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1. Introduction

The existing theory of linear-quadratic problems has been
successfully applied to the design of many industrial
and military control systems (see, e.g., Athans, 1971).
A stochastic version of this problem plays today an
important role in macroeconomics, where the so-called
linear-quadratic economies are considered (see, e.g.,
Ljungqvist and Sargent, 2004; Sent, 1998). These
(dynamic stochastic) optimizing models had to have lin-
ear constraints with quadratic objective functions to get
a linear decision rule (see, e.g., Chow, 1976; Kendrick,
1981). However, such stochastic problems are frequently
infinite dimensional (see, e.g., the work of Federico
(2011) and the references cited therein).

We will consider infinite dimensional linear control
systems which can be represented by two linear
continuous operators describing the influence of control,
and the constraints imposed on all of the system’s
trajectories by given initial and final conditions. The
minimum energy and linear-quadratic problems for such
systems will be developed. These problems can be studied
in an appropriate Hilbert space setting. Then (as is well
known) the existence and uniqueness of optimal solutions
to the above problems can be easily established, under
rather mild assumptions.

The purpose of our paper is to explore the conditions
under which the solutions to the above-mentioned
optimization problems continuously depend on initial and
final conditions. Not surprisingly, these continuity (or

discontinuity) conditions are strongly related to some
concepts of controllability for infinite dimensional (linear)
systems. The importance of the continuous dependence
of the optimal solution upon the imposed initial and
final conditions is obvious, in particular when developing
numerical methods for the minimum energy or linear
quadratic problem. For infinite dimensional linear control
systems, the continuous dependence of optimal solutions
on constraints on values of admissible controls has been
considered by Przyłuski (1981). A much more general
approach to such problems is presented by Kandilakis and
Papageorgiou (1992) as well as Papageorgiou (1991).

The paper is organized as follows. In Sections 2
and 3 we consider quite general minimum norm problems.
The obtained results are next applied (Section 4) to study a
linear-quadratic problem. In the last sections (5 and 6) the
minimum energy problem with fixed endpoints for some
classes of linear infinite dimensional (discrete-time and
continuous-time) control systems is considered.

The notation used in the paper is standard (see, e.g.,
Aubin, 2000; Laurent, 1972; Luenberger, 1969; Corless
and Frazho, 2003). In particular, for any unitary space
H, and x, y ∈ H, we usually denote by (x|y) the inner
product of x and y. Let us recall that the norm ‖x‖
of any x ∈ H is defined as the square root of (x|x).
When M is a subset of a unitary space, M denotes the
closure of M . For any linear subspace S of H, we denote
by S⊥ the orthogonal complement of S. For arbitrary
unitary spaces H1 and H2, we write H1 ⊕ H2 for the

k.m.przyluski@gmail.com


724 K.M. Przyłuski

Hilbert sum of these spaces. For h := (h1, h2) ∈
H1⊕H2, the norm ‖h‖ :=

(‖h1‖2+‖h2‖2
)1/2

. We shall
write L(H1,H2) for the (naturally) normed space of all
continuous linear operators H1 → H2. When H1 = H2,
the symbol L(H1) is used instead of L(H1,H2). For
any operator A ∈ L(H1,H2), ‖A‖ denotes its (operator)
norm, Ker A denotes its kernel, and ImA is its image. The
(Hilbert space) adjoint of A is denoted by A�. For any
Hilbert space H we write �2

τ (H) for the Hilbert space of
all H-valued sequences h = (hk)τ−1

k=0 , the space being
normed by the norm |·|2 defined (as usual) by the formula

|h|2 :=
(∑τ−1

k=0‖hk‖2
)1/2

.

2. Minimum norm problem

Let Hu , Hv and Hz be real Hilbert spaces. Let S ∈
L(Hu,Hv) and R ∈ L(Hz ,Hv) be fixed operators. We
consider the following minimum norm problem.

For a given z ∈ Hz , find û ∈ Hu such that

Sû = Rz (1a)

and

‖û‖ = inf
u

{‖u‖ | Su = Rz} . (1b)

We summarize below some well known results
concerning the above described optimization problem. We
first define the space Z of admissible values of z in the
following way:

Z := {z ∈ Hz | ∃u ∈ Hu: Su = Rz} . (2)

Of course, Z = R−1(Im S) (the inverse image of Im S
under R).

Let P denote the orthogonal projection of Hu onto
(Ker S)⊥. Assume z ∈ Z is fixed, and let u′ and u′′ be
such that Su′ = Su′′ = Rz. Then SPu′ = SPu′′ =
Rz. In particular, Pu′ − Pu′′ ∈ Ker S, and therefore
Pu′ = Pu′′. It follows that Pu is the same for all u ∈ Hu

satisfying the constraint Su = Rz, with fixed z ∈ Z . For
any z ∈ Z , we denote such Pu by û(z). Observe that, for
any u satisfying Su = Rz, we have u = û(z)+(I−P )u,
where I denotes the identity operator on Hu. It follows
that

‖u‖2 = ‖û(z)‖2 + ‖(I − P )u‖2 ≥ ‖û(z)‖2.

Hence, for any z ∈ Z , û(z) is the (unique) solution to our
minimum norm problem.

The considerations presented above show that one
can define a mapping Z → Hu, which maps z ∈ Z to the
minimum norm solution û(z) to the equation Su = Rz.
We denote this mapping by K . The following result is
well known (see, e.g., Aubin, 2000; Laurent, 1972).

