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In this paper we consider workflow nets as dynamical systems governed by ordinary difference equations described by a
particular class of Petri nets. Workflow nets are a formal model of business processes. Well-formed business processes
correspond to sound workflow nets. Even if it seems necessary to require the soundness of workflow nets, there exist
business processes with conditional behavior that will not necessarily satisfy the soundness property. In this sense, we
propose an analytical method for showing that a workflow net satisfies the classical soundness property using a Petri net.
To present our statement, we use Lyapunov stability theory to tackle the classical soundness verification problem for a class
of dynamical systems described by Petri nets. This class of Petri nets allows a dynamical model representation that can
be expressed in terms of difference equations. As a result, by applying Lyapunov theory, the classical soundness property
for workflow nets is solved proving that the Petri net representation is stable. We show that a finite and non-blocking
workflow net satisfies the sound property if and only if its corresponding PN is stable, i.e., given the incidence matrix
A of the corresponding PN, there exists a ® strictly positive m vector such that A® < 0. The key contribution of the
paper is the analytical method itself that satisfies part of the definition of the classical soundness requirements. The method
is designed for practical applications, guarantees that anomalies can be detected without domain knowledge, and can be
easily implemented into existing commercial systems that do not support the verification of workflows. The validity of the
proposed method is successfully demonstrated by application examples.
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1. Introduction

1.1.  Brief review. A workflow model is put to use
by feeding it to a workflow management system (zur
Muehlen, 2004; Weske, 2007). The heart of a workflow
management system is the workflow engine, which
does the actual management (Mann, 2010). Workflow
management systems are driven by business process
models. Therefore, it is important to define and streamline
business processes in order to improve efficiency and
reduce operating cycle times. Ultimately, the success of
such modeling efforts lies not only in careful technical
design, but also in ensuring the well-formed business
processes of such models. Effective business processes
modeling involves understanding existing process defects,
identifying sources of inefficiency (deadlocks, livelocks,
and other anomalies), and redefining processes to increase
efficiency or decrease errors. But workflow management
systems do not support verification methods for business
processes design (van der Aalst, 2011).

The success of workflow management systems and
methodologies has been widely publicized, while the
more serious failures have not. Mendling et al. (2007),
based on more than 2000 process models including
well-known sets of models, such as the SAP reference
model, report that more than 10 percent of these models
are awed.

Workflow nets were introduced by van der Aalst
(1997; 1998) and are currently the most widely
used model to formally describe workflow processes.
Workflow nets are a formal model of business process
responsible for the organization of the processing
tasks. The existing graphical languages implemented by
workflow management systems are typically token-based,
and for this reason a transformation to Petri nets is
reasonably simple.

Petri nets are a natural technique for formal modeling
and analyzing workflow nets because the flow-oriented
nature of workflow processes (Desel nad Erwin, 2000;
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Ellis and Nutt, 1993, van der Aalst, 1997; 1998). Petri
nets are used for process representation, taking advantage
of the well-known properties of this approach, namely,
formal semantic and graphical display, giving a specific
and unambiguous description of the behavior of the
process. We consider workflow nets as dynamical systems
governed by ordinary difference equations described by a
particular class of Petri nets (Clempner and Retchkiman,
2005; Clempner, 2005).

Loosely speaking, a workflow net is a Petri net with
an initial place and a distinguished final place called
the sink. Well-formed business processes correspond to
sound workflow nets (van der Aalst, 2007). Petri nets
have been extensively studied since the mid 1990s as
an abstraction of the workflow to check the soundness
property (van der Aalst, 1998; 2007; 2011; Barkaoui
and Ayed, 2011; Barkaoui and Petrucci, 1998; Basu and
Blanning, 2000; 2002; Bi and Zhao, 2004; Clempner and
Retchkiman, 2005; Clempner, 2014; Dehnert and Rittgen,
2001; van Dongen and Verbeek, 2005; Fu and Su, 2002;
2004; van Hee and Voorhoeve, 2005; 2004; Karamanolis
and Wheater, 2000; Kindler and Reisig, 2000; Lin and
Chen, 2002; Lohmann and Weinberg, 2006; Martens,
2005a; 2005b; Mendling and van der Aalst, 2007; Sadiq
and Orlowska, 1997; 2000; Salimifard and Wright, 2001;
Vanhatalo and Leymann, 2007; Verbeek and ter Hofstede,
2001, Verbeek and van der Aalst, 2001; Wombacher,
2006; Wynn and ter Hofstede, 2005; Wynn and Edmond,
2006). In their research the authors have proposed
alternative notions of soundness and more sophisticated
languages, making these notions undecidable.

