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ANALYTIC RESULTS FOR OSCILLATORY SYSTEMS WITH EXTREMAL
DYNAMIC PROPERTIES
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The maximal value of the error is the most important criterion in system design. It is also the most difficult one. For that
reason there exist many other criteria. The extreme value of the error represents the attainable accuracy which can be
obtained and the corresponding extreme time gives information about how fast the transients are. The extreme values of
the error and the corresponding time are treated here as functions of the roots of the characteristic equation. The proposed
analytical formulae allow designing systems with prescribed dynamic properties.
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1. Introduction

Oscillations can be observed in electrical, mechanical and
many other types of systems. Analytical results allow
deep inspection and understanding of the system behavior.
The proposed method allows the design of a system
with required values of the amplitude and period of the
oscillations.

2. Problem statement

Let us consider the linear differential equation
determining error in a linear system of the n-th order with
lumped and constant parameters:

x(n)(t) + a1x
(n−1)(t) + · · · + an−1x

(1)(t)
+ anx(t) = 0. (1)

The initial conditions are determined by the force function
and the system’s parameters.

Let us assume, in general, that

x(i)(0) = ci+1 �= 0, i = 0, 1, . . . , n − 1.

The characteristic equation of (1) is

sn + a1s
n−1 + a2s

n−2 + · · · + an−1s + an = 0. (2)

The solution of Eqn. (1) has the form

x(t) =
m∑

k=1

Akesk t +
p∑

k=1

[
Bk cos (ωkt)

+ Ck sin (ωkt)
]
eαkt,

(3)

where Ak, Bk, ck, sk, αk, ωk are real numbers, sk are real
roots and αk + jωk = rk , αk − jωk = r̂k (k =
1, 2, . . . , p) are complex conjugate roots.

The necessary condition for the error x(t) to attain
an extremal value at t = τ is given by the relation

dx

dt
=

m∑

k=1

Akskeskt

+
p∑

k=1

[
(−Bk sin ωkτ + Ck cosωkτ)ωk

+ (Bk cosωkτ + Ck sinωkτ)αk

]
eαkτ = 0.

(4)

The constants are determined from

x(i)(0) = ci+1

=
m∑

k=1

Aksi
k

+
p∑

k=1

[
BkRe(ri

k) + CkIm(ri
k)
]
,

i = 0, 1, . . . , n − 1.

(5)

{head,zaczyk}@agh.edu.pl


772 H. Górecki and M. Zaczyk

The extreme value of the dynamic error is

x(τ) =
m∑

k=1

Akeskτ

+
p∑

k=1

[Bk cos (ωkτ) + Ck sin (ωkτ)] eαkτ .

(6)

The extremum of the extreme value of the dynamic error
given by Eqn. (6), computed with regard to the parameters
sk, αk and ωk, is obtained by equating the respective
partial derivatives of x(τ) to zero.

Denoting by
(

∂x(τ)
∂sk

)∗
,

(
∂x(τ)
∂αk

)∗
,

(
∂x(τ)
∂ωk

)∗

the partial derivatives of the expression (6) for constant τ ,
we may write

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂x(τ)
∂sk

=
(

∂x(τ)
∂sk

)∗
+

∂x(τ)
∂τ

∂τ

∂sk
,

∂x(τ)
∂αk

=
(

∂x(τ)
∂αk

)∗
+

∂x(τ)
∂τ

∂τ

∂αk
,

∂x(τ)
∂ωk

=
(

∂x(τ)
∂ωk

)∗
+

∂x(τ)
∂τ

∂τ

∂ωk
.

(7)

However, from Eqn. (4) we have

x(1)(t)
∣∣∣
t=τ

= 0,

and therefore
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂x(τ)
∂sk

=
(

∂x(τ)
∂sk

)∗
,

∂x(τ)
∂αk

=
(

∂x(τ)
∂αk

)∗
,

∂x(τ)
∂ωk

=
(

∂x(τ)
∂ωk

)∗
.

(8)

We obtain the following conditions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
k=1

∂Ak

∂sj
eskτ + Ajτesjτ

+
p∑

k=1

(
∂Bk

∂sj
cosωkτ +

∂Ck

∂sj
sinωkτ

)
eαkτ = 0,

j = 1, 2, . . . , m,

m∑
k=1

∂Ak

∂αj
eskτ

+
p∑

k=1

(
∂Bk

∂αj
cosωkτ +

∂Ck

∂αj
sinωkτ

)
eαkτ

+ (Bj cosωjτ + Cj sin ωjτ) eαjτ τ = 0,

m∑
k=1

∂Ak

∂ωj
eskτ

+
p∑

k=1

(
∂Bk

∂ωj
cosωkτ +

∂Ck

∂ωj
sinωkτ

)
eαkτ

+ (Cj cosωjτ − Bj sin ωjτ) eαjτ τ = 0,
j = 1, 2, . . . , p.

(9)

In this way, we have a system of n linear and
homogeneous equations with n unknowns which are

eskτ , eαkτ sin ωkτ, eαkτ cosωkτ.

The determinant of the system (9) must vanish if
there are nontrivial solutions. The same determinant (after
being reflected about one of the main diagonals) is

|D + Aτ | , (10)

where D and A are matrices determined by the following
equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D =
m∑

j=1

m∑
k=1

∂Aj

∂sk
Ejk

+
p∑

j=1

m∑
k=1

(
∂Bj

∂sk
Em+2j−1,k +

∂Cj

∂sk
Em+2j,k

)

+
m∑

j=1

p∑
k=1

(
∂Aj

∂αk
Ej,m+2k−1 +

∂Aj

∂ωk
Ej,m+2k

)

+
p∑

j=1

p∑
k=1

[(
∂Bj

∂αk
Em+2j−1,m+2k−1

+
∂Bj

∂ωk
Em+2j−1,m+2k

)

+
(

∂Cj

∂αk
Em+2j,m+2k−1 +

∂Cj

∂ωk
Em+2j,m+2k

)]
,

A =
m∑

j=1

AjEjj

+
p∑

j=1

[Bj (Em+2j−1,m+2j−1 − Em+2j,m+2j)

+Cj (Em+2j−1,m+2j + Em+2j,m+2j−1)] ,
(11)⎧

⎪⎨

⎪⎩

Ejk =
(
e
(jk)
μ,ν

)
, μ, ν = 1, . . . , n,

e
(jk)
μ,p = δμjδνk =

{
1 for μ = j, ν = k
0 otherwise.

