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This paper examines the problem of designing a robust H∞ fuzzy controller with D-stability constraints for a class of
nonlinear dynamic systems which is described by a Takagi–Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model
approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear
matrix inequality (LMI) approach, we develop a robust H∞ fuzzy controller that guarantees (i) the L2-gain of the mapping
from the exogenous input noise to the regulated output to be less than some prescribed value, and (ii) the closed-loop poles
of each local system to be within a specified stability region. Sufficient conditions for the controller are given in terms
of LMIs. Finally, to show the effectiveness of the designed approach, an example is provided to illustrate the use of the
proposed methodology.
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1. Introduction

In the last few decades, nonlinear H∞ theories have
been extensively developed and well applied by many
researchers (see Fu et al., 1992; Isidori and Astolfi, 1992;
van der Schaft, 1992; Ball et al., 1993; 1994; Mansouri et
al., 2009; Rezac and Hurak, 2013). H∞ control problems
basically involve MIMO systems as well as disturbance
and model error problems. The nonlinear H∞ control
problem can be stated as follows: Given a dynamic system
with exogenous input noise and a measured output, find a
controller such that the L2 gain of the mapping from the
exogenous input noise to the regulated output is less than
or equal to a prescribed value.

Currently, there are two commonly practical methods
for solving solutions to nonlinear H∞ control problems.
The first one is based on the nonlinear version of the
classical bounded real lemma (see Isidori and Astolfi,
1992; van der Schaft, 1992; Ball et al., 1994). The
other is based on dissipativity theory and the theory of
differential games (see Hill and Moylan, 1980; Willems,
1972; Wonham, 1970; Basar and Olsder, 1982). Both
methods show that the solution of the nonlinear H∞
control problem is in fact related to the solvability of
Hamilton–Jacobi inequalities (HJIs). To the best of our
knowledge, there has been no easy computation technique

for solving those inequalities yet.

Recently, many problems in H∞ control theories
have been extensively investigated (see Chen et al., 2000;
Chilali and Gahinet, 1996; Chilali et al., 1999; Vesely
et al., 2011), with the desired controllers designed in terms
of the solution to linear matrix inequalities (LMIs). So far,
it has been proven that the LMI technique is one of the
best alternatives for the basic analytical method and can
be supported by efficient interior-point optimization (see
Yakubovich, 1976a, 1976b; Boyd et al., 1994; Gahinet et
al., 1995; Scherer et al., 1997). A prominent advantage
of the LMI approach is the feasibility to combine various
design multi-objectives in a numerically tractable manner.
However, most of the existing results are restricted to
linear dynamic systems.

So far, there have been numerous research advances
devoted to the design of an H∞ fuzzy controller for
a class of nonlinear systems which can be represented
by a Takagi–Sugeno (TS) fuzzy model (see Yakubovich,
1967a; Han and Feng, 1998; Han et al., 2000; Tanaka
et al., 1996; Assawinchaichote and Nguang, 2004a;
2004b; 2006; Assawinchaichote, 2012; Yeh et al.,
2012). Fuzzy system theory utilizes qualitative, linguistic
information for a complex nonlinear system to construct a
mathematical model for it. Recent studies (Zadeh, 1965;
Tanaka and Sugeno, 1992; Tanaka and Sugeno, 1995;
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Teixeira and Zak, 1999; Wang et al., 1996; Yoneyama
et al., 2000; Zhang et al., 2001; Joh et al., 1998; Ma
et al., 1998; Park et al., 2001; Bouarar et al., 2013) show
that fuzzy submodels can be used to approximate global
behaviors of a uncertain nonlinear system.

Since fuzzy sub-models in different state space
regions are represented by local linear systems, the global
model of the system is obtained by combining these linear
models through nonlinear fuzzy membership functions. It
is a fact that fuzzy modelling is a multi-model approach
in which simple submodels are combined to determine the
global system behavior while conventional modelling uses
a single model to describe the global system behavior.
Recent contributions (Chayaopas and Assawinchaichote,
2013; Assawinchaichote and Chayaopas, 2013) have
considered an H∞ fuzzy controller based on an LMI
approach and a robust H∞ fuzzy control design.
However, these works did not address satisfactorily the
system dynamic characteristics which might change on
the transient response.

Although the robustness and/or the stability of the
closed-loop system are basically the first issue needed
to be considered, the system dynamic characteristic
sometimes does not meet the desired objectives such as
the rise time, the settling time, and transient oscillations
in many applications or real physical systems due to poor
transient responses. A satisfactory transient response can
be obtained by enforcing the closed-loop pole to lie within
a suitable region. The problem of assigning all poles of
a system in a specified region is the so-called D-stable
pole placement problem. Recently, Han et al. (2000)
have studied H∞ controller design of fuzzy dynamic
systems with pole placement constraints. However, their
methods require the system to be in a state subspace for
a period of time and also require switching controllers.
Therefore, with this motivation, we examine the problem
of designing a robust H∞ fuzzy controller for a class of
fuzzy dynamic systems. First, we approximate this class
of uncertain nonlinear systems by a Takagi–Sugeno fuzzy
model. Then, based on an LMI approach, we develop
a technique for designing robust H∞ fuzzy controllers
such that the L2-gain of the mapping from the exogenous
input noise to the regulated output is less than a prescribed
value and the closed-loop system is D-stable, i.e., we
enforce eigenvalue clustering in a specified region. It is
necessary to note that the requirement of the system to be
in a state subspace for a period of time is not mandatory,
and also our proposed robust H∞ fuzzy controller is not a
switching controller.