For the length of the distinguished history and
exciting life of Petri nets, research looks for an analytical
method able to develop new fast and efficient techniques
to solve any kind of problem. Petri nets are used as
an abstraction of the workflow to check the soundness
property. Even if it seems necessary to require the
soundness of workflow nets, there exist business processes
with conditional behavior that will not necessarily satisfy
the soundness property. The problem is often not caused
by the structure of the net, but by operations associated
with transition labels that are being used. Then, given
a Petri net, the computation can always be completed,
that is, it is possible to show that a process initiated in
the source place and, regardless of how the computation
proceeds at the beginning, the Petri net has always a
trajectory able to reach the sink place of the Petri net.

1.2. Main results. In this paper we propose an
analytical method for showing that a workflow net
satisfies the soundness property using a Petri net. The
proposed analytical method guarantees that anomalies
can be detected without domain knowledge. To present
our statement, we use Lyapunov stability theory to
tackle the soundness problem for a class of dynamical

systems named discrete event systems, described by Petri
nets. This class of Petri nets allows a dynamical model
representation that can be expressed in terms of difference
equations. As a result, by applying Lyapunov theory, the
soundness property for workflow nets is solved showing
that the Petri net representation is stable.

1.3. Organization of the paper. The remainder of
this paper is organized as follows. We present some
of the preliminaries including the mathematical notation
and Petri nets basics in Section 2. In Section 3, we
motivate the introduction of the soundness workflow
verification technique, presenting the basic notion of
workflow net and stability followed by the definition of
soundness. We also describe and exemplify the finite
and non-blocking conditions established for the Petri net.
Section 4 outlines the core content of the paper, presenting
the basic notions of stability and the main result of the
paper about the soundness property. We present a formal
approach showing how the soundness property can be
computed over a finite and non-blocking workflow net.
We also make emphasis on the reasons why the finite and
non-blocking conditions cannot be relaxed. In Section 5
we present two examples which pragmatically illustrate
the application of the method. Finally, in Section 6 some
concluding remarks and future work are outlined.

2. Preliminaries

In this section, we present some well-established
definitions and properties which will be used later
(Brams, 1983). Let N = {0,1,2,...}, N}* =
{no,no+1,...,n0+k,...}, ng > 0, R = (—o0,0)
and Ry = [0, 00).

A (marked) Petri net is a quintuple PN =
(P,Q, F,W, M), where P = {p1,p2,...,pm} is a finite
set of places, Q = {q1, g2, - . ., ¢} is a finite set of transi-
tions with PNQ = (), and P and Q are nonempty such that
PUQ #0,F C (PxQ)U(Q x P) is aset of arcs which
determines a flow relation, W : F — Ni_ is a weight
Sfunction, My: P — N is the initial marking. We adopt the
standard rules about representing nets as directed graphs,
namely, places are represented as circles, transitions as
rectangles, the flow relation by arcs, and markings are
shown by placing tokens within circles. At any time a
place contains zero or more tokens, drawn as black dots
(Murata, 1989).

For each transition or place z we will
denote by ez = {yecPUQ]|(y,2)€F} the
preset of z. Analogously, we will denote by
ze = {ye PUQ | (z,y) € F} the postset of z. A
source place is a place py € P such that ep, = () (there
are no incoming arcs into place pg). A sink place is a
place p € P such that pe = () (there are no outgoing arcs
from p).
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A Petri net structure without any specific initial
marking is denoted by PN. A Petri net with the given
initial marking is denoted by (PN, My). Notice that if
W(p,q) = a or W(q,p) = bfora,b € NL then this is
often represented graphically by a, (b) arcs from p to q (g
to p), each with no numeric label.