Proposition 1. The mapping K : Z → Hu is linear, i.e.,
K (α1z1 + α2z2) = α1Kz1 + α2Kz2.

Proof. Let z1, z2 ∈ Z , α1, α2 ∈ R, and z = α1z1+α2z2.
Since Z is a linear subspace of Hz , z ∈ Z . To justify
that K is linear, we should prove that û (α1z1 + α2z2) =
α1û(z1) + α2û(z2). To this end, let us observe that

S (α1û(z1) + α2û(z2))
= α1Sû(z1) + α2Sû(z2)
= α1Rz1 + α2Rz2

= R(α1z1 + α2z2) = Rz.

Since
α1û(z1) + α2û(z2) ∈ (Ker S)⊥,

we conclude that

û(z) = α1û(z1) + α2û(z2).

�
The main result of this section is the following

theorem.

Theorem 1. K is continuous if and only if the space Z of
admissible values of z is closed in Hz .

Proof.
(Necessity) Let z ∈ Z , the closure of Z . Then there
exists a sequence (zn)∞n=1 such that zn ∈ Z and lim zn =
z. Let un = Kzn. Of course, Sun = Rzn. Then

‖un − um‖ ≤ ‖K‖‖zn − zm‖,

and (since (zn)∞n=1 is convergent), (un)∞n=1 is a Cauchy
sequence, and therefore the sequence (un)∞n=1 is also
convergent. Let u = limun. If we take the limits of both
the sides of the equality Sun = Rzn as n → ∞, we find
that Su = Rz. This means that z ∈ Z .

(Sufficiency) Let Z be closed. Then Z is a Hilbert space
with respect to the inner product induced from Hz . Let
R̃ denote the restriction of the operator R to the Hilbert
space Z . Observe that Im S ⊃ Im R̃. Using the Douglas
factorization theorem (see, e.g., Douglas, 1966; Rolewicz,
1987), we conclude that there exists an operator K̃ ∈
L(Z,Hu) such that SK̃ = R̃. Let P denote (as usual)
the orthogonal projection of Hu onto (Ker S)⊥. Then,
for z ∈ Z , S(PK̃)z = SK̃z = R̃z = Rz. Since
PK̃z ∈ (Ker S)⊥, K := PK̃ is the mapping which
assigns any z ∈ Z the minimum norm solution û(z) to
the equation Su = Rz. It is obvious that K ∈ L(Z,Hu).
In particular, K is continuous. �

Remark 1. The existing proofs of the Douglas
factorization theorem are usually based on the closed
graph theorem (see, e.g., Douglas, 1966; Rolewicz, 1987).
So it is not surprising that to prove the sufficiency part of
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Theorem 1 we could have used (instead of the Douglas
factorization theorem) the closed graph theorem.

Using Theorem 1 one can prove1 the following
remarkable characterization of the closedness of the space
Z of admissible values of z.

Corollary 1. The following statements are equivalent:

(i) The space Z of admissible values of z is closed in
Hz .

(ii) There exists α ≥ 0 such that, for every z ∈ Z , one
can find u ∈ Hu satisfying Su = Rz and the in-
equality ‖u‖ ≤ α‖z‖.

(iii) For every ε > 0, z ∈ Z , and u ∈ Hu satisfying
Su = Rz, there exists δ > 0 such that for every z′

satisfying the inequality ‖z − z′‖ ≤ δ and belonging
to Z , one can find u′ ∈ Hu such that, Su′ = Rz′

and ‖u − u′‖ ≤ ε.

We see that it is important to know when the space
Z is closed. We collect below a few simple results in this
direction.

Proposition 2. ImS ⊃ Im R if and only if Z = Hz .

In particular, if Im S ⊃ Im R, the space Z of
admissible values of z is closed in Hz .

Before formulating our next result, we recall that
a linear continuous operator acting between Hilbert
spaces possesses a linear continuous right inverse if and
only if this operator is surjective (employ the Douglas
factorization theorem or see, e.g., the work of Aubin
(2000)). Let us also recall that, for any mapping L and
any subset M of its domain, L−1(M) denotes the inverse
image of M under the mapping L.

Proposition 3. Let R be right invertible. Assume that Z
is closed. Then Im S is also closed.

Proof. Let J be a right inverse of R, so that RJ = I , the
identity operator on Hv. Then ImS = (RJ)−1(Im S) =
J−1

[
R−1(Im S)

]
= J−1(Z). Since J is continuous,

J−1(Z) (being equal to Im S) is closed. �

Remark 2. The above proposition says that when R is
right invertible and Im S �= Im S, the space Z of admissi-
ble values of z cannot be closed, and therefore the corre-
sponding linear mapping K is discontinuous.

Proposition 4. Assume that Im S is closed. Then Z is
closed.

Let us note that the space Z of admissible values of z
is always closed, when ImS is finite dimensional (or finite
codimensional).

We end this section with the following two general
remarks.

1Since we will not need this result, its proof is omitted.

Remark 3. Let us recall (see, e.g., Luenberger, 1969)
that the Moore–Penrose pseudoinverse S† of S exists if
and only if the image of S is closed. The assumption
that Im S = Im S significantly simplifies the minimum
norm problem since then the mapping K which maps
z ∈ Z to the minimum norm solution û(z) to the equation
Su = Rz is equal to the restriction of the continuous
linear operator S†R to the (closed) subspace Z of Hz .