This paper is organized as follows. In Section 2,
preliminaries and definitions are presented. In Section 3,
based on an LMI approach, we develop a technique
for designing robust H∞ fuzzy controllers such that the
L2-gain of the mapping from the exogenous input noise
to the regulated output is less than a prescribed value

and the closed-loop poles of each local system are stable
within a pre-specified region for the system described in
Section 2. The validity of this approach is demonstrated
by an example from the literature in Section 4. Finally,
conclusions are given in Section 5.

2. Preliminaries and definitions

In this paper, we first examine the following standard TS
fuzzy system with parametric uncertainties:

ẋ(t) =
r∑

i=1

μi(ν(t))
[
[Ai + ΔAi]x(t)

+ Bww(t) + [Bi + ΔBi]u(t)
]
,

z(t) =
r∑

i=1

μi(ν(t))
[
[Ci + ΔCi]x(t)

+ [Di + ΔDi]u(t)
]
,

(1)

where x(0) = 0, ν(t) = [ν1(t) · · · νϑ(t)] is the
premise variable vector that may depend on states in
many cases, μi(ν(t)) denotes the normalized time-varying
fuzzy weighting functions for each rule (i.e., μi(ν(t)) ≥ 0
and

∑r
i=1 μi(ν(t)) = 1), ϑ is the number of fuzzy sets,

x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control
input, w(t) ∈ R

p is the disturbance which belongs to
L2[0,∞), z(t) ∈ R

s is the controlled output, the matrices
Ai, Bw, Bi, Ci, and Di are of appropriate dimensions,
and r is the number of IF-THEN rules. The matrices ΔAi,
ΔBi, ΔCi, and ΔDi represent the system uncertainties
and satisfy the following assumption.

Assumption 1.

ΔAi = E1iF (x(t), t)H1i ,

ΔBi = E2iF (x(t), t)H2i ,

ΔCi = E3iF (x(t), t)H3i ,

ΔDi = E4iF (x(t), t)H4i ,

where Eji and Hji , j = 1, . . . , 4 are known
matrix functions which characterize the structure of the
uncertainties. Furthermore,

‖F (x(t), t)‖ ≤ ρ (2)

for some known positive constant ρ.

Throughout this paper, we assume that the fuzzy
model satisfies the following assumption.

Assumption 2. The pairs (Ai, Bi) are locally controllable
for every i ∈ {1, 2, . . . , r}.

Next, let us recall the following definition.
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Definition 1. Let γ be a given positive number. The
system (1) is said to have an L2-gain less than or equal to
γ if

∫ Tf

0

zT (t)z(t) dt ≤ γ2

∫ Tf

0

wT (t)w(t) dt (3)

for all Tf ≥ 0, x(0) = 0, and w(t) ∈ L2 [0, Tf ].
Note that, for the symmetric block matrices, we use

the asterisk (∗) as a placeholder for a term that is induced
by symmetry.

3. Main results

In this section, we first consider the problem of designing
a robust H∞ fuzzy controller based on an LMI approach
so that the inequality (3) holds. Then, LMI-based
sufficient conditions for each local system (1) to have all
its closed-loop poles within a prescribed LMI region are
presented. Finally, the problem of designing an H∞ fuzzy
controller with D-stability constraints is examined.

3.1. Robust H∞ fuzzy control design. A robust H∞
fuzzy state-feedback controller is readily established in
the form

u(t) =
∑r

j=1 μjKjx(t), (4)

where Kj is the controller gain such that (3) holds. The
state space form of the fuzzy system model (1) with the
controller (4) is given by

ẋ(t) =
r∑

i=1

r∑

j=1

μiμj

[
[(Ai + BiKj)

+ (ΔAi + ΔBiKj)]x(t) + Bww(t)
]
.

(5)

The following theorem provides sufficient conditions
for the existence of a robust H∞ fuzzy state-feedback
controller. These sufficient conditions can be derived by
the Lyapunov approach.

Theorem 1. Consider the system (1). Given a prescribed
H∞ performance γ > 0, if there exist a matrix P = PT

and matrices Yj , j = 1, 2, . . . , r, satisfying the following
linear matrix inequalities:

P > 0, (6)

Ξii < 0, i = 1, 2, . . . , r, (7)

Ξij + Ξji < 0, i < j ≤ r, (8)

where

Ξij =

⎛

⎜⎜⎝

Ψ1ij (∗)T (∗)T (∗)T

Ψ2ij −Γ + ẼT
i Ẽi (∗)T (∗)T

Ψ3ij 0 −I (∗)T

Ψ4ij 0 0 −I

⎞

⎟⎟⎠ , (9)