(12)

Finally, we have

|D + Aτ | = 0, (13)

for the unknown τ and the system (9) yields (after some
algebraic manipulations) the following equation:

(−1)n
τn

m∏

k=1

Ak

p∏

k=1

(
B2

k + C2
k

)
= 0.

We obtain the following necessary condition.

Theorem 1. (Górecki and Turowicz, 1965) The necessary
condition for the extremal extremum x(τ) as the function
of (τ, s1, s2, . . . , sn) is

(−1)n τn
m∏

k=1

Ak

p∏

k=1

(
B2

k + C2
k

)
= 0. (14)
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The relation (14) can be fulfilled if at least one of the
conditions is met:

τ = 0, (15)

which means

c2 = 0, (16)

or

Ak = 0 (17)

or

B2
k + C2

k = 0. (18)

The conditions (16) or (17) lead to a reduced order of
Eqn. (1).

It might be asked whether the time τ , corresponding
to the extreme value of the dynamic error, attains an
extreme value with respect to the parameters sk, αk, ωk.
To investigate this, we assume that

∂τ

∂sk
= 0, k = 1, . . . , m,

∂τ

∂αk
=

∂τ

∂ωk
= 0, k = 1, . . . , p.

(19)

We compute the partial derivatives of Eqn. (9), taking
into account Eqn. (19):

m∑
k=1

∂Ak

∂sj
skeskτ + (1 + sjτ) Aje

sjτ

+
p∑

k=1

[(
∂Bk

∂sj
cosωkτ +

∂Ck

∂sj
sinωkτ

)
αk

+
(

∂Ck

∂sj
cosωkτ − ∂Bk

∂sj
sin ωkτ

)]
eskτ = 0,

j = 1, . . . , m,

(20)

m∑
k=1

∂Ak

∂αj
skeskτ

+
p∑

k=1

(
∂Bk

∂αj
cosωkτ +

∂Ck

∂αj
sin ωkτ

)
αk

+ [(Bj cosωjτ + Cj sinωjτ) (1 + αjτ)

+ (Cj cosωjτ − Bj sin ωjτ) ωjτ ] eαjτ = 0,

j = 1, . . . , p,

(21)

m∑
k=1

∂Ak

∂ωj
skeskτ

+
p∑

k=1

[(
∂Bk

∂ωj
cosωkτ +

∂Ck

∂ωj
sin ωkτ

)
αk

+
(

∂Ck

∂ωj
cosωkτ − ∂Bk

∂ωj
sin ωkτ

)
ωk

]
eαkτ

+ [(Cj cosωjτ − Bj sin ωjτ) (1 + αjτ)
− (Bj cosωjτ + Cj sin ωjτ) ωjτ ] eαjτ = 0,

j = 1, . . . , p.

(22)

Let

F=
m∑

μ=1
sμEμ,μ

+
p∑

μ=1
[αμ (Em+2μ−1,m+2μ−1 + Em+2μ,m+2μ−1)

+ωμ (Em+2μ−1,m+2μ − Em+2μ,m+2μ−1)].
(23)

Using the relations (11), Eqns. (20)–(23) yield, after
equating the determinant to zero,

|FD + A + FAτ | = 0, (24)

(−1)p
m∏

k=1

Ak

p∏

k=1

(
B2

k + C2
k

)

×
m∏

k=1

sk

p∏

k=1

(
α2

k + ω2
k

)

× τn−1

[
τ +

m∑

k=1

1
sk

+
p∑

k=1

(
1
rk

+
1
r̂k

)]
= 0.

We obtain the following necessary condition for the
extreme time τ(s1, . . . , sn).

Theorem 2. (Górecki and Turowicz, 1965) The neces-
sary condition for the extreme time τ as the function of
s1, . . . , sn is

(−1)p
m∏

k=1

Ak

p∏

k=1

(
B2

k + C2
k

)

×
m∏

k=1

sk

p∏

k=1

(
α2

k + ω2
k

)

× τn−1

[
τ +

m∑

k=1

1
sk

+
p∑

k=1

(
1
rk

+
1
r̂k

)]
= 0.

(25)

The relation (25) can be fulfilled if at least one of the
conditions is satisfied:

τ = 0,

which means
c2 = 0, (26)

or {
Ak = 0,
B2

k + C2
k = 0 (27)

or {
sk = 0,
α2

k + ω2
k = 0 (28)

or, finally and most interestingly,

τ = −
[

m∑

k=1

1
sk

+
p∑

k=1

(
1
rk

+
1
r̂k

)]
. (29)
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Using Vieta’s formulae, τ from (29) is equal to

τ =
an−1

an
, (30)

where an−1 and an are the coefficients of Eqn. (2).
The set of equations (20)–(22) gives also another

necessary condition for the extreme time τ(s1, . . . , sn),
which was presented by Górecki and Turowicz (1966).

Theorem 3. The necessary condition for the extreme time
τ(s1, . . . , sn) is

Dn (τ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 c4 . . . cn

−an−2

an
τ −1 0 . . . 0

−an−3

an
0 τ −2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− a1

an
0 0 0 . . . 2 − n

− 1
an

0 0 0 . . . τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(31)

It is obvious from the condition (31) that there may
exist n − 1 values of τ . Taking into account that τ =
an−1/an, we eventually obtain from Eqn. (31) n − 2
values of τ . In general if all τi > 0 (i = 1, 2, . . . , n − 1)
exist, then all the ratios ci/c1 (i = 2, 3, . . . , n − 1) can
be determined univocally.