Remark 4. Consider the special case where Hz = Hv

and R = I , the identity operator. Assume that Im S is a
proper dense subspace of Hz (i.e., Im S = Hv �= ImS).
Then, only for v ∈ Im S, there exists a (unique) solution
to our minimum norm problem. When v /∈ Im S, one can
consider a relaxation of this problem. One of the possible
approaches is to solve the (unconstrained) problem of
minimizing ‖u‖2 + ρ‖Su − v‖2, for large positive
ρ. Another possibility is to study the (constrained)
minimization problem of finding u ∈ Hu of minimal
norm and such that ‖Su − v‖ ≤ η, for small positive
η. These approaches are closely related. For details,
the interested reader should consult Kobayashi (1978) or
Emirsajłow (1989).

3. Extended minimum norm problem

Let H0 be a real Hilbert space and R0 ∈ L(H0,Hv) be
a given operator. We consider below the following ex-
tended minimum norm problem.

For given z0 ∈ H0 and zv ∈ Hv , find û ∈ Hu such
that

Sû = R0z0 + zv (3a)

and

‖û‖ = inf
u

{‖u‖ | Su = R0z0 + zv} . (3b)

One can reduce the above problem to the minimum
norm one defined by the relations (1). To this end, let I
denote the identity operator on Hv and Hz := H0 ⊕ Hv

(as usual, ⊕ denotes the direct sum of Hilbert spaces). Let
z = (z0, zv) and R =

[
R0 I

]
, so that Rz = R0z0 + zv,

and R ∈ L(Hz ,Hv). We see at once that the relations (3)
can be rewritten in the form used to define our standard
minimum norm problem, with R as above. Note that,
for the extended minimum norm problem, by the space
of admissible values of z we should mean the following
subspace of H0 ⊕Hv:

Z =
{
(z0, zv) ∈ H0 ⊕Hv |

∃u ∈ Hu: Su = Rz0 + zv

}
.
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Proposition 5. The space Z described above is closed if
and only if Im S is closed.

Proof. We know from Proposition 4 that Z is closed,
if Im S is closed. Assume now that Im S is closed.
Since R =

[
R0 I

]
is right invertible, one can use

Proposition 3 to deduce that Z is closed. �

Proposition 6. Let R =
[
R0 I

]
. Assume Im S ⊃ ImR0.

Then (z0, zv) ∈ Z if and only if zv ∈ ImS.

Proof. Let zv ∈ Im S. Then zv = Suv, for some uv ∈
Hu. Let z0 ∈ H0. Since Im S ⊃ Im R0, one can find
u0 ∈ Hu such that R0z0 = Su0. Hence S(u0 + uv) =
R0z0+zv. It follows that any z = (z0, zv) with zv ∈ Im S
belongs to Z .

Conversely, let (z0, zv) ∈ Z so that Su = R0z0+zv,
for some u ∈ Hu. Since Im S ⊃ ImR0, one can find
u0 ∈ Hu such that R0z0 = Su0. Then S(u − u0) = zv,
i.e., zv ∈ Im S. �

Corollary 2. Let R =
[
R0 I

]
. Then ImS ⊃ Im R0 if

and only if Z = H0 ⊕ Im S. In particular, Z = H0 ⊕Hv

if and only if S is surjective.

We know that, for any z ∈ Z , there exists a (uniquely
defined) solution û(z) to the extended minimum norm
problem considered. Since z = (z0, zv), we also write
û(z0, zv) instead of û(z). By virtue of Proposition 1,
the mapping (z0, zv) �→ û(z0, zv) is linear. It is a
consequence of Theorem 1 and Proposition 5 that this
mapping is continuous if and only if Im S is closed.

Unfortunately, the assumption that Im S is closed is
rather restrictive. Our next result deals with the extended
minimum norm problem for S whose image is not closed.

Theorem 2. Assume that

ImS ⊃ Im R0 and Im S �= Im S.

Let û(z0, zv) be the solution to the extended norm mini-
mization problem. Then

û(z0, zv) = K0z0 + Kvzv,

where K0 is linear and continuous (i.e., K0 ∈
L(H0,Hu)), and Kv : Im S → Hu is linear, but it cannot
be continuous.

Proof. In view of Corollary 2, û(z0, zv) is well-defined
for all pairs (z0, zv) such that z0 ∈ H0 and zv ∈ Im S.
In particular, (z0, 0) and (0, zv) are in Z . Observe that
û(z0, 0) is the minimum norm solution to the equation
Su = R0z0, whereas û(0, zv) is the minimum norm
solution to the equation Su = zv. Since û(z0, 0) and
û(0, zv) belong to (Ker S)⊥, and

S (û(z0, 0) + û(0, zv)) = R0z0 + zv,

we have the equality û(z0, 0)+ û(0, zv) = û(z0, zv). This
means that

K0z0 = û(z0, 0), Kvzv = û(0, zv).