Ψ1ij = AiP + PAT
i + BiYj + Y T

j BT
i ,

Ψ2ij = B̃T
wi

+ ẼT
i CiP + ẼT

i DiYj ,

Ψ3ij = C̃iP + D̃iYj ,

Ψ4ij = CiP + DiYj ,

with
B̃wi =

[
E1i E2i Bw 0 0

]
,

C̃i =
[

ρHT
1i

ρHT
3i

0 0
]T

,

D̃i =
[

0 0 ρHT
2i

ρHT
4i

]T
,

Ẽi =
[

0 0 0 E3i E4i

]
,

Γ = diag{I, I, γ2I, I, I},
then the inequality (3) holds. Furthermore, a suitable
choice of the fuzzy controller is

u(t) =
r∑

j=1

μjKjx(t), (10)

where
Kj = YjP

−1. (11)

Proof. According to Assumption 1, the closed-loop fuzzy
system (5) can be expressed as follows:

ẋ(t) =
r∑

i=1

r∑

j=1

μiμj

(
[Ai + BiKj ]x(t)

+ B̃wiw̃(t)
)
,

(12)

where

B̃wi =
[

E1i E2i Bw 0 0
]
,

and the disturbance w̃(t) is

w̃(t) =

⎡

⎢⎢⎢⎢⎣

F (x(t), t)H1ix(t)
F (x(t), t)H2iKjx(t)

w(t)
F (x(t), t)H3ix(t)

F (x(t), t)H4iKjx(t)

⎤

⎥⎥⎥⎥⎦
. (13)

Consider the Lyapunov function

V (x(t)) = xT (t)Qx(t),

where Q = P−1. Differentiating V (x(t)) along the
trajectories of the closed-loop system (12) yields

V̇ (x(t)) = ẋT (t)Qx(t) + xT (t)Qẋ(t)

=
r∑

i=1

r∑

j=1

μiμj

(
xT (t)(Ai + BiKj)T Qx(t)

+ xT (t)Q(Ai + BiKj)x(t)

+ w̃T (t)B̃T
wi

Qx(t) + xT (t)QB̃wiw̃(t)
)
.

(14)
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Adding and subtracting

−zT (t)z(t) +
r∑

i=1

r∑

j=1

r∑

m=1

r∑

n=1

μiμjμmμn[w̃T (t)Γw̃(t)]

to and from (14), combined with the fact that
‖F (x(t), t)‖ ≤ ρ, we get

V̇ (x(t))

=
r∑

i=1

r∑

j=1

r∑

m=1

r∑

n=1

μiμjμmμn ×
( [

xT (t) w̃T (t)
]

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛

⎜⎜⎜⎜⎜⎜⎝

(Ai + BiKj)T Q
+Q(Ai + BiKj)
+(C̃i + D̃iKj)T

×(C̃m + D̃mKn)
+(Ci + DiKj)T×
(Cm + DmKn)

⎞

⎟⎟⎟⎟⎟⎟⎠
(∗)T

(
B̃T

wi
Q+

ẼT
i (Ci + DiKj)

)
−Γ + ẼT

i Ẽi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×
[

x(t)
w̃(t)

])
− zT (t)z(t) + γ2wT (t)w(t), (15)

where

C̃i =
[

ρHT
1i

ρHT
3i

0 0
]T

,

D̃i =
[

0 0 ρHT
2i

ρHT
4i

]T
,

Ẽi =
[

0 0 0 E3i E4i

]
,

Γ = diag{I, I, γ2I, I, I}.
Note that

zT (t)z(t)

=
r∑

i=1

r∑

j=1

μiμj

(
xT (t) [Ci + E3iF (x(t), t)H3i

+DiKj + E4iF (x(t), t)H4iKj ]
T

× [Ci + E3iF (x(t), t)H3i + DiKj

+E4iF (x(t), t)H4iKj] x(t)
)

=
r∑

i=1

r∑

j=1

μiμj

[
x(t)
w̃(t)

]T

×
⎡

⎣

(
(Ci + DiKj)T×

(Ci + DiKj)

)
(∗)T

ẼT
i (Ci + DiKj) ẼT

i Ẽi

⎤

⎦
[

x(t)
w̃(t)

]

and

w̃T (t)Γw̃(t)

=

⎡

⎢⎢⎢⎢⎣

F (x(t), t)H1ix(t)
F (x(t), t)H2iKjx(t)

w(t)
F (x(t), t)H3ix(t)

F (x(t), t)H4iKjx(t)

⎤

⎥⎥⎥⎥⎦

T

Γ

⎡

⎢⎢⎢⎢⎣

F (x(t), t)H1ix(t)
F (x(t), t)H2iKjx(t)

w(t)
F (x(t), t)H3ix(t)

F (x(t), t)H4iKjx(t)

⎤

⎥⎥⎥⎥⎦

≤ γ2wT (t)w(t) + ρ2xT {HT
1i

H1i + KT
j HT

2i
H2iKj

+ HT
3i

H3i + KT
j HT

4i
H4iKj}x(t).

Note that (9) can be rewritten as follows:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(AiP + BiYj)T

+(AiP + BiYj)
(∗)T (∗)T (∗)T

⎛

⎝
B̃T

wi

+ẼT
i CiP

+ẼT
i DiYj

⎞

⎠ −Γ + ẼT
i Ẽi (∗)T (∗)T

C̃iP + D̃iYj 0 −I (∗)T

CiP + DiYj 0 0 −I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0.

