
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 3, 439–454
DOI: 10.1515/amcs-2015-0033

A SITUATION–BASED MULTI–AGENT ARCHITECTURE FOR HANDLING
MISUNDERSTANDINGS IN INTERACTIONS

THAO PHUONG PHAM a, MOURAD RABAH a,∗, PASCAL ESTRAILLIER a

aL3i Laboratory
University of La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

e-mail: {phuong-thao.pham,mourad.rabah,pascal.estrailler}@univ-lr.fr

During interactions, system actors may face up misunderstandings when their local states contain inconsistent data about the
same fact. Misunderstandings in interactions are likely to reduce interactivity performances (deviation or deadlock) or even
affect overall system behavior. In this paper, we characterize misunderstandings in interactions between system actors (that
may be human users or system agents) in interactive adaptive systems. To deal with such misunderstandings and ensure
state consistency, we present an agent-based architecture and a scenario structuring approach. The system includes several
agents devoted to scenario unfolding, plot adaptation and consistency management. Scenario structuring is based on the
notion of a situation that is an elementary building block dividing the interactions between systems’ actors into contextual
scenes. This pattern supports not only scenario execution but consistency management as well. In order to organize and
control interactions, the situation contextualizes interactions and activity of the system’s actors. It also includes prevention
and tolerance agent-based mechanisms to deal with the misunderstandings and their causes. We validate our consistency
management mechanisms using Uppaal simulation and provide some experimental results to show the effectiveness of our
approach on an online distance learning case study.

Keywords: interactive adaptive systems, misunderstandings in interactions, situation structuring, consistency management.

1. Introduction

In interactive systems, such as games and simulators,
users and internal agents can modify system content
and progress in real time through input adjustments.
Interactive systems may adapt system execution not only
to the users’ actions, but also to their profile and behavior,
making these systems adaptive. In order to perform the
adaptation, the system must capture users’ behavior from
their interactions. Then, according to the system’s and
the designer’s logics, it adjusts its execution to what it
perceives of the user’s logic. Due to the unpredictability of
the user’s actions, the execution process of an interactive
system is also unpredictable.

One of the important problems in interactive systems
is a potential misunderstanding between the users and the
system and, more generally, between the system’s actors,
virtual system agents or physical human users. If the
system does not capture correctly or confuses the user’s
actions, or if the users do not understand what the system

∗Corresponding author

expects, this may lead to an erroneous interpretation
of their behavior and an erroneous adaptation of
system execution. This misunderstanding may concern
user–system interactions, but it may also appear in any
kind of interaction between any system’s actors. It may be
due to the actors’ incomplete data or the non-determinism
of actors’ behavior and cause an interaction deadlock or
an application failure.

In our recent work (Pham et al., 2011; Trillaud
et al., 2012), we have defined the misunderstanding in
interaction as follows: When two or more system’s ac-
tors have incoherent data in their local visions about
the same fact f and these data are used during their in-
teraction, this may cause an interaction deviation from
the planned scenario. An actor may be a human user
or a virtual system agent. The local vision is the
actor’s own knowledge about its external world (a virtual
environment, the system’s resources, etc.), its relations
with others actors (a subset of their states) and its own
profile (an internal state). Thus, our work focuses on the
management of the consistency between the actors and the

{phuong-thao.pham, mourad.rabah, pascal.estrailler}@univ-lr.fr

440 T.P. Pham et al.

system and between the actors’ local visions in order to
handle potential misunderstandings in interactions.

To handle misunderstandings, we propose to
structure application execution into interaction sequences
called situations, including misunderstanding prevention
and tolerance mechanisms. Each situation corresponds
to a contextual resource-centered sequence of activities
and events, and is characterized by preconditions and
postconditions. That allows the system to control the
execution and to establish the causal links between
the situations. This model confines the actor’s
interactions in a given context in order to control their
execution and manage the consistency. Consistency
handling mechanisms are inspired by techniques from the
dependability domain (Laprie et al., 2004), since there
is an analogy between misunderstandings in interactive
systems and errors handled in fault tolerant systems.
To use this situation-based scenario structuring, we
conceived an agent-based system architecture (Pham
et al., 2013) that allows the system’s scenario to be
represented by situation combination and uses agent
components to control the system’s execution, scenario
unfolding and consistency management. The architecture
includes two kinds of agents: (i) those representing
the system’s actors that either interact with the user(s)
or with each other (as no-player characters in games)
and (ii) the system’s control agents involved in system
execution. Some of these control agents are involved
in the consistency management by tracking and handling
misunderstandings in interactions between the system’s
actors.

We evaluated our consistency management approach
and mechanisms through simulation. First, we used the
Uppaal1 model to validate the consistency management
mechanisms inside situation blocks from the actors’
interactions point of view. This allows assessing the
structural properties of our overall execution model for
consistency management during interactions. Then, we
performed experimentation using the GAMA simulation
platform2 on an online distance learning case study in
order to show the effectiveness of misunderstanding in
interaction handling.

Section 2 presents the related work in the domain of
interactive systems architectures for consistency support.
In Sections 3 and 4 we formalize misunderstandings in
interaction from our point and view and present their
handling mechanisms. Sections 5 and 6 describe our
system’s architecture and situation-based structuring. The
consistency management model is validated using Uppaal
in Section 7 and its effectiveness in Section 8. Section 9
concludes the paper.

1http://www.uppaal.org/.
2https://code.google.com/p/gama-platform/.