The inclusion Im S ⊃ Im R0 implies (see
Proposition 2) that R−1

0 (Im S) = H0, and therefore K0

is continuous. On the other hand, since ImS �= Im S, Kv

is discontinuous, in view of Remark 2. �

4. Linear-quadratic problem

Let Hw, Hy be a real Hilbert space, and W ∈
L(Hu,Hw), L1 ∈ L(Hu,Hy), L2 ∈ L(Hz,Hy) be
given operators. We always assume that W is an injec-
tion with closed image. For Hilbert spaces, such operators
are characterized (see, e.g., Aubin, 2000) by the existence
of a positive constant γ such that ‖Wu‖ ≥ γ‖u‖, for all
u. This inequality is equivalent to the positive definiteness
(also called coerciveness) of the self-adjoint operator
W �W . It follows that W is an injection with closed image
if and only if W �W is positive definite. Since W �W is
always nonnegative definite, W �W is positive definite if
and only if the operator is invertible.

In this section we consider the following linear
quadratic problem.

For a given z ∈ Hz , find û ∈ Hu such that

Sû = Rz (4a)

and

‖Wû‖2 + ‖L1û + L2z‖2

= inf
u

{‖Wu‖2 + ‖L1u + L2z‖2 | Su = Rz
}

. (4b)

Let us observe that, for any u ∈ Hu and z ∈ Hz ,

‖Wu‖2 + ‖L1u + L2z‖2

=
(
u | (W �W + L�

1L1)u
)

+ 2
(
u |L�

1L2z
)

+ ‖L2z‖2.

(5)

Let
Q := W �W + L�

1L1.

Of course, Q ∈ L(Hu,Hu). Since W is an injection with
closed image, the operator Q above defined is always (i.e.,
independently of L1) positive definite, hence invertible.
Moreover, there exists a unique positive definite square
root Q1/2 of Q. Observe that the first term on the
right-hand side of (5) can be written as ‖Q1/2u‖2. Since
Q1/2 is positive definite, it is also invertible. The inverse
of Q1/2 will be denoted by Q−1/2.

Our purpose is to reduce the linear quadratic problem
considered into a norm minimization one. To this end, let
us compute the norm of Q1/2(u+Q−1L�

1L2z). After easy
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calculations we obtain the following equality:

‖Q1/2(u + Q−1L�
1L2z)‖2

= ‖Q1/2u‖2 + 2
(
u |L�

1L2z
)

+ ‖Q−1/2L�
1L2z‖2.

(6)

It follows (cf. Eqns. (5) and (6)) that

(‖Wu‖2+‖L1u+L2z‖2
)−‖Q1/2(u+Q−1L�

1L2z)‖2

= ‖L2z‖2 − ‖Q−1/2L�
1L2z‖2.

We see that the difference between ‖Wu‖2+‖L1u+
L2z‖2 and ‖Q1/2(u+Q−1L�

1L2z)‖2 is independent of u.
This means that, instead of the linear-quadratic problem
defined by (4), one can consider the problem in which (for
fixed z) we are minimizing with respect to u (for u ∈ Hu

satisfying Su = Rz) the norm

‖Q1/2(u + Q−1L�
1L2z)‖. (7)

Let
q := u + Q−1L�

1L2z. (8)

Then (7) takes the form ‖Q1/2q‖, and the constraint
Su = Rz should be replaced by the equality Sq =
(R − Q−1L�

1L2)z. Now, let us define on Hu a new
inner product (· | ·)Q by the formula (x|y)Q := (x|Qy),
where x, y ∈ Hu, and (· | ·) is the original inner product
of Hu. Since Q is a positive definite operator, (x|y)Q

is a well-defined inner product on Hu. For the norm
‖·‖Q induced by this inner product, we have ‖q‖Q =
‖Q1/2q‖, for all q ∈ Hu. Since Q is positive definite,
the norms ‖·‖Q and ‖·‖ (i.e., the original norm of Hu) are
equivalent. Let us recall that the continuity of functions
defined on Hu and the closedness of subsets of Hu are
independent of the assumed norms on Hu, if these norms
are equivalent.

On account of the discussion presented above, one
can formulate a minimum norm problem reflecting all the
properties of the linear quadratic problem studied in this
section as follows.

For a given z ∈ Hz , find q̂ ∈ Hu such that

Sq̂ = (R − SQ−1L�
1L2)z (9a)

and

‖q̂‖Q = inf
q

{‖q‖Q | Sq = (R − SQ−1L�
1L2)z

}
,

(9b)

where Q = W �W + L�
1L1, and W is an injection with

closed image.
It is immediate that, for a given z, the above

minimum norm problem has a solution if and only if our
original linear-quadratic problem defined by the relations
(4) is solvable. Then the solutions q̂ and û to these

problems are related by (8).
Let, for the minimum norm problem defined by (9),

Zq denote the counterpart of the space Z of admissible
values of z, defined in Section 1 by (2), i.e.,

Zq :=
{
z ∈ Hz | ∃ q ∈ Hu: Sq = (R − SQ−1L�

1L2)z
}

.

From our deliberations in Section 1 it follows that, for
every z ∈ Zq , there exists a uniquely defined solution q̂ to
the minimum norm problem (9), and q̂ is a linear function
of z. This function, to be denoted by Kq, is a continuous
function Zq → Hu if and only if Zq is closed in Hz (see
Theorem 1).

It happens that Zq is closed in Hz if and only if
Z = R−1(Im S) is closed. More precisely, we can prove
the following elementary result, saying in particular that
Zq = Z .

Proposition 7. For any linear mapping F : Hz → Hu,

R−1(Im S) =
(
R + SF

)−1
(Im S

)
.

Proof. Of course, z ∈ R−1(Im S) if and only if there
exist u such that Su = Rz. Then Su+SFz = Rz+SFz,
and S(u + Fz) = (R + SF )z. Now it is obvious that

z ∈ (
R + SF

)−1(Im S
)
.

