥ 2, (5)

can be written as

xn = CRn−1 +
n∑

k=2

Rn−kψk, n ≥ 2, (6)

where we use the notation introduced above, C does not
depend on n and (Rn) is defined in Eqn. (2).

2.1. Main analytical result. The main goal of this
section is a theorem below, which gives the explicit
representation for the joint transform Bn(s, �, z), n =
1, . . . , N, of the distribution functions of the first busy
period τ1, the first idle time δ1 and the numberh(τ1) of the
packets successfully processed during the first busy period
τ1 in the queueing system considered, conditioned by the
initial “state” of the buffer. In the proof, the embedded
Markov chain paradigm, the total probability law and the
results from Corollary 1 will be applied.

Theorem 2. For Bn(s, �, z), n = 1, . . . , N, the following
formulas are true:

B1(s, �, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = 1}

=
D(s, �, z) −G(s, �, z)

H(s, z)
− Ψ1(s, �, z) (7)

and

Bn(s, �, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = n}

=
D(s, �, z) −G(s, �, z)

H(s, z)
Rn−1(s, z)

+
n∑

k=2

Rn−k(s, z)Ψk(s, �, z), (8)

2 ≤ n ≤ N, where s ≥ 0, � ≥ 0, |z| ≤ 1, and

R0(s, z) = 0,

R1(s, z) = a−1
0 (s, z),

Rn+1(s, z) = R1(s, z)(Rn(s, z)

−
n∑

k=0

ak+1(s, z)Rn−k(s, z)), (9)
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Ψn(s, �, z)

= − (zμ)n

(n− 1)!

[∫ ∞

0

dF (t)
∫ t

0

xn−1e−(μ+s)x

×
(
e−�(t−x)V (t− x) +

∫ ∞

t−x

e−�ydV (y)
)

dx

]
, (10)

D(s, �, z)

=
N−1∑

k=1

ak(s, z)
N−k+1∑

i=2

RN−k+1−i(s, z)Ψi(s, �, z),

(11)

G(s, �, z) = ΨN (s, �, z) +
(
1 − f(μ+ s)

)

×
N∑

k=2

RN−k(s, z)Ψk(s, �, z), (12)

H(s, z) =
(
1 − f(μ+ s)

)
RN−1(s, z)

−
N−1∑

k=1

ak(s, z)RN−k(s, z), (13)

where the sequence
(
an(s, z)

)
is defined in the following

way:

an(s, z) =
∫ ∞

0

(zμt)n

n!
e−(μ+s)tdF (t), (14)

Proof. As is well known (see, e.g., Cohen, 1982), arrival
epochs are Markov moments in the GI/M/1-type queue.
From the law of total probability applied with respect to
the first arrival moment t after opening the system, we
obtain the following formula:

Bn(s, �, z)

=
n−1∑

k=0

Bn−k+1(s, �, z)zk

∫ ∞

0

(μt)k

k!
e−(μ+s)t dF (t)

+
(zμ)n

(n− 1)!

∫ ∞

0

dF (t)
∫ t

0

xn−1e−(μ+s)x

×
[
e−�(t−x)V (t− x) +

∫ ∞

t−x

e−�y dV (y)

]
dx,

(15)

where 1 ≤ n ≤ N − 1.
Let us comment briefly on Eqn. (15). The first

summand on its right-hand side relates to a situation in
which there are some completed services before the first
arrival epoch t, but the buffer does not empty completely.
If the number of served packets equals k, then at the
Markov moment t the system evolution “renews” with
n − k + 1 packets present. In the second summand on
the right-hand side of Eqn. (15) the buffer empties at time

x < t. If vacation also ends before the first arrival epoch t,
then the first cycle ends precisely at t. If vacation duration
y exceeds t − x, then the busy period duration equals x
and the idle time equals y. If the buffer is saturated at the
opening (X(0) = N ), we obtain

BN (s, �, z)

= BN (s, �, z)
∫ ∞

0

e−(μ+s)t dF (t)

+
N−1∑

k=1

BN−k+1(s, �, z)zk

∫ ∞

0

(μt)k

k!
e−(μ+s)t dF (t)

+
(zμ)N

(N − 1)!