Let My (p;) denote the marking (i.e., the number
of tokens) at place p; € P at time k, and let M =
[My(p1), ..., My(pm)]T denote the marking (state) of
PN at time k. A transition ¢; € @ is said to be enabled
at time k if My (p;) > W(p;, q;) for all p; € P such that
(pi,q;) € F (Vp; € og; ). Itis assumed that at each time
k there exists at least one transition to fire. If a transition
is enabled then it can fire. If an enabled transition g; € @
fires at time k then the next marking My 1, written as

M, 4, Mj; 41, for p; € P is given by

Myy1(pi) = Mi(ps) + Wiqj,pi) — W(pi,q5)- (1)

Let A = [ai;] denote an n x m matrix of integers,
called the incidence matrix, where a;; = ajj — ai_j

with aj'j = W(q¢,p;) and a; = W(pj,q;) . Let
up € {0,1}" denote a firing vector where if ¢; €
@ is fired then its corresponding firing vector is u; =
[0,...,0,1,0,...,0]T with the one in the j-th position in
the vector and zeros everywhere else. The matrix equation
(nonlinear difference equation) describing the dynamical
behavior represented by a Petri net is

My1 = My, + ATy, )
where if at step k, a;; < My(p;) for all p; € P then
¢; € @ is enabled, and if this ¢; € (@ fires then its
corresponding firing vector uy, is utilized in the difference
equation (@) to generate the next step. Notice that if M /
can be reached from some other marking M and, if we fire
some sequence of d transitions with corresponding firing
vectors ug, U1, . . . , Ud—1, We obtain that

d—1
Mle—i—ATu,u:Zuk. 3)
k=0

Given 0 = q1,q2,...,qn € Q" (ie, ¢ € Q),
where @Q* is the reflexive transitive closure of ), we

write My —=» M,, if there exist markings My, ..., M,
such that My -2 My 25 M, ..., M,_1 -2 M,.

Then, we say that M, is reachable. The set of reachable
markings of PN is denoted by R(PN, M), called
the reachability set, and is defined by R(PN,M,) =
{M|306Q* MOLMk:ogkgn}.

A Petri net PN is s-bounded if M (p) < s for every
reachable marking M and every place p of PN, and
bounded if it is s-bounded for some s > 0. A 1-bounded
net is also called safe.

t

pt t2

Fig. 1. Cycle.

A Petri net is strongly connected if for every two
nodes n1 and na, n1,ny € P U Q, there exists a directed
path leading from n; to ns.

A Petri net PN 1is a free-choice Petri net (van der
Aalst, 2011) if for every two transitions ¢;,q; € Q,eq; N
oq; # () implies og; = og;.

Let (N'}°,d) be a metric space where d : N'° x
N'}* — R, is defined by

d(My, M) =G | My(pi) — Ma(ps) |, @
i=1

G>0, 1=1,...,m.

3. Motivation

The main point of PN is its ability to represent mark
properties that involve theoretic notions of stability. In
this sense, the sink (last place) of PN is a place whose
marking is bounded and it does not change. Therefore,
two main concepts must be considered carefully within
the notion of stability: cycle and block.

The PN shown in Fig. 1 represents a cycle. It has the
property of stability, because given the incidence matrix

-1 1
=l
and picking the positive vector ® = [2 2} > O since A is

already the transpose, we obtain that ADT = [O O} <0
(concluding stability). But the PN has no final place.

Fig. 2. Block.

The PN represented in Fig. 2 represents a block. It
has the property of stability, because the incidence matrix

-1 1 0 0
A=1|-1 0 1 0
0 -1 -1 1

@amcs
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and picking the positive vector such that & =
[2 1 1 1] > 0 since A is already the transpose, we
obtain that A®T = [—1 -1 —1] < 0 (concluding
stability). But, the sink of the PN never can be reached.

Loosely speaking, a workflow net is a Petri net
with two distinguished input and output places without
input and output transitions, respectively, and such that
the addition of a reset transition leading back from the
output to the input place makes the net strongly connected.
Formally, we have the following.

Definition 1.
workflow net if

A Petri net PN = (P,Q,F,W, M) is a

e there exist places i,0 € P such that ¢ = () = oe,
M (p) = 1for p =i and M (p) = 0 otherwise,

e every node is in a path from ¢ to o, i.e., for any z €
PUQ : (i,x) € F* and (z,0) € F*, where F* is
the reflexive-transitive closure of relation F'.

Then, the resulting Petri net is strongly connected. A
workflow net PN is sound if it is live and bounded (cf.
van der Aalst, 1998; 2011).

Definition 2. Let PN be a workflow net. PN is sound if
the following three requirements are satisfied:

1. For every state M reachable from state M;, there

exists a firing sequence leading from state M to state
M,:

forall M : (M; = M) = (M % M,).

2. State M, is the only state reachable from state M;
with at least one token in place M,:

forall M : (M; 5 M AM >0)= (M= M,).