The solution of the algebraic equation (31) for
a higher degree may be obtained using additional
assumptions (see Górecki, 2009; Górecki and Zaczyk,
2010).

After substitution of τ = an−1/an into Eqn. (31),
we obtain the relation between the initial conditions
ci+1, i = 0, 1, . . . , n − 1, and coefficients ak, k =
1, 2, . . . , n.

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 c4 . . .
an−2 −an−1 an 0 . . .
an−3 0 −an−1 2an . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a1 0 0 0 . . .
1 0 0 0 . . .

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

(32)

3. Problem solution

Theorem 4. (Sędziwy, 1969) The sufficient conditions for
the extreme τ(s1, . . . , sn) are

d2τ

ds2
k

�= 0, k = 1, . . . , n, (33)

d2τ

dskdsj
= 0, k �= j, k = 1, . . . , n. (34)

The Hessian Hn �= 0, where

Hk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d2τ

ds2
1

0 . . . 0

0
d2τ

ds2
2

. . . 0

. . . . . . . . . 0

0 0 0
d2τ

ds2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�= 0 ,

k = 1, 2, . . . , n

(35)

If H2k−1 < 0 and H2k > 0 for k = 1, 2, . . . , n, then τ
attains the maximum value with respect to s1, . . . , sn. If

H2k−1 > 0 and H2k > 0 (36)

for k = 1, 2, . . . , n, then τ attains the minimum value with
respect to s1, . . . , sn.

Theorem 5. The conditions for the existence of
τ1(s1, . . . , sn, c1, . . . , cn−1) are

x(1)(τ) = 0, (37)

Dn(a1, . . . , an, c1, . . . , cn−1) = 0. (38)

These two equations, (37) and (38), are linear with
respect to the initial conditions c1, . . . , cn−1. It is easy to
solve them.

Theorem 6. The conditions for the existence of
τ2, τ3, . . . , τn−2 are

x(1)(τ) = 0, (39)

Dn(τ) = 0, (40)

where τ1 = an−1/an.

4. Particular cases

We illustrate the theorems in the particular cases of the
equations.

4.1. Second-order equation (n = 2). Let us consider
the second order differential equations

d2x

dt2
+ a1

dx

dt
+ a2x = 0, (41)

with the initial conditions

x(0) = c1, x(1)(0) = c2.

The characteristic equation of Eqn. (41) is

s2 + a1s + a2 = 0 , a1, a2 > 0. (42)

We denote by s1, s2 the roots of this equation and
consider three cases:

1. s1 �= s2 real and negative,

2. s1 = s2 real and negative,

3. s1 = α + jω, s2 = α − jω complex with α < 0.
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4.1.1. First case: s1 �= s2. The solution of Eqn. (41)
is

x(t) =
s2c1 − c2

s2 − s1
es1t +

s1c1 − c2

s1 − s2
es2t. (43)

The derivative of x(t) is equal to

x(1)(t) =
s1(s2c1 − c2)

s2 − s1
es1t

+
s2(s1c1 − c2)

s1 − s2
es2t

(44)

The necessary condition for the extremum x(t) is

x(1)(τ) = 0. (45)

From the relation (44), using the condition (45), we obtain

e(s1−s2)τ =
s2(s1c1 − c2)
s1(s2c1 − c2)

. (46)

The necessary conditions for τ as the function of
(s1, s2) attains an extremum are

dτ

ds1
=

1
s2 − s1

(
τ − c2

s1(s1c1 − c2)

)
= 0, (47)

dτ

ds2
=

1
s2 − s1

(
τ − c2

s2(s2c1 − c2)

)
= 0. (48)

It is easy to show that there may be at most one value of
extreme τ . In consequence, it is required that

τ =
c2

s1(s1c1 − c2)
=

c2

s2(s2c1 − c2)
. (49)

From (49) we obtain

s1 + s2 =
c2

c1
,

c2

c1
< 0. (50)

Substitution c2 from (50) into the relation (49) gives

τ =
c2

s2(s2c1 − c2)

=
(s1 + s2)c1

s2[s2c1 − (s1 + s2)c1]

= −s1 + s2

s1s2
= −

(
1
s1

+
1
s2

)
.

(51)

Sufficient condition for τ(s1, s2). After differentiating
(47) and (48), we obtain

d2τ

ds2
1

=
c2(2s1c1 − c2)
s2
1(s1c1 − c2)2

, (52)

d2τ

ds2
2

=
c2(2s2c1 − c2)
s2
2(s2c1 − c2)2

, (53)

d2τ

ds1ds2
= − 1

(s2 − s1)2
dτ

ds2
, (54)

but dτ/ds2 = 0 (see (48)) and

d2τ

ds1ds2
= 0. (55)

The Hessian for τ = −
(

1
s1

+ 1
s2

)
is equal to

H =

∣∣∣∣∣

d2τ
ds2

1

d2τ
ds1ds2

d2τ
ds1ds2

d2τ
ds2

2

∣∣∣∣∣

=

∣∣∣∣∣

c2(2s1c1−c2)
s2
1(s1c1−c2)2

0

0 c2(2s2c1−c2)
s2
2(s2c1−c2)2

∣∣∣∣∣

=
c2
2(2s1c1 − c2)(2s2c1 − c2)

s2
1s

2
2(s1c1 − c2)2(s2c1 − c2)2

,

(56)

and, taking into account (50), we finally have

H =

[(
s2
2 − s2

1

)

s2
1s

2
2

]2

> 0

This means that if there exists an extremum
τ(s1, s2), s1 �= s2, then it has to be a minimum.

Existence condition. Substituting c2 from the relation
(50) into the relation (46), we obtain

τ =
1

s2 − s1
ln
(

s1

s2

)2

. (57)

Comparing with τ from (51), we have the equation

ln
(

s1

s2

)2

=
(

s2

s1
− s1

s2

)
. (58)

The only solution of Eqn. (58) is

s1 = s2 = s, (59)

which is in contradiction with the assumption that s1 �=
s2.