∫ ∞

0

dF (t)
∫ t

0

xN−1e−(μ+s)x

×
[
e−�(t−x)V (t− x) +

∫ ∞

t−x

e−�y dV (y)

]
dx. (16)

Interpretation of the right-hand side of Eqn. (16) is
similar to that of Eqn. (15). The only difference is in the
situation in which there are no departures before the first
arrival epoch t. Then the packet occurring at time t is lost
due to buffer saturation and the number of packets present
in the system at the Markov moment t equals N (cf. the
first summand on the right-hand side of Eqn. (16)).

Introducing an(s, z) as in Eqn. (14), we can
transform Eqns. (15)–(16) into the following form:

n−2∑

k=−1

ak+1(s, z)Bn−k(s, �, z) −Bn(s, �, z)

= Ψn(s, �, z), (17)

for 1 ≤ n ≤ N − 1 and

BN (s, �, z)
(
1 − f(μ+ s)

)

=
N−1∑

k=1

ak(s, z)BN−k+1(s, �, z) − ΨN(s, �, z),

(18)

where

f(s) =
∫ ∞

0

e−st dF (t), s > 0, (19)

and Ψn(s, �, z) was defined in Eqn. (10).
Let us note that Eqn. (17) has the same form as Eqn.

(5). Thus, a solution of Eqn. (17) can be found using the
result from Eqn. (6). Of course, now C is, in general, a
function of s, � and z, where the potential

(
Rn(s, z)

)
can

be found as in Eqn. (9), using the recurrent formula in
Eqn.(2) with an(s, z) defined in Eqn. (14) instead of (an).
From Eqn. (6) we obtain

Bn(s, �, z) = C(s, �, z)Rn−1(s, z)

+
n∑

k=2

Rn−k(s, z)Ψk(s, �, z), (20)
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where k = 2, . . . , n.
Now we should find representations for C(s, �, z)

andB1(s, �, z). Substituting n = 1 into Eqn. (17) we have

B1(s, �, z) = a0(s, z)B2(s, �, z) − Ψ1(s, �, z). (21)

Similarly, substituting n = 2 into Eqn. (20), we obtain

B2(s, �, z) = C(s, �, z)R1(s, z) =
C(s, �, z)
a0(s, z)

. (22)

Substituting now Eqn. (22) into Eqn. (21), we get

B1(s, �, z) = C(s, �, z) − Ψ1(s, �, z). (23)

To find an explicit formula for C(s, �, z), let us
implement Eqn. (20) into Eqn. (18). We have

[
C(s, �, z)RN−1(s, z) +

N∑

k=2

RN−k(s, z)Ψk(s, �, z)
]

× (
1 − f(μ+ s)

)

=
N−1∑

k=1

ak(s, z) ×
[
C(s, �, z)RN−k(s, z)

+
N−k+1∑

i=2

RN−k+1−i(s, z)Ψi(s, �, z)
]
− ΨN(s, �, z),

(24)

and hence we eliminate C(s, �, z) as follows:

C(s, �, z) =
D(s, �, z) −G(s, �, z)

H(s, z)
, (25)

where D(s, �, z), G(s, �, z) and H(s, z) were defined in
Eqns. (11), (12) and (13), respectively. Now we complete
the proof by collecting Eqns. (20), (23) and (25). �

Let us note that, from the last theorem, a formula for
conditional means of the first busy period τ1, the first idle
time δ1 and the number of departures occurring during τ1
separately can be found.

Indeed, since

Ene
−sτ1 = E{e−sτ1 |X(0) = n} = Bn(s, 0, 1), (26)

we get

Enτ1 = − ∂

∂s
Bn(s, 0, 1)

∣∣∣
s=0

. (27)

Similarly, we have

Enδ1 = − ∂

∂�
Bn(0, �, 1)

∣∣∣
�=0

(28)

and

Enh(τ1) =
∂

∂z
Bn(0, 0, z)

∣∣∣
z=1

. (29)

The QS model presented in this section was solved
using Wolfram Mathematica 9.0. It helped us to prepare
appropriate analytical forms of Eqns. (27)–(29) describing
service, vacation and income.