3. There are no dead transitions in PV:
for all ¢ € Q, there exist M, M7 :

(M; & M % M.

The first requirement states that, starting from the
initial state M;, it is always possible to reach the state
with one token in place o. The second requirement states
that, the moment a token is put in place o, all the other
places should be empty. The third requirement has been
added to avoid activities and conditions which do not
contribute to the processing of cases. Although it is the
looked-for soundness of workflow nets, many of the real
models with conditional behavior will not satisfy the third
requirement: “no dead transitions” in PN . The problem is
usually produced by the operations needed to be modeled
and not necessarily by the structure of the net. In this
sense, a workflow satisfies the soundness property if,

given its corresponding Petri net (finite and non-blocking),
which is tracked forward, provided one starts with a single
token in the source and regardless of how the computation
proceeds at start, it is always possible to reach a state with
the token in the sink place.

Definition 3. Let PN be a workflow net. PN is weak
sound if the following two requirements are satisfied:

1. For every state M reachable from state M, there

exists a firing sequence leading from state M to state
M,:

forall M : (M; = M) = (M % M,).

2. State M (o) is the only state reachable from state M;
with at least one token in place M,:

forall M : (M; & M AM >0)= (M= M,).

Soundness requires that a workflow net be always
able to terminate in the sink of PN. Therefore, if we
want to use stability as a theoretic notion for finding the
soundness of a workflow net, it will be required to impose
two conditions over the corresponding PN: finite (no
cycles) and non-blocking.

4. Workflow soundness property

Let us consider systems of first ordinary difference
equations given by

x(n + 1) = ¢[n,xz(n)],

(5)
z(no) = xo.
for n € N'°, where z(n) € R% and ¢ : N} x R? — R?
is continuous in x(n).

Definition 4. The n-vector valued function ¢(n, ng, o)
is a solution of @) if ¢(ng,no,z0) = o and G(n +
1,n9,z0) = (n, p(n,no, o)) forall n € N’}°.

Definition 5. The system (@) is said to be prac-
tically stable (Lakshmikantham and Martynyuk, 1990;
Lakshmikantham ez al., 1991) if, given (A, ) with 0 <
A < W, we have that

|zo] < A= |z(n,no,x0)] < ¥,

Vn € NT, ng > 0. (6)
Definition 6. (Lakshmikantham and Martynyuk, 1990;
Lakshmikantham et al., 1991) The system (@) is said to
be uniformly practically stable if it is practically stable
for every ng > 0.

Definition 7. A continuous function « : [0, c0) — [0, 00)

is said to belong to the class K if it is strictly increasing
and «(0) = 0.
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Let us consider (Lakshmikantham ez al., 1991) the
vector function v(n, z(n)), v : N1* x R? — RE  and let
us define the variation of v relative to (3) by

Av=v(n+1,z(n+1)) —v(n,z(n)). @)

Then we have the following results due
to  Lakshmikantham and  Martynyuk  (1990),
Lakshmikantham et al. (1991) as well as Passino et
al. (1995).

Theorem 1.  Ler v : N|° x R" — Ry be a con-
tinuous function in x, such that for B, € K we have
Bllal) < vin,a(n) < a(zl) and Av(n,z(n)) <
w(n,v(n,z(n))) holds for n € N'°, x(n) € R™, where
w: N° xRy — R is a continuous function in the second
argument. Let us suppose that y(n,u) = u + w(n, u) is
non-decreasing inu, 0 < A < W are given and finally that
a(N) < B(W) is satisfied. Then the stability properties of

u(n +1) =(n,u(n)),u(ng) =uo 20 (8)

imply the corresponding stability properties of the sys-

tem ().

We will extend Theorem [I] to the case of several
Lyapunov functions. Let us consider a vector Lyapunov
function v(n,z(n)), v : N1 x R? — RE, and let us
define the variation of v relative to (3). Then, we have the
following theorem (Lakshmikantham et al., 1991).

Theorem 2. Let v : N}° x RY — RY be a continu-
ous function in x, and define the function vo(n,z(n)) =
P vi(n,x(n)) such that it satisfies the estimates

B(lz]) < wvo (n,z (n)) < aflz]) ©)
for a, 0 € K and
Av(n,z(n)) < w(n,v(n,z(n))) (10)

forn € NP, z(n) € R?, where w : N'}° x R} — RP
is a continuous function in the second argument. Assume
that y(n,u) = qu + w(n, ) is non decreasing in u, 0 <
A < W are given and a(N) < B() is satisfied. Then the
practical stability properties of

u(n+1) =v(n,u(n)), ulng)=uy>0 (11)

imply the corresponding practical stability properties of
the system (3.