We deduce that there does not exist an extremum τ
for real s1 �= s2.

4.1.2. Second case: s1 = s2 = s < 0. The solution
of Eqn. (41) is

x(t) = [c1 + (c2 − sc1)t]est (60)

and its derivative is

dx(t)
dt

= [c2 + (c2 − sc1)st]est. (61)

From the necessary condition x(1)(t) = 0 and (61) we
obtain

τ =
c2

(sc1 − c2)s
. (62)
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The derivative is

dτ

ds
= − (2sc1 − c2)c2

s2(sc1 − c2)2
(63)

From the condition dτ/ds = 0 we finally have c2 = 0. In
consequence, τ1 = 0 or

s =
1
2

c2

c1
< 0 (64)

and

τ2 = −2
s

= −4
c1

c2
> 0, (65)

x(τ2) = −c1e
−2, c1 > 0 (66)

d2τ

ds2
= −32

(
c1

c2

)3

, c1c2 < 0. (67)

In conclusion, τ has a minimum with respect to s.

4.1.3. Third case: s1 = α + jω, s2 = α − jω are
complex and α < 0. From the relation (46), we have

e2jωτ =
[(α2 + ω2)c1 − αc2] + jωc2

[(α2 + ω2)c1 − αc2] − jωc2
. (68)

From the relation (68), we obtain

cos(2ωτ) =
[(α2 + ω2)c1 − αc2]2 − ω2c2

2

[(α2 + ω2)c1 − αc2]2 + ω2c2
2

, (69)

sin(2ωτ) =
2ωc2[(α2 + ω2)c1 − αc2]

[(α2 + ω2)c1 − αc2]2 + ω2c2
2

. (70)

After division of (69) by (70), we find

cot(2ωτ) =
[(α2 + ω2)c1 − αc2]2 − ω2c2

2

2ωc2[(α2 + ω2)c1 − αc2]
. (71)

From the necessary condition

dτ

dα
= 0, (72)

we have

2jωc2(2αc1 − c2)
[(c2 − c1α) + jωc1]2(α + jω)2

= 0. (73)

From (73) we deduce that c2 = 0, then τ = 0 or ω = 0 or

α =
1
2

c2

c1
,

c2

c1
< 0. (74)

After using (74) in (71), we obtain

cot(2ωτ) =
(ω2 − α2)2 − 4α2ω2

4αω(ω2 − α2)
. (75)

From the necessary condition

dτ

dω
= 0, (76)

after differentiating (68), we have

−2τ sin(2ωτ) = −4
ωc2

2[c1(α2 − ω2) − c2α]
[(c2 − c1α)2 + c2

1ω
2]2

× [c1(α2 + ω2) − c2α]
(α2 + ω2)

.

(77)

After elimination of c2, using (74), we get

− 2τ sin(2ωτ) = −16
(α − ω)(α + ω)ωα2

(α2 + ω2)3
(78)

and

2τ cos(2ωτ) = 2
c2[c1(α2 − ω2) − c2α]

(α2 + ω2)2

× [c1(α2 + ω2) − c2(α + ω)]
[(c2 − c1α)2 + c2

1ω
2]2

× [c1(α2 + ω2) + c2(α − ω)].

(79)

After elimination of c2 from (74),

2τ cos(2ωτ)

= −4
α(α2 − 2αω − ω2)(α2 + 2αω − ω2)

(α2 + ω2)3
. (80)

From (77) and (80),

4τ2 = 4
c2
2[c1(α2 − ω2) − c2α]2

(α2 + ω2)[(c2 − c1α)2 + c2
1ω

2]2
. (81)

After elimination of c2,

τ2 =
(2α)2

(α2 + ω2)2
, (82)

and, finally, for τ > 0,

τ = − 2α

α2 + ω2
, α < 0. (83)

The determinant (56) in this case for s1 = α + jω and
s2 = α − jω is

H =
[
(s2

2 − s2
1)

s2
1s

2
2

]2
= −

[
4αω

α2 + ω2

]2
< 0. (84)

It is obvious that τ has a maximum with respect to ω.

Sufficient condition. After dividing both the sides of (79)
by (77), we have

cot(2ωτ) =
1
4

(α2 − 2αω − ω2)(α2 + 2αω − ω2)
αω(α − ω)(α + ω)

.

(85)
Comparing (71) with (85), for α = 1

2c2/c1 we obtain

ω = ±α. (86)

Substitution of (86) into (83) gives

τ = − 1
α

, (87)

which, together with (74), yields

τ = −2
c1

c2
,

c1

c2
< 0. (88)
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4.2. Third-order equation (n = 3). Consider the
following equation (Górecki and Zaczyk, 2013):

d3x(t)
dt3

+ a1
d2x(t)

dt2
+ a2

dx(t)
dt

+ a3x(t) = 0. (89)

The initial conditions are

⎧
⎨

⎩

x(0) = c1,
x(1)(0) = c2,

x(2)(0) = c3.

The characteristic equation is

s3 + a1s
2 + a2s + a3 = 0. (90)

We assume that the roots of (90) are

s1, s2 = α + jω, s3 = α − jω,

where α < 0.

The solution of Eqn. (89) is

x(t) =
c3 − c2(s2 + s3) + c1s2s3

(s1 − s2)(s1 − s3)
es1t

+
c3 − c2(s3 + s1) + c1s3s1

(s2 − s3)(s2 − s1)
es2t

+
c3 − c2(s1 + s2) + c1s1s2

(s3 − s1)(s3 − s2)
es3t.