Thus, pre- and post-multiplying (7) and (8) by
⎛

⎜⎜⎝

Q 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞

⎟⎟⎠

yields
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Ai + BiKj)T Q
+Q(Ai + BiKj)

(∗)T

⎛

⎝
B̃T

wi
Q

+ẼT
i Ci

+ẼT
i DiKj

⎞

⎠ −Γ + ẼT
i Ẽi

C̃i + D̃iKj 0
Ci + DiKj 0

(∗)T (∗)T

(∗)T (∗)T

−I (∗)T

0 −I

⎞

⎟⎟⎠ < 0,

(16)

i, j = 1, 2, . . . , r. Applying the Schur complement to (16)
and rearranging them, we have

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛

⎜⎜⎜⎜⎜⎜⎝

(Ai + BiKj)T Q
+Q(Ai + BiKj)
+(C̃i + D̃iKj)T×
(C̃m + D̃mKn)

+(Ci + DiKj)T×
(Cm + DmKn)

⎞

⎟⎟⎟⎟⎟⎟⎠
(∗)T

(
B̃T

wi
Q+

ẼT
i (Ci + DiKj)

)
−Γ + ẼT

i Ẽi

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

i, j, m, n = 1, 2, . . . , r. Using (17) and the fact that

r∑

i=1

r∑

j=1

r∑

m=1

r∑

n=1

μiμjμmμnMT
ijNmn

≤ 1
2

r∑

i=1

r∑

j=1

μiμj [MT
ijMij + NijN

T
ij ], (17)

μi ≥ 0 and
∑r

i=1 μi = 1, (15) becomes

V̇ (x(t)) ≤ −zT (t)z(t) + γ2wT (t)w(t). (18)
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Integrating both the sides of (18) yields
∫ Tf

0

V̇ (x(t)) dt

≤
∫ Tf

0

[
− zT (t)z(t) + γ2wT (t)w(t)

]
dt,

which is

V (x(Tf )) − V (x(0))

≤
∫ Tf

0

[
− zT (t)z(t) + γ2wT (t)w(t)

]
dt.

Using the fact that x(0) = 0 and V (x(Tf )) ≥ 0 for all
Tf �= 0, we get

∫ Tf

0

zT (t)z(t) dt ≤ γ2

∫ Tf

0

wT (t)w(t) dt

Hence, the inequality (3) holds. �

3.2. D-stability constraints. To begin this subsection,
we recall the following definition.

Definition 2. (Chilali and Gahinet, 1996) A subset D of
the complex plane is called an LMI region if there exist
a symmetric matrix L = [Lkl] = [Llk] ∈ R

g×g and a
matrix M = [Mkl] ∈ R

g×g such that

D = {z = x + jy ∈ C : fD(z) < 0}, (19)

with the characteristic function

fD(z) = L + Mz + MT z̄

= [Lkl + Mklz + Mlkz̄]1≤k,l≤g. (20)

The following lemma will be needed to derive the
main results in this subsection.

Lemma 1. (Chilali and Gahinet, 1996) Given a dynamic
system ẋ(t) = Ax(t), for an LMI region, a matrix A ∈
R

n×n is D-stable in an LMI region, i.e., Λ(I, A) ⊂ D if
there exists a matrix P ∈ R

n×n such that

L ⊗ P + M ⊗ (AP ) + MT ⊗ (AP )T

=
[
LklP + MklAP + MlkPAT

]
1≤k,l≤n

< 0,

P > 0,

where Λ(I, A) is the set of generalized eigenvalues of the
(I, A) pair, i.e., det(sI − A) = 0, and ⊗ denotes the
Kronecker product of the matrices.

Using Lemma 1, we have the following result.

Theorem 2. Given any LMI region, if there exist a matrix
PD and matrices Yj for j = 1, 2, . . . , r, satisfying the
following linear matrix constraints:

Φii < 0, i = 1, 2, . . . , r, (21)

Φij + Φji < 0, i < j ≤ r, (22)

where

Φij = L ⊗ PD + M ⊗ AiPD + M ⊗ BiYj

+ MT ⊗ PDAT
i + MT ⊗ Yj

T Bi
T , (23)

then the closed-loop poles of each local system of (5) are
D-stable in the given LMI region. Furthermore, a suitable
choice of the fuzzy controller is

u(t) =
r∑

j=1

μjKjx(t), (24)

where Kj = YjP
−1
D .

Proof. Using Assumptions 1 and 2, the closed-loop fuzzy
system (5) can be expressed as follows:

ẋ(t) =
r∑

i=1

r∑

j=1

μiμj

(
[Ai + BiKj ]x(t)

+ B̃ww̃(t)
) (25)

where

B̃wi =
[

E1i E2i Bw 0 0
]
,

and the disturbance is

w̃(t) =

⎡

⎢⎢⎢⎢⎣

F (x(t), t)H1ix(t)
F (x(t), t)H2iKjx(t)

w(t)
F (x(t), t)H3ix(t)

F (x(t), t)H4iKjx(t)

⎤

⎥⎥⎥⎥⎦
. (26)

According to Lemma 1, the system (25) is D-stable
if there exists a QD such that

FD
Δ= Mkl

⎡

⎣
r∑

i=1

r∑

j=1

μiμj(Ai + BiKj)