3. Research results

In our investigatious and QS modeling for ES positioning
and analysis, we considered the function

F (t) = 1 − (1 + λ · t) · e−λ·t (30)

to describe packet interarrival times. We assumed the
probability distribution of interarrival times in the
system (the distance in time between successive packets
coming into the node of a sensor network) to be a
2-Erlang distribution with parameter λ, which means that
interarrival times are indeed random and the average
interarival time is 2/λ. We also considered the function

V (t) = 1 − e−α·t (31)

to describe server compulsory vacation time when service
process is stopped. V (·) is a distribution function of
vacation time (no transmission time) in the system.
We assumed that the silent time (single vacation) has
an exponential distribution with parameter α, which is
random and on the average amounts to 1/α. Therefore,
V (·) is distribution duration of the suspension manual
(transmission) by the node. In the works of Hongwei
et al. (2010) as well as Mancuso and Alouf (2012) similar
systems are considered, in which periods of energy saving
of the node in a wireless network (they are called “sleep
modes”) are modeled using such a repetitive (renewable)
period of suspension (the period is renewed when there
are still no packets). For example, in the work of Hongwei
et al. (2010) a model of a sensor network with five nodes
and one node container (sink node) is considered, while
Mancuso and Alouf (2012) discuss a model of vacations
for a node in power saving mode defined by 3GPP.

Using functions from Eqns. (30) and (31), one
can estimate the potential cost of system work. Let us
now analyze Eqns. (27)–(29). In Figs. 2–5 charts of
the examined values are presented. In the research and
analysis, n was taken as unity. The first busy period of the
system can be analyzed using E1τ1 in the function of μ
based on Eqn. (27) and results are plotted in Fig. 2. These
values describe the expected work of the system with fixed
times of interarrivals and breaks. One can estimate that
with an increasing parameter μ, corresponding to service
time, the analyzed QS may earlier start a longer busy
period.

The first idle time can be analyzed using E1δ1 as
a function of α based on Eqn. (28), and the results are
plotted in Fig. 3. These values describe the expected
work of the system with fixed times of income and
service. One can estimate that with increasing parameter
α, corresponding to service time, the analyzed QS may
earlier start a longer vacation period.

The first idle time can be analyzed using E1δ1 in
the function of λ based on Eqn.(28), and our results
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Fig. 2. E1τ1 as a function of μ.

Fig. 3. E1δ1 as a function of α.

Fig. 4. E1δ1 as a function of λ.

are plotted in Fig. 4. These values describe the expected
income into the system with fixed times of vacation and
service. Comparing the results, we can estimate that for
smaller parameters α, corresponding to the vacation time,
or λ, corresponding to the interarrival times, the QS
should serve more incoming packets in busy periods.

The number of packets completely served can be
analyzed using E1h(τ1) in the function of λ based on
Eqn. (28), and the results are plotted in Fig. 5. These

Fig. 5. E1h(τ1) from Eqn. (29) as a function of λ.

values describe the expected income into the system
with fixed times of vacation and service times. One
can estimate that the parameter λ, corresponding to the
income time, is very important for positioning service and
vacation times in the modeled QS.

Let us also analyze E1h(τ1) from Eqn. (28) as
a function of μ. Results are plotted in Fig. 6. One

Fig. 6. E1h(τ1) from Eqn. (29) as a function of μ.

can estimate that with increasing the parameter μ,
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corresponding to the service time, more requests can be
completely served. The parameter λ, corresponding to
interarrival times, may also have some influence on the
system. For lower values of λ and medium interarrival or
vacation times, the system may serve more requests. With
higher values of λ and lower interarrival or vacation times,
there is a possibility to serve fewer requests. However,
positioning for the lowest total cost of service is the
main problem for every QS. Therefore, having analyzed
and modeled an E2/M/1/N -type system, we will try to
position it for the best possible service at the lowest cost.

3.1. QS cost of service: The optimization problem.
The optimal cost of work is very important in any system.
In our research we define it to describe the minimal
amount of resources to perform all operations we need.

Definition 1. The optimal cost of work in a modeled
QS is the minimal amount of money, energy or any
other resources that the system may need to perform all
operations.