(91)

The derivative of x(t) is equal to

x(1)(t) =
s1[c3 − c2(s2 + s3) + c1s2s3]

(s1 − s2)(s1 − s3)
es1t

+
s2[c3 − c2(s3 + s1) + c1s3s1]

(s2 − s3)(s2 − s1)
es2t

+
s3[c3 − c2(s1 + s2) + c1s1s2]

(s3 − s1)(s3 − s2)
es3t.

(92)

The necessary condition for the extremum x(t) is

x(1)(t)
∣∣∣
t=τ

= 0. (93)

After substitution of s1, s2 = α + jω, and s3 = α− jω

into (92) and using (93), Eqn. (92) takes the form

x(1)(τ)

= −1
2
j

[−4js1c2αω + 2js1ω
3c1 + 2js1c1α

2ω

(α − jω − s1)(α + jω − s1)ω

+
2jc3ωs1

(α − jω − s1)(α + jω − s1)ω

]
es1τ

− 1
2
j

[−c3αs1 + s1c1ω
2α − jc3ωs1 − js1ω

3c1

(α − jω − s1)(α + jω − s1)ω

+
s2
1c2α + c3α

2 − js1c1α
2ω + jc2ω

3 + js2
1c2ω − c2α

3

(α − jω − s1)(α + jω − s1)ω

+
jc2α

2ω − c2ω
2α − s2

1c1α
2 − s2

1c1ω
2 + s1c1α

3

(α − jω − s1)(α + jω − s1)ω

]

× e(α+jω)τ

− 1
2
j

[
c2ω

2α − c3ω
2 + c2α

3 + c3αs1 − jc3ωs1

(α − jω − s1)(α + jω − s1)ω

− s1c1ω
2α + jc2ω

3 − js1ω
3c1 − js1c1α

2ω − s2
1c2α

(α − jω − s1)(α + jω − s1)ω

+
js2

1c2ω + s2
1c1α

2 + jc2α
2ω

(α − jω − s1)(α + jω − s1)ω

− s1c1α
3 + s2

1c1ω
2 − c3α

2

(α − jω − s1)(α + jω − s1)ω

]

× e(α−jω)τ = 0.

(94)

The derivatives of τ , determined by Eqn. (94), with
respect to s1, α and ω, yield the necessary conditions for
the extreme τ :

dτ

ds1
= 0, (95)

dτ

dα
= 0, (96)

dτ

dω
= 0. (97)

We get

e(−α+s1)τ cos(ωτ)

=
(

ταs2
1 − τs1α

2 + τs1ω
2

s1(τ2ω2α2 + (α + τω2)2)

+
0.5τ2s2

1α
2 + 0.5τ2s2

1ω
2 − τ2s1α

3 − τ2s1ω
2α

s1(τ2ω2α2 + (α + τω2)2)

+
0.5τ2α4 + τ2ω2α2 + 0.5τ2ω4 + s1α

s1(τ2ω2α2 + (α + τω2)2)

)

× (α + τω2
)
,

(98)
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e(−α+s1)τ sin(ωτ)

=
(

ταs2
1 − τs1α

2 + τs1ω
2

s1(τ2ω2α2 + (α + τω2)2)

+
0.5τ2s2

1α
2 + 0.5τ2s2

1ω
2 − τ2s1α

3 − τ2s1ω
2α

s1(τ2ω2α2 + (α + τω2)2)

+
0.5τ2α4 + τ2ω2α2 + 0.5τ2ω4 + s1α

s1(τ2ω2α2 + (α + τω2)2)

)
(ατω),

(99)

e2jωτ =
jα + jτω2 − τωα

jα + jτω2 + τωα
. (100)

From Eqn. (100), we have

cos(2ωτ) =
(α + τω2)2 − α2ω2τ2

(α + τω2)2 + α2ω2τ2
(101)

and

sin(2ωτ) =
2(α + τω2)αωτ

(α + τω2)2 + α2ω2τ2
. (102)

The relations (98) and (99) lead to the assumption
that

s1 = α. (103)

In this case, the necessary condition for the extreme τ is

τ = −
(

1
s1

+
1

α + jω
+

1
α − jω

)

= − 3α2 + ω2

α(α2 + ω2)
.

(104)

Substitution of τ from the relation (104) into the relation
(102) gives

sin(2ωτ)

= −2
αω(3α2 + ω2)(α4 − 2α2ω2 − ω4)

(α2 + ω2)(α4 + 3α2ω2 + ω4)
. (105)

One of the solutions of Eqn. (105) is

ω = ±α

√√
2 − 1. (106)

Then
sin(2ωτ) = 0. (107)

Substitution of (106) into (101) gives

cos(2ωτ) = 1. (108)

Taking into account (103) and (106) in the relation (104),
we finally obtain

τ = −1 +
√

2
α

, α < 0. (109)

Substituting s1 = α, s2,3 = α ± j
√√

2 − 1 α into (90),
we finally obtain that

α =
a3(9 − 4

√
2) − a1a2

2a2
1 + 2a2(1 − 2

√
2)

. (110)

Sufficient conditions. Calculation of the second
derivatives of τ with respect to s1, s2, s3 gives the

following results for τ = −
(

1
s1

+ 1
s2

+ 1
s3

)
:

d2τ

ds2
1

= exp
(
−s1s3 + s1s2 + s2s3

s1s2

)

× −s2s3c1 + s3c2 − c3 + s2c2

s3
1s

2
2(s1s3 − s2

3 + s1s2 + s2s3)

× (s1s3 + s1s2 + s2s3)2,

(111)

d2τ

ds1ds2
= 0, (112)

d2τ

ds1ds3
= 0, (113)

d2τ

ds2
2

= exp
(
−s1s3 + s1s2 + s2s3

s1s2

)

× −s1s3c1 + s3c2 − c3 + s1c2

s3
2s

2
1(s1s3 − s2

3 + s1s2 + s2s3)

× (s1s3 + s1s2 + s2s3)2,

(114)

d2τ

ds2ds3
= 0, (115)

d2τ

ds2
3

= exp
(
−s1s3 + s1s2 + s2s3

s1s2

)

× −s1s2c1 + s1c2 − c3 + s2c2

s2
2s

2
1s3(s1s3 − s2

3 + s1s2 + s2s3)

× (s1s3 + s1s2 + s2s3)2.