⎤

⎦QD

+ MlkQD

⎡

⎣
r∑

i=1

r∑

j=1

μiμj(Ai + BiKj)T

⎤

⎦

+ LklQD < 0. (27)

Now, we have to show that there exists a PD such that
FD < 0. Letting QD = P−1

D and substituting it into (27),
we get

FD = LklP
−1
D

+ Mkl

⎡

⎣
r∑

i=1

r∑

j=1

μiμj(Ai + BiKj)

⎤

⎦P−1
D

+ MlkP−1
D

⎡

⎣
r∑

i=1

r∑

j=1

μiμj(Ai + BiKj)T

⎤

⎦ . (28)



790 W. Assawinchaichote

Pre-and post-multiplying both the sides of (28) by
PD , we have

PDFDPD

= LklPD

+ Mkl

⎡

⎣
r∑

i=1

r∑

j=1

μiμjPD(Ai + BiKj)

⎤

⎦

+ Mlk

⎡

⎣
r∑

i=1

r∑

j=1

μiμj(Ai + BiKj)T PD

⎤

⎦ .

Using (21),(22) and the fact that μi ≥ 0 and
∑r

i=1 μi = 1,
we deduce that there exists FD < 0. Hence, we show
that the closed-loop poles of each local system of (5) are
D-stable. �

3.3. H∞ fuzzy controller with D-stability con-
straints. In this section, we consider a multi-objective
robust H∞ fuzzy controller such that the closed-loop
poles of each local system of (5) are D-stable in an LMI
region and the inequality (3) is satisfied. In order to
obtain solutions, we seek a common P , i.e., by enforcing
P = PD . The last result in this paper is given by the
following theorem.

Theorem 3. Consider the system (1). Given a prescribed
H∞ performance γ > 0, if there exist a matrix P = PT ,
matrices Yj , j = 1, 2, . . . , r, a symmetric matrix L and
M satisfying the following linear matrix inequalities:

P > 0,

Φii < 0, i = 1, 2, . . . , r,

Φij + Φji < 0, i < j ≤ r,

Ξii < 0, i = 1, 2, . . . , r,

Ξij + Ξji < 0, i < j ≤ r,

where

Φij = L ⊗ P + M ⊗ AiP + M ⊗ BiYj

+ MT ⊗ PAT
i + MT ⊗ Yj

T Bi
T ,

Ξij =

⎛

⎜⎜⎝

Ψ1ij (∗)T (∗)T (∗)T

Ψ2ij −Γ + ẼT
i Ẽi (∗)T (∗)T

Ψ3ij 0 −I (∗)T

Ψ4ij 0 0 −I

⎞

⎟⎟⎠ ,

Ψ1ij = AiP + PAT
i + BiYj + Y T

j BT
i ,

Ψ2ij = B̃T
wi

+ ẼT
i CiP + ẼT

i DiYj ,

Ψ3ij = C̃iP + D̃iYj ,

Ψ4ij = CiP + DiYj ,

with
B̃wi =

[
E1i E2i Bw 0 0

]
,

C̃i =
[

ρHT
1i

ρHT
3i

0 0
]T

,

D̃i =
[

0 0 ρHT
2i

ρHT
4i

]T
,

Ẽi =
[

0 0 0 E3i E4i

]
,

Γ = diag{I, I, γ2I, I, I},
the inequality (3) holds and the closed-loop poles of each
local system of (5) are D-stable in the given LMI region.
Furthermore, a suitable choice of the fuzzy controller is

u(t) =
r∑

j=1

μjKjx(t),

where

Kj = YjP
−1.

Proof. The desired result can be obtained by using
Theorems 1 and 2, together with enforcing P = PD. �

4. Illustrative example

Consider a tunnel diode circuit shown in Fig. 1, where the
tunnel diode is characterized by (Assawinchaichote and
Nguang, 2006)

iD(t) = −0.2vD(t) − 0.01v3
D(t).

Let x1(t) = vC(t) be the capacitor voltage and x2(t) =

Fig. 1. Tunnel diode circuit (Assawinchaichote and Nguang,
2006).

iL(t) be the inductor current. Then, the circuit shown in
Figure 1 can be modelled by the following state equations:

Cẋ1(t) = 0.2x1(t) + 0.01x3
1(t) + x2(t)

+ 0.01w1(t),
Lẋ2(t) = −x1(t) − Rx2(t) + u(t)

+ 0.1w2(t),

z(t) =
[

x1(t)
x2(t)

]
,

(29)
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where u(t) is the control input, w1(t) and w2(t) are the
process disturbances which may represent unmodelled
dynamics, z(t) is the controlled output, x(t) =
[xT

1 (t) xT
2 (t)]T and w(t) = [wT

1 (t) wT
2 (t)]T . Note that

the variables x1(t) and x2(t) are treated as the deviation
variables (variables deviate from its desired trajectories).
The parameters in the circuit are given by C = 100 mF,
L = 1000 mH and R = 1 ± 0.3% Ω. With these, (29)
can be rewritten as

ẋ1(t) = 2x1(t) + (0.1x2
1(t)) · x1(t) + 10x2(t)

+ 0.1w1(t),
ẋ2(t) = −x1(t) − (1 ± ΔR)x2(t) + u(t)

+ 0.1w2(t),

z(t) =
[

x1(t)
x2(t)

]
,

(30)

For simplicity, we will use as few rules as possible.
Assuming that |x1(t)| ≤ 3, the nonlinear network system
(30) can be approximated by the following TS fuzzy
model:

1

0

1

2 

M  (x  )

M  (x  )

x 

1

1

1 −3  3

Fig. 2. Membership functions for the two fuzzy sets considered
(Assawinchaichote and Nguang, 2006).