Conversely, assume that z ∈ (
R + SF

)−1(Im S
)
.

Then there exists u such that Su = (R + SF )z. Then
S(u − Fz) = Rz, and therefore z ∈ R−1(Im S). �

It should be clear now that the linear-quadratic
problem studied in this section possesses a solution if and
only if z ∈ Z = R−1(Im S). The solution is uniquely
determined by z, and will be denoted (as usual) by û(z).
Let K : Z :→ Hu be the mapping z �→ û(z). From (8)
we conclude that

K = Kq − Q−1L�
1L2,

and the linearity of K is obvious. Moreover, we are thus
led to the following strengthening of Theorem 1.

Theorem 3. Consider the linear quadratic problem de-
fined by the relations (4). Assume that W is an injection
with closed image. Then the linear mapping K : Z → Hu

given above is (well defined and) continuous if and only if
Z = R−1(Im S) is closed in Hz .

One can also generalize Theorem 2.

Theorem 4. Consider the linear quadratic problem de-
fined by the relations (4), with R =

[
R0 I

]
(see Sec-

tion 3). Let W be an injection with closed image. Assume
also that

ImS ⊃ Im R0 and Im S �= Im S.
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Let û(z0, zv) be the solution to the linear quadratic prob-
lem considered. Then (as in Theorem 2)

û(z0, zv) = K0z0 + Kvzv,

where K0 is linear and continuous (i.e., K0 ∈
L(H0,Hu)), and Kv : Im S → Hu is linear, but it cannot
be continuous.

Remark 5. The fact that any linear-quadratic problem
can be reduced to an appropriate minimum norm one is
well known for control systems described by differential
equations. This reduction requires solving a Riccati-type
differential or integral equation (for finite dimensional
systems, see, e.g., the work of Brockett (1970); for infinite
dimensional systems consult, e.g., Curtain (1984)). A
slightly more general treatment of this topic is presented
by Porter (1966, Ch. 4). Our approach to this reduction
seems to be new.

5. Minimum energy control problem for
infinite dimensional discrete-time control
systems

Consider a linear discrete-time control system defined
by the difference equation

xk+1 = Axk + Buk, (10)

where k runs through the set of non-negative integers.
We assume that A ∈ L(X), B ∈ L(U, X), where the
state space X as well as the control space U are real
Hilbert spaces. Let x0 ∈ X be an initial state and u :=
(uk)τ−1

k=0 be a controlling sequence, where τ denotes a
fixed positive integer (“final time”). Then

xτ = Aτx0 +
τ−1∑

k=0

Aτ−k−1Buk.

For discrete-time systems, we formulate the following
fixed endpoints minimum energy control problem.2

For given x0 ∈ X , xfinal ∈ X , and τ being a fixed
positive integer, find a controlling sequence û := (ûk)τ−1

k=0

such that

xfinal = Aτx0 +
τ−1∑

k=0

Aτ−k−1Bûk (11a)

and

( τ∑

k=0

‖ûk‖2
)1/2 ≤ ( τ∑

k=0

‖uk‖2
)1/2

, (11b)

2In view of our results of Section 4 there is no need to consider ex-
plicitly a more general linear quadratic problem.

for any controlling sequence u = (uk)τ−1
k=0 satisfying

xfinal = Aτx0 +
τ−1∑

k=0

Aτ−k−1Buk. (11c)

In order to reformulate the fixed endpoints minimum
energy control problem defined by (11) as an extended
minimum norm problem discussed in Section 3, we put
Hu := �2

τ (U) so that the norm of u ∈ Hu will be |u|2.
We also assume that H0 := X , Hv := X , Hz := X ⊕X .
Let

R0 := −Aτ , (12)

S :=
[
Aτ−1B, Aτ−2B, . . . , AB, B

]
. (13)

Let us note that R0 ∈ L(H0,Hv), S ∈ L(Hu,Hv), and

Su =
τ−1∑

k=0

Aτ−k−1Buk,

for any u = (uk)τ−1
k=0 ∈ Hu = �2

τ (U). Of course, the
operators R0 and S depend on τ . The image of S is known
as the τ -controllable subspace.

It is clear that the discussed fixed endpoints
minimum energy control problem for the system (10)
takes the following form.

For given x0 ∈ H0 = X and xfinal ∈ Hv = X , find
(if it is possible) û = (ûk)τ−1

k=0 ∈ Hu = �2
τ (U) such that

Sû = R0x0 + xfinal,

and |û|2 is not greater than the norm |u|2, for any u =
(uk)τ−1

k=0 ∈ Hu satisfying Su = R0x0 + xfinal, with R0

and S defined by (12) and (13), respectively.
There is no doubt that one can employ the results

of Section 3 when studying the fixed endpoints minimum
energy control problem for the system (10). To this end,
let us note that, for the discrete-time system considered,
the space Z = R−1(Im S) (as defined in Section 3) is as
follows:

Z
=

{
(x0, xfinal) ∈ X ⊕ X | ∃u = (uk)τ−1

k=0 ∈ �2
τ (U) :

xfinal = Aτx0 +
τ−1∑

k=0

Aτ−k−1Buk

}
. (14)

This space depends on τ .
Let us observe that the minimum energy control

problem specified by the relations (11) is well defined if
and only if (x0, xfinal) ∈ Z , with Z given by (14). Let
K (see Proposition 1) denote the linear mapping which
maps (x0, xfinal) ∈ Z to û(x0, xfinal) ∈ Hu = �2

τ (U), the
(unique) solution to the fixed endpoints minimum energy



On an infinite dimensional linear-quadratic problem with fixed endpoints. . . 729

problem considered.