(116)

The Hessian is equal to

H =

∣∣∣∣∣∣∣∣

d2τ
ds2

1
0 0

0 d2τ
ds2

2
0

0 0 d2τ
ds2

3

∣∣∣∣∣∣∣∣
. (117)

From Eqns. (111), (114) and (116), we obtain that

H1

= exp
(
− (s1s3 + s1s2 + s2s3)(s1 + s2 + s3)

s1s2s3

)

× (s1s3 + s1s2 + s2s3)6

s5
1s

5
2s

5
3(−s2

3 + s1s3 + s2s3 + s1s2)

× (c3 + s2s3c1 − s2c2 − s3c2)
s2
1 − s1s2 − s1s3 − s2s3)

× (c3 + s1s3c1 − s1c2 − s3c2)
(−s2

2 + s2s3 + s1s3 + s1s2)
× (c3 + s1s2c1 − s1c2 − s2c2),

(118)
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or, after symmetrization,

H3
1

=

(
−a6

2

(
a2
3c

3
1 + c2

1c3a3a1 + 2c2
1c2a2a3

a5
3(−4a3

2 + a2
3 + 2a1a2a3 + a2

2a
2
1)

+
3c1c3c2a3 + c1c3c2a1a2 + c1c

2
2a3a1 + c1c

2
2a

2
2

a5
3(−4a3

2 + a2
3 + 2a1a2a3 + a2

2a
2
1)

+
−c3

2a3 + c3
2a1a2 + c1c

2
3a2

a5
3(−4a3

2 + a2
3 + 2a1a2a3 + a2

2a
2
1)

+
c3c

2
2a2 + c3c

2
2a

2
1 + 2a1c

2
3c2 + c3

3

)

a5
3(−4a3

2 + a2
3 + 2a1a2a3 + a2

2a
2
1)

)

× exp
(
−a1a2

a3

)
,

H2 = H2
1 , (119)

H3 = H3
1 . (120)

Sufficient conditions. From (118), (119) and (120), we
finally find that

H =

∣∣∣∣∣∣

H1 0 0
0 H1 0
0 0 H1

∣∣∣∣∣∣
. (121)

From (121) we deduce that, if

H1 > 0, (122)

it is a minimum τ with respect to s1, s2, s3, and if

H1 < 0, (123)

τ has a maximum, according to (36), with respect to
s1, s2, s3,

H =

∣∣∣∣∣∣∣

d2τ
ds2

1
0 0

0 d2τ
dα2 0

0 0 d2τ
dω2

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

d2τ
dα2 0 0
0 d2τ

dα2 0
0 0 d2τ

dω2

∣∣∣∣∣∣∣

=
(

d2τ

dα2

)2 d2τ

dω2
.

(124)

This indicates that for α there is a minimum of τ and for
ω there is a maximum of τ .

Existence conditions. Substituting τ from (109) and ω
from (106) into (94), we obtain the relation

x(1)(t)
∣∣∣
t=τ

= 0.0800187074 α2

− 0.07571678 α
c2

c1
+ 0.01954085

c3

c1
= 0. (125)

The second equation for the determined c2/c1 and
c3/c1, c1 �= 0 is obtained from

a2
2 + (a3 + a1a2)

c2

c1
+ a2

c3

c1
= 0. (126)

4.3. Fourth-order equation (n = 4). Consider

d4x(t)
dt4

+ a1
d3x(t)

dt3
+ a2

d2x(t)
dt2

+ a3
dx(t)

dt
+ a4x(t) = 0. (127)

The initial conditions are

x(0) = c1, x(1)(0) = c2,

x(2)(0) = c3, x(3)(0) = c4.

The characteristic equation is

s4 + a1s
3 + a2s

2 + a3s + a4 = 0. (128)

The first derivative of the solution of Eqn. (127) is

dx

dt

∣∣∣∣
t=τ

= − (s2c3 + s3c3 − c4 − s3s4c2 − s2s3c2

(s1 − s3)(s1 − s2)(s1 − s4)

+
s4c3 + s2s3s4c1 − s2s4c2)s1e

s1τ

(s1 − s3)(s1 − s2)(s1 − s4)

+
(s1c3 + s3c3 − s1s3c2 − c4 − s3s4c2

(s2 − s3)(s1 − s2)(s2 − s4)

+
s4c3 + s1s3s4c1 − s1s4c2)s2e

s2τ

(s2 − s3)(s1 − s2)(s2 − s4)

− (s1c3 + s4c3 − c4 − s1s2c2 − s1s4c2

(s3 − s4)(s2 − s3)(s1 − s3)

+
s1s2s4c1 − s2s4c2 + s2c3)s3e

s3τ

(s3 − s4)(s2 − s3)(s1 − s3)

+
(−s1s3c2 + s3c3 + s2c3 + s1c3 + s1s2s3c1

(s3 − s4)(s2 − s4)(s1 − s4)

+
s2s3c2 − s1s2c2 − c4)s4e

s4τ

(s3 − s4)(s2 − s4)(s1 − s4)
= 0.