Then, we  have the result

(Lakshmikantham et al., 1991).

following

Corollary 1. From Theorem[2lwe have the following:

1. If w(n,e) = 0, we obtain uniform practical
stability of @), which implies structural stability
(Lakshmikantham et al., 1991 ).

2. If w(n,e) = —c(e) for ¢ € K, then we obtain
uniform practical asymptotic stability of @), (cf.
Lakshmikantham et al., 1991 ).

For Petri nets we have the following results of
stability (Passino et al., 1995).

Proposition 1. Let PN be a Petri net. Therefore, PN is
uniform practical stable if there exists a @ strictly positive
m vector such that

Av=uTA® <. (12)

Moreover, PN is uniform practical asymptotic stability if
the following equation holds:

Av=u"AD < —c(e), ceK. (13)

Proof. Let us choose as our candidate Lyapunov function
v(M) = MT® with ® being an m vector to be chosen.
It is simple to verify that v satisfies all the conditions of
Theorem 2l Therefore, the uniform practical asymptotic
stability is obtained if there exists a strictly positive vector
® such that Eqn. (I2)) holds. [ |

Proposition 2. Let PN be a Petri net. Therefore, PN is
uniformly practically stable if there exists a strictly posi-
tive m vector ® such that

Av=uTA® < 0o AD < 0. (14)

Proof.

(Necessity) Since uT A® < 0 holds, for every u we have

that A® < 0.

(Sufficiency) This results from the fact that w is positive.
|

Remark 1. The ‘if an only if” relationship of (I4) results
from the fact that u is positive.

We have the following theorem that characterizes the
soundness property.

Theorem 3. Let PN be a finite and non-blocking
workflow net. Then, PN satisfies the soundness prop-

erty iff there exists a strictly positive m vector ® such that
Av=uTAD <.

Proof.

(Necessity) It follows directly from Proposition [I] and
Proposition2l

(Sufficiency) Let us suppose by contradiction that
uTA® > 0 with ® fixed. From M’ = M + uTA
we have that M'® = M® + uTA® > M®. Then it
is possible to construct an increasing sequence M® <
M'® < ... < M™® < ... which grows up without any
bound. Therefore, the PN is not uniformly practically
stable. ]

@amcs
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Fig. 3. Workflow net that is sound.

Remark 2. The finite and non-blocking conditions over
the workflow net cannot be relaxed (see Section 3) and
reinforce the definition of the workflow (Definition 2)):

1. If the workflow is into a cycle, it will satisfy the
theoretic notion of stability, but it will never reach
the sink place of the net. If we required termination
without this assumption, all nets allowing loops in
their execution sequences would be called unsound,
which is clearly not desirable.

2. If we suppose that the workflow net blocks at some
place p, it will also satisfy the theoretic notion of
stability, but it will never reach the sink place of the
net.

5. Application examples

The aim of this section is to present application examples
represented by a workflow concluding soundness.

Example 1. In the Petri net shown in Fig. 3 only one
place is initially marked. Here t; is enabled and the firing
of t; will result in the state that marks places p2 and py. In
this state, to, t3 and ¢4 are enabled. If 5 fires, t4 becomes
disabled, but t3 remains enabled. Similarly, if t3 fires,
t4 becomes disabled, but ¢> remains enabled, etc. The
incidence matrix of the workflow net shown in Fig. 3 is
given by

-1 1 0 1 0 0
0 -1 1 0 0 0

A=|l0o o0 0o -1 1 of,
0 -1 1 -1 1 0
0 0 -1 0 -1 1

and picking the positive vector
®=[4 2 1 11 1]>0
since A is already the transpose, we obtain that

AT =[-1 -1 0 -1 -1]<o,

concluding soundness (stability).