The following theorem is a direct consequence of
Theorem 1 and Proposition 5.

Theorem 5. Consider the fixed endpoints minimum en-
ergy control problem specified by the relations (11), and
the linear mapping K : (x0, xfinal) �→ û(x0, xfinal). Then
K is continuous if and only if the τ -controllable subspace
Im S is closed.

Let us recall (see, e.g., Fuhrmann, 1972) that a linear
discrete-time system is said to be exactly controllable in
τ steps if for any xfinal ∈ X one can find a controlling
sequence u = (uk)τ−1

k=0 such that

xfinal =
τ−1∑

k=0

Aτ−k−1Buk,

so that when x0 = 0, xfinal = xτ , for some u. In other
words, the discussed discrete-time system is exactly con-
trollable in τ steps if and only if Im S = X .

Corollary 3. The domain of K is equal to X ⊕ X if and
only if the system (10) is τ -exactly controllable. Then K
is continuous.

Proof. In view of Corollary 2 and Theorem 5, it is
sufficient to observe that the space Z (see (14)) coincides
with X ⊕ X if and only the τ -controllable subspace is
equal to X . �

The assumption that a system is exactly controllable
(or that its τ -controllable subspace is closed) may be
too demanding for some infinite dimensional control
systems. One can relax this assumption using Theorem 2
of Section 3. To formulate some results in this
direction, we introduce below two additional concepts
of controllability; they are weaker than that of exact
controllability. These concepts are well known (see, e.g.,
Fuhrmann, 1972; Curtain and Zwart, 1995).

We say that the system (10) is approximately con-
trollable in τ steps if for each xfinal ∈ X and any ε > 0
there exists a controlling sequence u = (uk)τ−1

k=0 such that

‖xfinal −
τ−1∑

k=0

Aτ−k−1Buk‖ ≤ ε,

so that when x0 = 0 the norm ‖xfinal−xτ‖ does not exceed
ε, for some u. This means that the discussed system is
approximately controllable in τ steps if and only if its τ -
controllable subspace is dense in X .

We also need the concept of null-controllability. It
is said that the the system (10) is null-controllable in
τ steps if for every x0 ∈ X there exists a controlling

sequence u = (uk)τ−1
k=0 such that

Aτx0 +
τ−1∑

k=0

Aτ−k−1Buk = 0,

so that for each x0 one can find u steering x0 to the origin.
In other words, the discussed system is null-controllable in
τ steps if and only if Im R0 ⊂ Im S, i.e.,

Im Aτ ⊂ [
Aτ−1B, Aτ−2B, . . . , AB, B

]
.

Let (as usual) K denote the linear mapping which
maps (x0, xfinal) ∈ Z to û(x0, xfinal) ∈ Hu = �2

τ (U).
Since K is linear, we have

û(x0, xfinal) = K(x0, xfinal) = K0x0 + Kfinalxfinal

for appropriate linear mappings K , K0 and Kfinal.
The following result is merely a rephrasing of

Theorem 2.

Theorem 6. Consider the fixed endpoints minimum en-
ergy control problem specified by the relations (11). As-
sume that the system considered is null-controllable in τ -
steps, and that its τ -controllable subspace (i.e., Im S) is
not closed. Let K0 and Kfinal be as above. Then K0 is
continuous, i.e., K0 ∈ L(

X, �2
τ (U)

)
, and Kfinal : Im S →

�2
τ (U)

)
is linear but discontinuous.

We also have the following.

Corollary 4. Assume that the system (10) is null-
controllable in τ -steps. Let the system be approximately
controllable in τ steps, but not exactly controllable. Then
the conclusion of Theorem 6 is valid, i.e., K0 is continu-
ous and Kfinal is discontinuous.

6. Minimum energy control problem for
infinite dimensional continuous-time
control systems

We will consider continuous-time systems. In what
follows, we denote by T a fixed positive real number. Let
a linear continuous-time control system be described by
the differential equation

ẋ(t) = Ax(t) + Bu(t), (15)

where t runs through the set of non-negative real numbers.
We assume that A is is the infinitesimal generator of
a strongly continuous semigroup of continuous linear
operators

(
Φ(t)

)
t≥0

, B ∈ L(U, X), where the state
space X as well as the control space U are real Hilbert
spaces. We write L2((0, T ); U) for the Hilbert space
of all (equivalent classes of) square-integrable functions
[0, T ] → U , normed in the usual way. Let x0 ∈ X be
an initial state and u(·) ∈ L2((0, T ); U) be a controlling
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function. Then we say that

x(t) = Φ(t)x0 +
∫ t

0

Φ(t − s)Bu(s) ds (16)

is a mild solution of Eqn.(15) on [0, T ]. The above formula
makes sense for all x0 ∈ X and u(·) ∈ L2((0, T ); U),
and it can be shown that x(·) ∈ L2((0, T ); X). At this
point we refer the reader to the works of Balakrishnan
(1981) or Curtain and Pritchard (1978) for details and a
very clear exposition of various properties of mild (and
weak) solutions of differential equations.