(129)

Derivatives of τ determined by (129) with respect to
s1, s2, s3 and s4 give the following necessary conditions:

e(s1−s4)τ

= −s4(−s3s
2
2s1τ

2 + s2
2s

2
3τ

2

− s1s
2
2τ − s3s

2
2τ + s2

1s2τ + 2s2s3

− s1s2s
2
3τ

2 − s2s
2
3τ + 2s1s2 + s2

1s2s3τ
2

+ 2s1s2s3τ + 2s1s3 + s2
1s3τ − s1s

2
3τ) = 0,

(130)
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e(s2−s4)τ

= s4(s2
1s2s3τ

2 + s2
1s3τ

− s2
1s

2
3τ

2 + s2
1s2τ − s1s

2
2s3τ

2 − 2s1s2

− 2s1s2s3τ − 2s1s3 − s1s
2
2τ + s1s2s

2
3τ

2

+ s1s
2
3τ + s2s

2
3τ − 2s2s3 − s2

2s3τ) = 0,

(131)

e(s3−s4)τ

= −s4(−s2
1s2s3τ

2 − s2
1s3τ

+ s2
1s

2
2τ

2 − s2
1s2τ + 2s1s2s3τ + 2s1s2

+ s1s
2
3τ + s1s2s

2
3τ

2 + 2s1s3 − s1s
2
2s3τ

2

− s1s
2
2τ − s2

2s3τ + s2s
2
3τ + 2s2s3) = 0.

(132)

We assume that

s1 = s2 = α, s3 = α + jω, s4 = α − jω.

The optimal value of τ is

τ = −
(

1
s1

+
1
s2

+
2α

α2 + ω2

)

= −2
s1α + α2 + ω2

s1(α2 + ω2)
.

(133)

From Eqn. (132), we obtain (134) and its solution
gives

ω = ±α
4
√

3. (135)

In the special case, when

s1 = s3 = α + jω, s2 = s4 = α − jω,

we obtain
τ = −4

α

α2 + ω2
, (136)

and from the equation

sin(2ωτ) = −8
(−ω2 + 3α2)

(9α4 + 42α2ω2 + ω4)

× (−ω4 − 14α2ω2 + 3α4)αω

(α2 + ω2)2

(137)

we have that
ω = ±α

√
3. (138)

4.4. Fifth-order equation (n = 5). Consider

d5x(t)
dt5

+ a1
d4x(t)

dt4
+ a2

d3x(t)
dt3

+ a3
d2x(t)

dt2
+ a4

dx(t)
dt

+ a5x(t) = 0. (139)

We assume one real root and a double pair of the complex
roots:

{
s1 = α, s2 = s4 = α + jω,
s3 = s5 = α − jω.

(140)

In the same way, we obtain (141), from which we have

ω = ±α . (142)

Last example of the fifth-order equation. We assume
that

{
s1 = s2 = s3 = α, s4 = α + jω,
s5 = α − jω.

(143)

In this case, we obtain (144) and its solution is

ω = 0.7606336797 α. (145)

5. Basic results

Theorem 7. If the characteristic equation (2) has
complex-conjugate roots, then the optimal time τ can be
computed numerically from the system of equations (106),
(135), (138), (142), (145).

Theorem 8. The optimal times τi > 0, i =
1, 2, . . . , (n − 2), n ≥ 3 are determined by Dn(τ) = 0
(31), if they exist, and the equation dx(t)

dt |τ = 0. Here (4)
gives (n−1) linear algebraic equations for the initial con-
ditions c2/c1, c3/c1, . . . , cn−1/c1, c1 �= 0. This set of
equations represents the solution of the problem.

6. Numerical examples

6.1. Third-order equation. Consider

d3x(t)
dt3

+ a1
d2x(t)

dt2
+ a2

dx(t)
dt

+ a3x(t) = 0. (146)

We assume that
⎧
⎨

⎩

s1 = α = −1,
s2 = α + jω,
s3 = α − jω,

(147)

and, according to the relation (106), we have

ω = ±α

√√
2 − 1 = ±0.6435942526. (148)

From (109), we get

τ = −1 +
√

2
α

= 2.414213563, (149)

dx(t)
dt

∣∣∣∣
t=τ

= −0.07330051053c3

− 0.2840244129c2

− 0.3001615506c1 = 0.

(150)

From the relation (126) we get

D3 = a2
2c1 + (a3 + a1a2)c2 + a2c3 = 0
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sin(2ωτ) = −4
(−ω4 + 3α4)αω(2α2 + ω2)

(α2 + ω2)2
(−5ω6 − 17α2ω4 − 13α4ω2 + 3α6)

(9α10 + 48ω2α8 + 106ω4α6 + 92ω6α4 + 33α2ω8 + 4ω10)
(134)

sin(2ωτ) = −2
(α2 − ω2)(ω2 + 3α2)(ω2 + 5α2)αω

(α2 + ω2)2
(−2ω6 − 13α2ω4 − 24α4ω2 + 3α6)

(9α10 + 63α8ω2 + 153α6ω4 + 82α4ω6 + 16α2ω8 + ω10)
.

(141)

sin(2ωτ)

=
(−2(9ω10 + 12α2ω8−72α4ω6−172α6ω4−93α8ω2 + 12α10)(−9ω6−22α2ω4 − 5α4ω2 + 12α6)(5α2 + 3ω2)αω)

((9ω6 + 18α2ω4 + 9α4ω2 + 4α6)(9ω10 + 69α2ω8 + 208α4ω6 + 297α6ω4 + 189α8ω2 + 36α10)(α2 + ω2)2)
(144)

and

3.414213562c3 + 11.65685425c2

+ 11.65685425c1 = 0, (151)

where ⎧
⎨

⎩

a1 = 3,
a2 = 3.414213562,
a3 = 1.414213562.

(152)

From (150) and (151), assuming c1 = 1, we have

{
c2 = −1.477984236,
c3 = 1.631940262. (153)

We finally obtain

x(t) = 0.2177267e−t

+ 0.7822733e−t cos(0.6435942526t)

−0.74267947e−t sin(0.6435942526t).

(154)

In Fig. 1 we present the optimal transient of x(t).

6.2. Fourth-order equation. Consider

d4x(t)
dt4

+ a1
d3x(t)

dt3
+ a2

d2x(t)
dt2

+ a3
dx(t)

dt
+ a4x(t) = 0. (155)

We shall analyse two cases:

• one double real root and one pair of
complex-conjugate roots,

• one double pair of complex roots.

Fig. 1. Optimal transient of x(t) (one real root and one pair of
complex roots).