Plant Rule 1: IF x1(t) is M1(x1(t)) THEN

ẋ(t) = [A1 + ΔA1]x(t) + Bww(t) + B1u(t),
z(t) = C1x(t).

Plant Rule 2: IF x1(t) is M2(x1(t)) THEN

ẋ(t) = [A2 + ΔA2]x(t) + Bww(t) + B2u(t),
z(t) = C2x(t),

where x(0) = 0, x(t) = [xT
1 (t) xT

2 (t)]T , w(t) =
[wT

1 (t) wT
2 (t)]T ,

A1 =
[

2 10
−1 −1

]
, A2 =

[
2.9 10
−1 −1

]
,

Bw =
[

0.1 0
0 0.1

]
, B1 = B2 =

[
0
1

]
,

C1 = C2 =
[

1 0
0 1

]
,

ΔA1 = E11F (x(t), t)H11 ,

ΔA2 = E12F (x(t), t)H12 .

Now, by assuming that, in (2), ‖F (x(t), t)‖ ≤ ρ = 1 and
since the values of R are uncertain but bounded within
30% of their nominal values given in (29), we have

E11 = E12 =
[

1 0
0 1

]

and

H11 = H12 =
[

0 0
0 0.3

]
.

Robust H∞ fuzzy controller design with D-stability
constraints. Let us place the closed-loop poles of each
local system within an LMI disk region with center q =
−20 and radius r = 19.

Note that the LMI disk region has the following
characteristic function:

fD(z) =
( −r q + z

q + z̄ −r

)
,

and

L =
[ −r q

q −r

]
, M =

[
0 1
0 0

]
.

Using Theorem 3 with γ = 1, we obtain

P =

[
0.5602 −0.4132
−0.4132 0.6602

]
,

Y1 =
[ −9.2411 −8.0988

]
,

Y2 =
[ −8.6991 −8.0365

]
,

K1 =
[ −47.4436 −41.9590

]
,

K2 =
[ −45.5172 −40.6590

]
.

The resulting fuzzy controller is

u(t) =
2∑

j=1

μjKjx(t), (31)

where

μ1 = M1(x1(t)) and μ2 = M2(x1(t)).

The proposed approach yields a robust H∞ fuzzy
controller which guarantees that (i) the inequality (3)
holds and (ii) the closed-loop poles of each local system
are within the given LMI stability region. The responses
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of the state variables x1(t) and x2(t) are shown in Fig. 3
while the disturbance input signal, w(t), which was used
during simulation is given in Fig. 4. It is necessary
to note that the disturbance cannot always be modelled
as white noise, while measurement noise can be quite
well described by a random process. The ratio of the
regulated output energy to the disturbance input noise
energy obtained by using the H∞ fuzzy controller (31)
is depicted in Fig. 5. After 2 seconds, the ratio of the
regulated output energy to the disturbance input noise
energy tends to a constant value, which is about 0.145.
Accordingly, γ =

√
0.145 = 0.381, which is less than the

prescribed values 1.
Finally, Table 1 shows a comparison of the location

of closed-loop poles of each local system of the proposed
method and the previous works. It is shown that
the closed-loop poles of the proposed method are only
located within the pre-specified region, but this is not
valid for the other approaches. However, note that the
proposed algorithm turns out to be efficient to apply for
low-order problems; the computational time might not be
suitable for high-order problems since the convergence
time depends on the ‘size’ of the feasible solution set.
In addition, due to the increasing size of LMI results
produced using the proposed algorithm, the feasibility
issue might jeopardize the existence of a solution.
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Fig. 3. State variables, x1(t) and x2(t).

Table 1. Closed-loop poles of each local system.
Method Plant Rule 1 Plant Rule 2

Proposed theorem −15.9088 −13.7934
−25.0502 −24.9656

Chayaopas et al. −0.1201 −0.8964
(2013) −13.6601 −18.1151

Assawinchaichote et al. −20.9088 −18.7934
(2013) −39.1702 −34.3356

**Disk region with center q = −20 and radius r = 19**
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Fig. 4. Disturbance input noise, w(t), used during simulation.
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Fig. 5. Ratio of the regulated output energy to the disturbance

noise energy,
(∫ Tf

0
zT (t)z(t) dt/

∫ Tf

0
wT (t)w(t) dt

)
.