The optimal cost of work of Definition 1 will have
the form of an equation to be used in the optimization
process. The classic, linear cost structure was introduced
by Teghem (1986). The optimization cost problem was
also analyzed by Kella (1990), Lillo (2000) and Teghem
(1987), but for the Poisson arrival model only. Here we
present formulas for cost optimization for a class of QSs
described by exponential and Erlang distributions (Eqns.
(30) and (31), respectively).

The equation representing the total cost of work for
the system during the first vacation cycle c1, the first busy
period τ1 followed by the first idle time δ1 is

Qn(c1) = r(τ1)Enτ1 + r(δ1)Enδ1, (32)

where Qn(c1) is the cost of operation during the first
cycle c1 on the condition that X(0) = n, r(τ1) are fixed
unit costs of operation during the first busy period τ1,
r(δ1) are fixed unit costs of operation during the first
idle time δ1, Enτ1 is the mean duration of the first busy
period conditioned by X(0), Enδ1 the mean duration of
the first idle period conditioned by X(0). The symbols
r(τ1) = rτ1 and r(δ1) = rδ1 are fixed costs of operation
for modeled QS.

The notation in Eqn. (32) is similar to describing cost
functions of time. However, we write in this way to make
the article clearer and not to complicate symbols. The unit
cost of operation during the first cycle c1, on condition
that primarily the system contains exactly n packets, can
be expressed as

rn(c1) =
Qn(c1)
En(c1)

=
r(τ1)Enτ1 + r(δ1)Enδ1

Enτ1 + Enδ1
, (33)

where rn(c1) is the total cost of service, Qn(c1) is the
cost of service, En(c1) is the mean duration of the first
cycle, and the other symbols are the same as in Eqn. (32).
It denotes modeling a total service cost of the system.

In our research, for ES simulation and positioning
we assumed r(τ1) = 0.1 and r(δ1) = 0.1. However,
these values depend on the examined system and since
the model we present in Section 2 is general, for a
GI/M/1/N -type finite-buffer QS one can have other
values to describe the system in examination and design.

Positioning is a very important phase in the process
of designing a QS. To perform this operation we must
know possible malfunctions and optimal work conditions.
We often apply knowledge that comes from human
experts or our previous experience. However, the best
way is to perform computer simulations using an efficient
method. We will solve optimization problem using the ES
described in detail by Eiben and Smith (2003) or Gabryel
and Rutkowski (2010).

3.2. ES for QS cost optimization. ES belongs to
a general class EC methods. Apart from the ES, EC
comprises genetic algorithms, evolutionary programming
and heuristic methods, too. ES applied in the presented
QS positioning is an optimization technique based on
adaptation and evolution of input data to find optimum
modeled objects in the search space (see Eiben and Smith,
2003).

There exist two main forms of the evolutionary
strategy, namely, (μ′ + λ′) ES and (μ′, λ′) ES, where
μ′ denotes the number of parents and λ′ stands for the
number of all offspring created by parents within one
generation. Parents are deterministically selected out of
either offspring, referred to as comma-selection (μ′ < λ′

must be hold), or both parents and offspring, referred
to as plus-selection. The symbols μ and λ, although
similar to those in Section 2, have a different meaning
here. Similar notation is just coincidence, because of their
present implementations in the theory of QS and EC.

Individuals are “reproduced” in the next generation
by random selection of λ′ individuals. Selection is based
on the ranking of individuals’ fitness (adaptation to
given conditions) taking μ′ best individuals. We draw
and put selected ones in a temporary population. These
individuals undergo crossover and mutation, resulting in
a group of ancestors (containing also λ′ individuals).
Finally, we select the best μ′ descendants, which will form
a new parental population and the rest is taken at random
in the search space.

The mutation process is based on the added
chromosome σ, which contains the values of the standard
deviations of each chromosome gene σi for i = 1, . . . , L,
where L is the length of chromosome. Mutation is
performed on a single individual. First we mutate the
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chromosome σ according to the formula

σ′
i = σi · eτ ′·N(0,1)+τ ·Ni(0,1), (34)

where σi is the local mutation step size in the
generation, σ′

i is the local mutation step size in the next
generation,N(0, 1) and Ni(0, 1) are normally distributed
random values, generated for chromosomes and genes,

respectively, τ ′ = 1/
√

2L, τ = 1/
√

2
√
L, i = 1, . . . , L,

where L is the chromosome length.
The crossing operator proceeds on both the

chromosomes: the vector x of independent variables and
the standard deviation σ. The crossover operation is
drawing two individuals and exchanging or averaging
values of their genes. Two new individuals replace their
parents.