6.2.1. Case 1. Assume that
⎧
⎨

⎩

s1 = s2 = α = −1,
s3 = α + jω,
s4 = α − jω,

(156)

and, according to the relation (135), we have

ω = ±α
4
√

3 = ±1.316074013. (157)

From (133), we get

τ = 2.732050808, (158)

dx

dt

∣∣∣∣
t=τ

= −0.04383663c4 − 0.224546377c3

− 0.430314558c2 − 0.314690486c1 = 0.

(159)
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Let c2 = 0. Then

dx

dτ
= −0.0438366299c4 − 0.224546377c3

− 0.31469047c1 = 0.
(160)

From the relation (32), we obtain

D4 = c1a
3
3 + (a2

3a2 + a1a3a4 + 2a2
4)c2

+ (2a3a4 + a1a
3
3)c3 + a2

3c4 = 0.
(161)

For c2 = 0, and α = −1, ω = −1.316074013, from (161)
we have

D4 = 415.8460971c1 + 263.63586c3

+ 55.7128129c4 = 0.
(162)

From (160) and (162), we finally have c3 =
0.7312184409c1, c4 = −10.92426443c1, and for c1 = 1,

x(t) = −3.463269te−t + 1.999519e−t

− 0.999519433 cos(1.316074t)e−t

+ 3.39135125 sin(1.316074013t)e−t.

(163)

In Fig. 2 we present the optimal transient of x(t).

6.2.2. Case 2. Assume that
{

s1 = s3 = α + jω,
s2 = s4 = α − jω.

(164)

Then the optimal time is

τ = −4
α

α2 + ω2
. (165)

From (137) we obtain that

ω = ±α
√

3. (166)

Fig. 2. Optimal transient of x(t) for c2 = 0 (double real root
and one pair of complex roots).

For {
α = −1,
ω = ±1.732050808 (167)

we get the coefficients
⎧
⎪⎪⎨

⎪⎪⎩

a1 = 4,
a2 = 12,
a3 = 16,
a4 = 16,

(168)

and from (165),
τ = 1. (169)

In much the same way as in to the previous case, we
assume c2 = 0 and obtain that

dx

dt

∣∣∣∣
t=τ

= −0.7165473715c1

+ 0.1505743654c3

+ 0.06003569669c4 = 0.

(170)

From (161), we get

4096.000008c1 + 1536.000002c3

+ 256.000003c4 = 0. (171)

The solution of (170) and (171) is
{

c3 = −8.00000005c1,
c4 = 32.00000002c1.

(172)

For c1 = 1, we get

x(t) = −2 cos(1.732050808t)te−t

+ cos(1.732050808t)e−t

− 1.154700539 sin(1.7320508t)te−t

+ 1.732050808 sin(1.7320508t)e−t.

(173)

In Fig. 3 we present the transient of x(t).

6.3. Fifth-order equation. Consider

d5x(t)
dt5

+ a1
d4x(t)

dt4
+ a2

d3x(t)
dt3

+ a3
d2x(t)

dt2
+ a4

dx(t)
dt

+ a5x(t) = 0. (174)

We consider the case of one real root and double pair of
complex roots,

⎧
⎨

⎩

s1 = α,
s2 = s4 = α + jω,
s3 = s5 = α − jω.

(175)

From (141), we have

ω = ±α. (176)
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For α = −1, and c2 = 0, c3 = 0, we obtain the following
results: ⎧

⎨

⎩

a1 = 5, a2 = 12,
a3 = 16, a4 = 12,
a5 = 4,

(177)

and the optimal time

τ =
a4

a5
= 3. (178)

From the equations

dx

dt

∣∣∣∣
t=τ

= −0.3541478601c1

− 0.1112703c4 − 0.1109075c5 = 0 (179)

and from

D5 = 20736c1 + 10368c4 + 1728c5 = 0, (180)

the solution is
{

c4 = −4.942537184c1,
c5 = 17.6552231c1.

(181)

The optimal transient x(t), for c1 = 1, is

x(t) = 1.885074362e−t

− 0.8850743624e−t cos(t)

+ 1.471268592e−t cos(t)t

− 0.47126859e−t sin(t)

+ 0.0574628215e−t sin(t)t.

(182)

In Fig. 4, x(t) is presented.
In the same way, for c2 = 0, c4 = 0 we obtain

{
c3 = −1.145649523c1,
c5 = 6.33039236c1,

(183)

Fig. 3. Optimal transient of x(t) for c2 = 0 (double pair of
complex roots).

and for c1 = 1 the optimal transient is

x(t) = 1.1651196176e−t

+ 0.7184742831e−t cos(t)t

− 0.1651961744e−t cos(t)

− 0.1554228492e−t sin(t)t

+ 0.2815257151e−t sin(t),

(184)

which is presented in Fig. 5.
For c4 = 0, c5 = 0 we obtain

{
c2 = −0.9458611703c1,
c3 = 0.5111482271c1,

and for c1 = 1 the transient is

x(t) = 0.5223e−t + 0.125e−t cos(t)t

+ 0.4777035489e−t cos(t)

+ 0.048564717e−t sin(t)t

− 0.07086117224e−t sin(t),

(185)

which is presented in Fig. 6.

7. Conclusion

Our basic theorems derive the solution of the problem of
determining an optimal time τ . The presented examples
of the differential equations of the order n = 2, 3, 4, 5
illustrate the solution method. We stress that for the
differential equation of the n-th order it is in general
necessary to determine n − 2 values of τi > 0, i =
1, 2, . . . , n − 1.

Remark 1. The functions es, sin(s), cos(s) are analytic
in the whole domain and have all derivatives. For that
reason it is sufficient to consider the real, negative roots s.

Fig. 4. Optimal transient of x(t) for c2 = 0, c3 = 0.
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Fig. 5. Optimal transient of x(t) for c2 = 0, c4 = 0.

Fig. 6. Optimal transient of x(t) for c4 = 0, c5 = 0.
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