5. Conclusion

This paper has presented a robust H∞ fuzzy controller
design procedure for a class of fuzzy dynamic systems
with D-stability constraints described by a TS fuzzy
model. Based on an LMI approach, we developed a
technique for designing a robust H∞ fuzzy controller
which guarantees the L2-gain of the mapping from the
exogenous input noise to the regulated output to be
less than some prescribed value and the poles of each
local system to be within a pre-specified region such
that a satisfactory transient response can be obtained by
enforcing the closed-loop pole to lie within a suitable
region. Finally, a numerical example was given to show
the effectiveness of the synthesis procedure developed in
this paper. However, since in the designed approach the
convergence time depends on the ‘size’ of the feasible
solution set, the proposed method might not be suitable
for large-order control problems. Therefore, the designing
of a high performance multi-objectives controller can be



Further results on robust fuzzy dynamic systems with LMI D-stability constraints 793

considered in our possible future research work.

Acknowledgment

This work was supported by the Higher Education
Research Promotion and National Research University
Project of Thailand, Office of the Higher Education
Commission. The author also would like to acknowledge
the Department of Electronic and Telecommunication
Engineering, Faculty of Engineering, King Mongkut’s
University of Technology Thonburi, for their support of
this research work.

The author is also grateful to the anonymous
referees for careful examination and helpful comments
that improved this paper.

References
Assawinchaichote, W. (2012). A non-fragile H∞ output

feedback controller for uncertain fuzzy dynamical systems
with multiple time-scales, International Journal Comput-
ers, Communications & Control 7(1): 8–16.

Assawinchaichote, W. and Chayaopas, N. (2013). Robust H∞
fuzzy speed control design for brushless DC motor, Inter-
national Conference on Computer, Electrical, and Systems
Sciences, and Engineering, Tokyo, Japan, pp. 1592–1598.

Assawinchaichote, W. and Nguang, S.K. (2004a). H∞ filtering
for fuzzy singularly perturbed systems with pole placement
constraints: An LMI approach, IEEE Transactions on Sig-
nal Processing 52(6): 1659–1667.

Assawinchaichote, W. and Nguang, S.K. (2004b). H∞ fuzzy
control design for nonlinear singularly perturbed systems
with pole placement constraints: An LMI approach, IEEE
Transactions on Systems, Man, and Cybernetics: Part B
34(1): 579–588.

Assawinchaichote, W. and Nguang, S.K. (2006). Fuzzy
H∞ output feedback control design for singularly
perturbed systems with pole placement constraints:
An LMI approach, IEEE Transactions Fuzzy Systems
14(3): 361–371.

Ball, J.A., Helton, W.J. and Walker, M.L. (1993). H∞ control
for nonlinear systems with output feedback, IEEE Trans-
actions on Automatic Control 38(4): 546–559.

Ball, J.A., Helton, W.J. and Walker, M.L. (1994). H∞
control of systems under norm bounded uncertainties in all
systems matrices, IEEE Transactions on Automatic Con-
trol 39(6): 1320–1322.

Basar, T. and Olsder, G.J. (1982). Dynamic Noncooperative
Game Theory, Academic Press, New York, NY.

Bouarar, T., Guelton, K. and Manamanni, N. (2013).
Robust non-quadratic static output feedback controller
design for Takagi–Sugeno systems using descriptor
redundancy, Engineering Applications of Artificial Intelli-
gence 26(42): 739–756.

Boyd, S., Ghaoui, L.E., Feron, E. and Balakrishnan, V. (1994).
Linear Matrix Inequalities in Systems and Control Theory,
SIAM Books, Philadelphia, PA.

Chayaopas, N. and Assawinchaichote, W. (2013). Speed control
of brushless DC mortor with H∞ fuzzy controller based
on LMI approach, International Conference Modelling, In-
dentification and Control, Phuket, Thailand, pp. 21–26.

Chen, B.-S., Tseng, C.-S. and Uang, H.-J. (2000). Mixed
H2/H∞ fuzzy output feedback control design for
nonlinear dynamic systems: An LMI approach, IEEE
Transactions on Fuzzy Systems 8(3): 249–265.

Chilali, M. and Gahinet, P. (1996). H∞ design with pole
placement constraints: An LMI approach, IEEE Transac-
tions on Automatic Control 41(3): 358–367.

Chilali, M., Gahinet, P. and Apkarian, P. (1999). Robust pole
placement in LMI regions, IEEE Transactions on Auto-
matic Control 44(12): 2257–2270.

Fu, M., de Souza, C.E. and Xie, L. (1992). H∞ estimation
for uncertain systems, International Journal of Robust and
Nonlinear Control 2(1): 87–105.

Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M.
(1995). LMI Control Toolbox—For Use with MATLAB, The
MathWorks, Inc., Natick, MA.

Han, Z.X. and Feng, G. (1998). State-feedback H∞ controllers
design for fuzzy dynamic system using LMI technique,
IEEE World Congress on Computational Intelligence, An-
chorage, AL, USA, pp. 538–544.

Han, Z.X., Feng, G., Walcott, B.L. and Zhang, Y.M. (2000).
H∞ controller design of fuzzy dynamic systems with
pole placement constraints, American Control Conference,
Chicago, IL, USA, pp. 1939–1943.

Hill, D.J. and Moylan, P.J. (1980). Dissipative dynamical
systems: Basic input-output and state properties, Journal
of the Franklin Institute 309(5): 327–357.

Isidori, A. and Astolfi, A. (1992). Disturbance attenuation
and H∞-control via measurement feedback in nonlinear
systems, IEEE Transactions on Automatic Control
37(9): 1283–1293.