For continuous-time systems, we will consider the
following fixed endpoints minimum energy control
problem.3

For given x0 ∈ X , xfinal ∈ X , and T being a fixed
positive real number, find a controlling function û(·) ∈
L2((0, T ); U) such that

xfinal = Φ(t)x0 +
∫ T

0

Φ(T − s)Bû(s) ds (17a)

and

(∫ T

0

‖û(s)‖ ds

)1/2

≤
(∫ T

0

‖u(s)‖ ds

)1/2

, (17b)

for any controlling function u(·) satisfying

xfinal = Φ(t)x0 +
∫ T

0

Φ(T − s)Bu(s) ds. (17c)

Like in the case of the problem (11), the above
fixed endpoint minimum energy control problem can be
rewritten as an extended minimum norm problem of
Section 3. To this end, it is sufficient to set Hu :=
L2((0, T ); U), H0 := X , Hv := X , Hz := X ⊕ X .
Let

R0 := −Φ(T )x0, (18)

Su(·) :=
∫ T

0

Φ(T − s)Bu(s) ds, (19)

for any u(·) ∈ L2((0, T ); U). Then, for the
continuous-time system considered, the space Z =
R−1(Im S) (as defined in Section 3) is as follows:

Z
=

{
(x0, xfinal) ∈ X ⊕ X | ∃u(·) ∈ L2((0, T ); U) :

3Of course, we know that there is no need to consider a more general
linear quadratic problem.

xfinal = Φ(t)x0 +
∫ T

0

Φ(T − s)Bu(s) ds
}
. (20)

Let us note that R0 ∈ L(H0,Hv) and S ∈ L(Hu,Hv). In
this section we assume that R0, S and Z are given by the
formulas (18), (19) and (20), respectively. It is clear that
the operators R0, S, and the space Z depend on T .

The image of the above defined operator S is named
the T -controllable subspace. For a broad class of infinite
dimensional continuous-time systems, the T -controllable
subspace (i.e., ImS) cannot be closed, and therefore
Im S is a proper subspace of X . This takes place when
B is compact, or Φ(·) is a compact semigroup. Then
the operator S is compact and has (usually) infinite
dimensional image. This important fact is well known
(see Balakrishnan, 1981; Curtain and Pritchard, 1978;
Kobayashi, 1978; Triggiani, 1975a).

In a similar manner like for discrete-time systems,
one can define (see, e.g., Curtain and Pritchard,
1978; Curtain and Zwart, 1995) the concepts of
exact controllability, approximate controllability, and
null-controllability for a continuous-time system.

Let us recall that a linear continuous-time system is
exactly controllable on [0, T ] if for every xfinal ∈ X one
can find a controlling function u(·) ∈ L2((0, T ); U), such
that

xfinal =
∫ T

0

Φ(T − s)Bu(s) ds,

so that when x0 = 0, xfinal = x(T ), for some u(·). In
other words, the discussed continuous-time system is ex-
actly controllable on [0, T ] if and only if Im S = X .

The system (15) is said to be approximately con-
trollable on [0, T ] if for each xfinal ∈ X and any ε > 0
there exists a controlling function u(·) ∈ L2((0, T ); U)
such that

‖xfinal −
∫ T

0

Φ(T − s)Bu(s) ds‖ ≤ ε,

so that when x0 = 0, the norm ‖xfinal − x(T )‖ does not
exceed ε for some u(·). This means that the discussed
system is approximately controllable on [0, T ] if and only
if its T -controllable subspace is dense in X .

The important concept of null-controllability for
continuous-time systems is defined as follows. We say
that the system (15) is null-controllable on [0, T ] if for
every x0 ∈ X there exists a controlling function u(·) ∈
L2((0, T ); U) such that

Φ(t)x0 +
∫ T

0

Φ(T − s)Bu(s) ds = 0,

so that, for each x0 one can find u(·) steering x0 to
the origin. In other words, the discussed system is null-
controllable on [0, T ] if and only if Im R0 ⊂ Im S.

Various important results concerning the above
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concepts of controllability have been obtained by
Triggiani (1975a; 1975b; 1976).

We know that the minimum energy control problem
described by the relations (17) is well defined if and
only if (x0, xfinal) ∈ Z , with Z given by (20). Then
(see Proposition 1) there exists a linear mapping K
which maps each (x0, xfinal) ∈ Z to û(x0, xfinal) ∈
Hu = L2((0, T ); U), the (unique) solution to the fixed
endpoints minimum energy problem considered, so that
û(x0, xfinal) = K0x0 + Kfinalxfinal, for suitable linear
mappings. It is obvious that the results analogous to those
obtained for our discrete-time problem (11) remain true,
mutatis mutandis, for the continuous-time fixed endpoints
minimum energy problem defined by the relations (17).
We record only the following result.

Proposition 8. Consider the fixed endpoints minimum en-
ergy control problem given by the relations (17). Assume
that the system (15) is null-controllable on [0, T ]. Let the
system be approximately controllable on [0, T ], but not
exactly controllable on [0, T ]. Let K0 and Kfinal be de-
fined as usual, so that the optimal solution û to (17) can
be written as û(x0, xfinal) = K0x0 + Kfinalxfinal. Then
K0 is continuous, i.e., K0 ∈ L(

X, L2((0, T ); U)
)
, and

Kfinal : Im S → L2((0, T ); U) is linear but discontinuous.