If we remove transition ¢4, the resulting net is a
free-choice Petri net. These types of Petri nets are
interesting from the viewpoint of analysis (van der Aalst,
2011): (i) liveness and boundedness can be decided in
polynomial time for free-choice nets (this is not the case
for non-free-choice Petri nets) and (ii) they always satisfy
the soundness properties. ¢

Example 2. Let us consider an insurance broker
agency. As a broker, the agency sells policies for
different companies. The main products are life and
automobile policies. For selling and advertising, the
insurance company obtains detailed information from
potential customers, as well as private and governmental
agencies. This information is distributed between the
company’s agents who contact potential clients via phone
and try to set up a conference call. However, they also
have their own sources of information. At the interview,
the agent examines the client’s current insurance coverage
and tries to find an opportunity for a policy that will best
fit the customer’s needs.

Before obtaining an insurance policy, the new client
must undergo an identity investigation. In the case of a
life insurance, the client has, in addition, to approve a
physical examination test in an accredited hospital. If the
investigation is positive, both the parts sign a policy and
keep a copy of the contract. If, during the investigation,
irregularities are found, the agent is informed and meets
the client in order to find new options.

The insurance policy is in effect when the client
makes the first insurance premium payment. Every
policy carries with a schedule of premiums, which varies
with the type and coverage. Each policy provides a
commission for the agency. The commission varies with
the insurance company, policy type and coverage. The
insurance company management defines the commission
policy, which varies from agency to agency. The agency
splits the commission received for each policy with the
agent who sold it. The rate depends on the seniority of the
agent. Once a policy has been sold, the agency submits
premium bills to the client, collects payment and sends
the payment, minus the commission, to the insurance
company.

If a client fails to pay premiums, the agent who sold
the policy is informed, so that they can contact the client.
Claims can be made on insurance policies as specified
in the policy itself. Clients or beneficiaries contact the
agent to file such claims. Life insurance claims may be
made by the beneficiaries on the death of the insured. In
both the cases, the insurance company sends an adjuster
to legitimate the claim and arrange the final insurance
details. For an automobile insurance policy, claims are
made when the car is involved in an accident, damaged
or stolen. For simplification, we will consider just the
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investigate antecedents

O——E—@

review physical condition

accept client

register collect ps
client info

reject client

send life policy

@]
i

send rejection

Fig. 4. Insurance broker agency workflow net.

organizational strategy of the insurance company.

The insurance broker agency business process is
represented in Fig. 4 by a free-choice PN. (It is
important to note that the PN represented in Fig. 4
is a simplification of the workflow explained in the text
description of the broker agency routines.) Now, the
incidence matrix A of the workflow net shown in Fig. 4 is
given by

-1 1 0 1 0
0 -1 1 0 0
0 0 0 -1 1
0 0 -1 0 -1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

L0 0 0 0 0

0 0 0 0 0]
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
-1 1 0 0 o],
-1 0 1 0 0
0 -1 0 1 0
0 0 -1 1 0
0 0 0 -1 1]

and picking the positive vector
®=03211222221]>0,
since A is already the transpose, we obtain that
APT =0 -1 -1 —10000 —1] <0,

concluding soundness (stability).

6. Conclusion and future work

Reasoning about the correctness of a workflow model
without any domain knowledge corresponds to the

soundness (soundness) property. A workflow net satisfies
the soundness property if its Petri net representation
is tracked forward from its source place and a natural
form of termination is ensured by a sink.  This
paper provided an analytical method for solving the
soundness property verification problem. The method
is useful for practical applications and guarantees that
anomalies can be detected without domain knowledge.
To present our statement, we used Lyapunov stability
theory, concluding that if a workflow net is stable then
it satisfies the soundness property. This method can be
easily implemented into existing commercial systems that
do not support the verification of workflows.

It is important to note that the key contribution of
the paper is the analytical method itself. The definition
of soundness is introduced because the proposed method
only satisfies part of the soundness property (van der
Aalst, 2011). In this sense, the proposed analytical method
is a step forward in checking the soundness of workflow
nets.

Without doubt there are more than a few theoretical
challenges that need to be considered in future research
in Lyapunov-based theory for solving the soundness
verification problem. This paper has interesting
implications for using more sophisticated definitions of
Petri nets, because the Lyapunov method introduces
new concepts in the Petri nets area. In this work,
we consider dynamical systems governed by ordinary
difference equations described by Petri nets. Then,
an important emerging open research challenge is
the use of Lyapunov theory to produce a trajectory
tracking function (Lyapunov-like function) as a solution
to the difference equation (constructed with respect
the constraints imposed by the system). Then the
Lyapunov-like function will compute the trajectory of the
token over the Petri net, converging naturally into the sink
place (Clempner, 2005).
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