Joh, J., Chen, Y.H. and Langari, R. (1998). On the stability issues
of linear Takagi–Sugeno fuzzy models, IEEE Transactions
on Fuzzy Systems 6(3): 402–410.

Ma, X.J., Qi Sun, Z. and He, Y.Y. (1998). Analysis and design
of fuzzy controller and fuzzy observer, IEEE Transactions
on Fuzzy Systems 6(1): 41–51.

Mansouri, B., Manamanni, N., Guelton, K., Kruszewski, A.
and Guerra, T. (2009). Output feedback LMI tracking
control conditions with H∞ criterion for uncertain and
disturbed T–S models, Journal of the Franklin Institute
179(4): 446–457.

Park, J., Kim, J. and Park, D. (2001). LMI-based design of
stabilizing fuzzy controller for nonlinear system described
by Takagi–Sugeno fuzzy model, Fuzzy Sets and Systems
122(1): 73–82.

Rezac, M. and Hurak, Z. (2013). Structured MIMO design for
dual-stage inertial stabilization: Case study for HIFOO and
Hinfstruct solvers, Physics Procedia 23(8): 1084–1093.

Scherer, C., Gahinet, P. and Chilali, M. (1997). Multiobjective
output-feedback control via LMI optimization, IEEE
Transactions on Automatic Control 42(7): 896–911.



794 W. Assawinchaichote

Tanaka, K., Ikeda, T. and Wang, H.O. (1996). Robust
stabilization of a class of uncertain nonlinear systems
via fuzzy control: Quadratic stabilizability, H∞ control
theory, and linear matrix inequality, IEEE Transactions on
Fuzzy Systems 4(1): 1–13.

Tanaka, K. and Sugeno, M. (1992). Stability analysis and
design of fuzzy control systems, Fuzzy Sets and Systems
45(2): 135–156.

Tanaka, K. and Sugeno, M. (1995). Stability and stabiliability of
fuzzy neural linear control systems, IEEE Transactions on
Fuzzy Systems 3(4): 438–447.

Teixeira, M. and Zak, S.H. (1999). Stabilizing controller design
for uncertain nonlinear systems using fuzzy models, IEEE
Transactions on Fuzzy Systems 7(2): 133–142.

van der Schaft, A.J. (1992). L2-gain analysis of nonlinear
systems and nonlinear state feedback H∞ control, IEEE
Transactions on Automatic Control 37(6): 770–784.

Vesely, V., Rosinova, D. and Kucera, V. (2011). Robust
static output feedback controller LMI based design
via elimination, Journal of the Franklin Institute
348(9): 2468–2479.

Wang, H.O., Tanaka, K. and Griffin, M.F. (1996). An approach
to fuzzy control of nonlinear systems: Stability and design
issues, IEEE Transactions on Fuzzy Systems 4(1): 14–23.

Willems, J.C. (1972). Dissipative dynamical systems, Part I:
General theory, Archive for Rational Mechanics and Anal-
ysis 45(5): 321–351.

Wonham, W.M. (1970). Random differential equations in
control theory, Probabilistic Methods in Applied Mathe-
matics 2(3): 131–212.

Yakubovich, V.A. (1967a). The method of matrix inequalities in
the stability theory of nonlinear control system I, Automa-
tion and Remote Control 25(4): 905–917.

Yakubovich, V.A. (1967b). The method of matrix inequalities in
the stability theory of nonlinear control system II, Automa-
tion and Remote Control 26(4): 577–592.

Yeh, K., Chen, C., Chen, C., Lo, D. and Chung, P. (2012). A
fuzzy Lyapunov LMI criterion to a chaotic system, Physics
Procedia 25(1): 262–269.

Yoneyama, J., Nishikawa, M., Katayama, H. and Ichikawa,
A. (2000). Output stabilization of Takagi–Sugeno fuzzy
system, Fuzzy Sets and Systems 111(2): 253–266.

Zadeh, L.A. (1965). Fuzzy set, Information and Control
8(3): 338–353.

Zhang, J.M., Li, R.H. and Zhang, P.A. (2001). Stability analysis
and systematic design of fuzzy control system, Fuzzy Sets
and Systems 120(1): 65–72.

Wudhichai Assawinchaichote received the
B.Eng. (Hons.) degree in electronic engineer-
ing from Assumption University, Bangkok, Thai-
land, in 1994, the M.Sc. degree in electrical en-
gineering from the Pennsylvania State University
(Main Campus), USA, in 1997, and the Ph.D. de-
gree from the Department of Electrical and Com-
puter Engineering of the University of Auckland,
New Zealand (2001–2004). He is currently work-
ing as a lecturer in the Department of Electronic

and Telecommunication Engineering at King Mongkut’s University of
Technology Thonburi, Bangkok. His research interests include fuzzy
control, robust control and filtering, Markovian jump systems and singu-
larly perturbed systems.

Received: 18 March 2014
Revised: 11 June 2014
Re-revised: 28 July 2014


	Introduction
	Preliminaries and definitions
	Main results
	Robust H∞ fuzzy control design
	D-stability constraints
	H∞ fuzzy controller with D-stability constraints


	Illustrative example
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