We end this section with the following example of a
distributed parameter system.

Example 1. We consider, for t ∈ [0, T ] and ξ ∈ [0, 1],
the (one-dimensional) heat equation

∂θ

∂t
(ξ, t) =

∂2θ

∂ξ2
(ξ, t) + h(ξ, t), (21a)

subject to the boundary condition

∂θ

∂ξ
(0, t) =

∂θ

∂ξ
(1, t) = 0. (21b)

Here θ(ξ, t) denotes the temperature at time t at position
ξ. Then the relations (21) describe a (thin homogeneous)
metal rod of length one, with (perfectly) insulated
endpoints, with some additional heat source that can
increase (or decrease) the temperature at each point ξ
along the rod, at a given rate h(ξ, t), also known as the
heat source density.

Our aim it to find a heat source density h such that the
initial temperature distribution θ(ξ, 0) will be changed to
a given (desired) temperature distribution θ(ξ, T ), at time
T , and the energy used for this, i.e.,

∫ T

0

∫ 1

0

(
h(ξ, t)

)2
dξ dt, (22)

will be as low as possible.

It is well known (see, e.g., Balakrishnan, 1981;
Curtain and Zwart, 1995) that Eqns. (21) can be rewritten
as a differential equation of the form (15), with suitable
A and B. For this, let X = U = L2((0, 1); R). Let
x(t) := θ(·, t) and u(t) := h(·, t), so that (for each
t ∈ [0, T ]), x(t) and u(t) are real-valued functions of the
(spatial) variable ξ ∈ [0, 1]. Observe that

x(0) = θ(·, 0) and x(T ) = θ(·, T )

represent the initial temperature distribution and its
desired (final) distribution at t = T , respectively. For that
reason, x(0) will play the role of x0, and x(T ) will be our
xfinal; see the relations (17).

The left-hand side of Eqn. (21a) can be identified
with ẋ(t), the derivative of x with respect to t. The
second term of the right-hand side of Eqn. (21a) can be
represented by u(t). It follows that, when expressing the
relations (21) as a differential equation ẋ(t) = Ax(t) +
Bu(t), we should assume that B = I , the identity
operator U → X (= U).

To describe the operator A, let us consider any
x ∈ X . Such x is a function of the spatial variable
ξ ∈ [0, 1]. The right-hand side of (21a) contains the
term (∂2θ/∂ξ2)(ξ, t), i.e., the second derivative of x with
respect to ξ. It follows that A is an ordinary second
order differential operator, i.e., the operator defined by the
formula

Ax =
d2x

dξ2
.

The domain domA of A should reflect
differentiability conditions, and also the boundary
condition imposed by (21b). It is known (and not very
difficult to check) that the appropriate domain of A
coincides with the linear subspace of X = L2((0, 1); R)
containing all absolutely continuous functions x
of the (spatial) variable ξ, whose first derivative
(with respect to ξ) is absolutely continuous and the
second derivative belongs to L2((0, 1); R), and such
that the boundary condition (21b) is satisfied, i.e.,
(dx/dξ)(0) = (dx/dξ)(1) = 0. One can check that
the above described linear operator A : domA → X
is the infinitesimal generator of a strongly continuous
semigroup. Moreover, A belongs to the class of
Riesz-spectral operators, and the semigroup

(
Φ(t)

)
t≥0

generated by A can be written in an explicit form. For
details, the interested reader should consult Theorem
2.3.5 and Examples 2.1.1, 2.3.7 in the work of Curtain
and Zwart (1995).

We see that the discussed heat equation (21) can be
represented as a linear continuous-time control system
described by a differential equation ẋ(t) = Ax(t) +
Bu(t), with X, U and A, B described above. Therefore
one can reformulate the problem of minimizing energy
(22) as a fixed endpoints minimum energy control
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problem (17). Then Hu = L2
(
(0, T ); L2((0, 1); R)

)
.

Since u(t) := h(·, t)) , for any u ∈ Hu, we have

‖u‖2 =
∫ T

0

∫ 1

0

(
h(ξ, t)

)2 dξ dt,

the norm ‖u‖ of u being evaluated in Hu. Hence,
the problem of minimizing energy (22) falls into the
framework we know from the beginning of this section.

It remains to check whether or not the linear
continuous-time control system ẋ(t) = Ax(t) + Bu(t)
representing the heat equation (21) is exactly controllable,
approximately controllable, or null-controllable. It
happens that (for arbitrary positive T ) the discussed
continuous-time system is approximately controllable on
[0, T ], null-controllable on [0, T ], but never exactly con-
trollable. These facts are well known, and can be justified
with the aid of various arguments. The simplest way to
prove them is to use the controllability criteria presented
by Curtain and Zwart (1995, Chap. 4). It has been done
in the existing literature. In particular, Example 4.1.10 of
Curtain and Zwart (1995) proves that this system is never
exactly controllable on [0, T ], but it is null-controllable.
To prove that this system is approximately controllable
on [0, T ], one can use the duality between observation
and control. Example 4.1.15 of Curtain and Zwart (1995)
contains all necessary details.

Now, one can use our Proposition 8. Since we know
that the heat equation considered is approximately
controllable, null-controllable, but never exactly
controllable, we conclude that the solution to the
minimum norm problem for the system (21) will depend
continuously on the initial state x(0) = θ(·, t), but
it cannot continuously depend on the final condition
x(T ) = θ(·, T ).
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