Let us briefly describe crossing. We choose two
individuals (x1, σ1) = ([x1

1, . . . , x
1
n]T , [σ1

1 , . . . , σ
1
n]T )

and (x2, σ2) = ([x2
1, . . . , x

2
n]T , [σ2

1 , . . . , σ
2
n]T ). Its new

individual is formed according to

(x′)1i = a · x1
i + (1 − a) · x2

i , (35)

(x′)2i = a · x2
i + (1 − a) · x1

i , (36)

(σ′)1i = a · σ1
i + (1 − a) · σ2

i , (37)

(σ′)2i = a · σ2
i + (1 − a) · σ1

i , (38)

where a is a number randomly sampled from the uniform
distribution U(0, 1).

Next, the chromosome x is changed according to

x′i = xi + σ′
i ·Ni(0, 1). (39)

Finally, the standard evolution strategy is extended by
making use of a uniform recombination operator (see
Eiben and Smith, 2003; Michalewicz, 1996).

The simulation system is based on the mathematical
model described in Section 2.1. Equation (33) was used
to optimize the total cost of work (as the fitness function
in ES). The ES simulation system was searching for the
best values of the examined object that make it work with
the lowest costs in specified conditions, as presented in
Fig. 7. Our research provides a type of knowledge that
describes an example system operation in some possible
scenarios. This type of knowledge is necessary for tuning
and evaluating the examined object.

3.3. ES simulation and positioning results. The
mathematical model presented in Section 2 helps us to
give analytical form of QS estimators representing the
service time (Eqn. (27)) and the vacation time (Eqn. (28))
in the system. These equations are used to describe the
total cost of service, defined in Eqn. (33), which is applied
as the fitness function presented in Section 3.2 to position
the examined QS.

Fig. 7. Modeling for the ES simulation process.

Let us now present experimental results for the
optimal cost of work of the examined GI/M/1/N -type
QS. The presented results are an average of 100 samplings
in each operation of positioning. Optimal positioning
and all presented scenarios were determined using ES
simulation. In our research we assumed the population
size μ′ = 20 and λ′ = 100, with 100 generations
(according to the notation in Section 3.2). We defined
the following assumptions for parameters μ, λ and α
(according to the notation in Section 2):

• average service time: Tservice = 1/μ,

• average time between packets’ incomes into the
system: Tincome = 2/λ,

• average vacation time: Tvacation = 1/α,

• examined system size: N = buffer size +1, where
buffer size = 5.

In Table 1 we present optimal values for all QS
parameters μ, λ and α. However, we are able to set some
values of the system we use. Therefore, we have also tried
to optimize the values of parameters μ, λ and α in several
possible scenarios. Each scenario was defined and then we
optimized the values of the system parameters and the cost
of work according to given assumptions. In each scenario,
there were 100 ES experiments and results are given as the
average of all of them. Let us now discuss the examined
scenarios.

Scenario 1. In this scenario, to optimize the cost, we
assumed that the system handles incoming packets in
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Table 1. Optimal μ, λ and α for the lowest cost of work, cf.
Eqn. (33).

Optimal QS parameter values

μ 2.1
λ 0.05
α 13092.22

rn(c1) 0.01

Optimal time [sec]

Tservice 0.47
Tincome 40.08
Tvacation 7.63E−05

constant time. Thus the average service time Tservice =
1/μ is constant. Therefore, we set the parameter μ and
optimized other system parameters. In this scenario, ES
simulation was done for the set values μ = 100, μ = 1
and μ = 0.01. Experimental results are shown in Table 2.

Table 2. Optimal parameters λ and α for set μ = 100, μ = 1,
μ = 0.01 and the lowest cost value of Eqn. (33).

Optimal QS parameter values

μ 100 1 0.01
λ 0.44 0.18 0.25
α 1.09 1.46 1.59

rn(c1) 0.01 0.09 12.91

Optimal time [sec]

Tservice 0.01 1 100
Tincome 4.53 10.78 7.75
Tvacation 0.92 0.69 0.63

Scenario 2. In this scenario, to optimize the cost we
assumed that packets come into the system with some
regularity, and the time between packages income into
the system, Tincome = 2/λ, is constant. The parameter λ
is set and the other system parameters are optimized. In
this scenario, ES simulation was done for the set values
λ = 100, λ = 1 and λ = 0.01. Experimental results are
shown in Table 3.

Table 3. Optimal parameters μ and α for set λ = 100, λ = 1,
λ = 0.01 and the lowest cost value of Eqn. (33).

Optimal QS parameter values

μ 4.06 27.30 1.36
λ 100 1 0.01
α 2.318E−06 0.001 1.5

rn(c1) 12.32 0.02 0.004

Optimal time [sec]

Tservice 0.27 0.04 0.74
Tincome 0.02 2 200
Tvacation 431462.22 341997.27 0.67

Scenario 3. In this scenario, to optimize the cost we
assumed that the system needs to stop serving requests

with some regularity; the vacation time, Tvacation = 1/α,
is constant and the parameter α is set. ES simulation was
done for the set values α = 100, α = 1 and α = 0.01.
Experimental results are shown in Table 4.

Table 4. Optimal parameters μ and λ for set α = 100, α = 1,
α = 0.01 and the lowest cost value of Eqn. (33).

Optimal QS parameter values

μ 1.17 1.25 1.23
λ 0.18 0.17 0.21
α 100 1 0.01

rn(c1) 0.08 0.07 0.09

Optimal time [sec]

Tservice 0.85 0.80 0.81
Tincome 11.28 11.58 9.68
Tvacation 0.01 1 100

Moreover, we also analyzed some more complicated
scenarios. We examined possible situations where the
service time, the packets, income time or vacation time
were set and the cost of work must be adequate.

Scenario 4. In this scenario, to optimize the cost, we
assumed that service time Tservice = 1/μ, is constant. We
set the parameter μ and optimized the other parameters.
ES simulation was done for the set values μ = 100, μ = 1
or μ = 0.01 and rn(c1) < 1 or rn(c1) > 1. Experimental
results are shown in Tables 5 and 6.

Table 5. Optimal parameters α and λ for set μ and the lowest
cost value of Eqn. (33) < 1.

Optimal QS parameter values

μ 100 1 0.01
λ 0.40 0.22 0.008
α 1.19 1.3 7.0

rn(c1) < 1 0.002 0.11 0.40

Optimal time [sec]

Tservice 0.01 1 100
Tincome 5.0 8.94 249.58
Tvacation 0.84 0.77 0.14

Table 6. Optimal parameters α and λ for set μ and the lowest
cost value of Eqn. (33) > 1.

Optimal QS parameter values

μ 100 1 0.01
λ 1310.42 16.56 0.23
α 0.001 0.001 1.48

rn(c1) > 1 6.55 8.28 11.63

Optimal time [sec]

Tservice 0.01 1 100
Tincome 0.001 0.121 8.601
Tvacation 17682.2 2178649.2 0.68
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Scenario 5. In this scenario, to optimize the cost, we
assumed that the time between packages income into the
system Tincome = 2/λ, is constant. Therefore, we set λ
and optimized the other parameters. In this scenario, ES
simulation was done for the set values λ = 100, λ = 1 or
λ = 0.01 and rn(c1) < 1 or rn(c1) > 1. Research results
are shown in Tables 7 and 8.

Table 7. Optimal parameters α and μ for set λ and the lowest
cost value of Eqn. (33) < 1.

Optimal QS parameter values

μ 1598.611 1.31 1.71
λ 100 1 0.01
α 0.003 0.18 1.36

rn(c1) < 1 0.03 0.07 0.03

Optimal time [sec]

Tservice 0.006 0.76 0.58
Tincome 0.02 2 200
Tvacation 3593.54 10.84 0.74

Table 8. Optimal parameters α and μ for set λ and the lowest
cost value of Eqn. (33) > 1.

Optimal QS parameter values

μ 4.78 0.29 0.002
λ 100 1 0.01
α 0.001 0.001 25.22

rn(c1) > 1 10.48 1.73 2.43

Optimal time [sec]

Tservice 0.21 3.47 485.4
Tincome 0.02 2 200
Tvacation 310848.6 146370 0.04

Scenario 6. In this scenario, to optimize the cost we
assumed that the vacation time, Tvacation = 1/α, is constant.
Therefore, we set α and optimized the other system
parameters. For the cost of system work rn(c1) defined
in some way, all system parameters were optimized for
α = 100, α = 1 or α = 0.01 and rn(c1) < 1 or
rn(c1) > 1. Experimental results are shown in Tables 9
and 10.

Table 9. Optimal parameters λ and μ for set α and the lowest
cost value of Eqn. (33) < 1.

Optimal QS parameter values

μ 1.42 1.74 1.34
λ 0.21 0.11 0.18
α 100 1 0.01

rn(c1) < 1 0.08 0.03 0.07

Optimal time [sec]

Tservice 0.7 0.56 0.7
Tincome 9.2 17.4 11.1
Tvacation 0.01 1 100

Table 10. Optimal parameters λ and μ for set α and the lowest
cost value of Eqn.(33) > 1.

Optimal QS parameter values

μ 0.13 0.15 0.1
λ 0.5 0.48 0.46
α 100 1 0.01

rn(c1) > 1 1.73 1.6 2.23

Optimal time [sec]

Tservice 7.7 6.5 9.6
Tincome 4.45 4.2 4.3
Tvacation 0.01 1 100

3.4. Conclusions. We applied dedicated ES to cost
optimization and the positioning problem in a QS with
a single vacation policy and exhaustive service. In the
research we used EC methods, which are efficient in
optimization (see Gabryel et al., 2012; Woźniak, 2013).

Positioning gave results of optimal system
parameters that can be applied to position a given
QS for service at the lowest costs in different situations.
We examined various situations that are common in
reality, each defined by a special set of parameters.
Numerical experiments gave proper results and confirmed
that ES is easy to implement, precise and efficient.

The EC method presented in Section 2 is defined in
general form, which makes it easily applicable to simulate
and position other QSs of a similar type. To change the
examined system, one may simply take other functions
F (·) and V (·) defined in Eqns. (30) and (31), respectively,
to model other similar type QSs.

The values of system parameters set in the
scenarios defined in Section 3.3 presented various,
miscellaneous but hypothetical cases of service. However,
in real applications of the presented solution, system
identification, i.e., determining values of its parameters
and characteristics described in functions F (·) and V (·),
becomes a nontrivial problem.

4. Final remarks

QSs with different type restrictions of service processes
are particularly significant due to numerous practical
applications. In the article, a QS with a single vacation
policy and exhaustive service is considered. This type
of QS is useful in modeling many real-life problems
like server maintenance in computer networks, LAN and
Wi-Fi traffic modeling, or road traffic simulation. It is also
applicable in transport and logistics models.

In the article, we proposed an application of the
ES for the modeled QS to simulation and positioning.
However, other CI methods or cognitive algorithms may
also be useful in simulation or positioning, or to generate
collection of representative samples. Results can be used
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by decision support systems or as knowledge for AI
systems.

ES is very effective for positioning QSs, as shown in
this paper. One may easily simulate and position examined
object in different conditions. This method is useful when
we have an analytical model of the object, which is
very complex and mathematically complicated, where
classic calculations are merely feasible. The conducted
experiments show the efficiency of ES to simulate
the system in many possible scenarios. An important
restriction is to carry out a large number of experiments
to determine the best possible description of the simulated
object.

Further work should be carried out to reduce
time consuming operations, tentatively by using some
knowledge prior to generate an initial population in ES
simulation and the positioning system. We will also
try to implement other EC methods and examine their
efficiency in simulation and positioning of modeled
queueing systems.

Moreover, the modeled QS could be non-stationary
and parameters could change during work due to, e.g.,
wear (expenditure) of elements and consumables (battery,
oil, belts, etc.) or environment changes (temperature, air
composition, etc.). So, in our future research we plan
to take into account these aspects by, e.g., fuzzyfication
of parameters in the modeled system identification
(Rutkowski et al., 2012), or apply time-varying methods
(Rutkowski, 2004) and their hybrid constructions
(Jaworski et al., 2012).
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