2. Related work

In the recent research, we can find several works dealing
with the user–system dialogue where the communication
is done through a real human language (Karsenty and
Botherel, 2005; Lopez-Cozar et al., 2010; Rapaport,
2003). According to Rapaport (2003), negotiation is the
key to understanding: a cognitive agent understands by
negotiating with the interlocutor or by hypothesizing the
meaning of an unknown word from the context. This
agent can negotiate with itself on something external
by comparing its perception and its internal knowledge
in order to correct its own misunderstandings. Other
works propose to use confidence scores to measure
the reliability of each word in a recognized sentence
(Jiang, 2005). Besides, Lopez-Cozar et al. (2010)
proposed to implement a frame correction module,
independent of the speech recognizer. This module
corrects misunderstandings in a sentence, caused by errors
in speech recognition, by replacing the incorrect frame
with an adequate one. Karsenty and Botherel (2005)
applied adaptable and adaptive transparency strategies
in TRAVELS to help the users to understand and react
appropriately to system rejections and misunderstandings.
The ability of making the system’s interpretations
explicit and informing the users on how to correct
misunderstandings are two ways to help the users handle
them. This strategy is very effective in misunderstanding
detection and raises the rate of appropriate user responses
after system rejections. All of these works deal with the
problem in the speech dialogue where misunderstandings
are more frequent. But misunderstanding can be found in
other forms of interactions like actions, gestures, etc.

Our purpose is to define how we can treat
misunderstandings between the actors themselves besides
user–system misunderstandings. It is not easy to
recognize such a class of misunderstandings. In
the dependability domain (Laprie et al., 2004), we
find the inconsistency problem between systems and
operators. The automation surprise is an inconsistency
error occurring when the system behaves differently from
its operators’ expectations (Combefis and Pecheur, 2009).
It may be due to a mismatch between the actual system
behavior and the operator’s mental model of that behavior
(King, 2011), and it can lead to mode confusion and even
to critical failures. In general, misunderstandings come
from the gap between the user’s and the designer’s logic,
all along action planning between the actors.

Many works, particularly in interactive storytelling,
have been conducted to solve the mismatch between the
user’s behaviors and system logic (Magerko and Laird,
2004; Young et al., 2004; Barber and Kudenko, 2008; Paul
et al., 2011; Silva et al., 2003) by predicting the user’s
future actions and detecting the invalid ones that deviate
the execution from the planned objectives.

http://www.uppaal.org/.
https://code.google.com/p/gama-platform/.

A situation-based multi-agent architecture for handling misunderstandings in interactions 441

The minemsis architecture (Young et al., 2004) uses
a mediator to detect when the player is attempting to
execute an action that may threaten the integrity of the
story plan. This approach does not aim to alternate the
story but to incorporate unplanned actions or avoid them.
Besides, IDA (Magerko and Laird, 2004) introduces a
specific agent called Director to maintain the story line.
It also predicts the player’s actions to determine if they
may endanger the plot and to try to avoid them before they
happen. If there is a problem, Director agent can alter the
world context by changing any accessible parameter in the
application world’s state.

In PAPOUS (Silva et al., 2003), the story to be told
is organized into levels and each level consists of a set of
StoryBits characterized by different properties, characters
and events. PAPOUS manages the inconsistency between
a virtual storyteller and the audience decisions in a simple
way: the storyteller ignores missing or inadequate inputs
and chooses the next StoryBit according to a previously
narrated one or to story desirability.

In an interactive system, we try to build a less
constraining environment for the users’ actions. But
the higher the degree of freedom the application allows,
the more easily the users’ actions may deviate from the
planned scenario and the more easily misunderstandings
may occur. GADIN (Barber and Kudenko, 2008)
is an interactive text-based system using story goal
regeneration mechanisms in order to change the game
goals into new ones when the player’s actions move too
far away from the planned goal state.

MIST (Paul et al., 2011) has yet another approach
to deal with the scenario deviation problem. It attempts
to repair stories that are already in progress when they
are invalidated by unforeseen events. The preemptive
detection of invalid plan steps is done in advance, some
close steps before the point of failure. Once an invalid
step is detected, the story management tries to substitute
the story plan by a consistent one.

In general, prediction approaches are costly. For
instance, the short-term player behavior modeling module
implanted in by Magerko and Laird (2004) creates an
entire copy of the whole world’s state. This module
simulates the world changes according to the user’s
actions. This kind of approach does not seem well suited
to real-time interactive systems, nor to systems where the
user’s behavior cannot be easily modeled by a set of rules.

Our approach focuses on software and a component
design model integrating misunderstanding prevention
and handling mechanisms. It relies on three points:
the system observes and analyses the users’ and the
system’s states, detects the misunderstandings or their
consequences and acts to keep the consistency between
the actors before and at the end of interaction sequences.
These mechanisms do not try to predict users behavior but
take into account the users’ states to adapt the system’s

execution in order to avoid misunderstandings between
the system’s actors.

3. Misunderstandings in interactions

We define a context as a set of pieces of information
that can be used to characterize the situation of an en-
tity (Dey, 2001), where an entity is an actor involved in
interactions and may be represented by a system agent. A
situation is an interaction sequence between several actors
or agents in a shared fixed context. Thus, an interaction
during system execution is carried out between at least
two actors within a common context.

3.1. Context and the actor’s local vision. The context
is related to the actor’s activities (Hommel et al., 2000;
Dourish, 2004; Picard and Estraillier, 2010). There is
interdependence between the common context and the
actors located in this context. An actor performs its
activities depending on the current situation and the
available contextual information. Each actor has to
observe and to perceive the world, to interpret it with
its own logic, to combine the new information with its
existing knowledge in order to obtain its own contextual
vision and to update its current knowledge as shown in
Fig. 1. This knowledge is called the actor’s local vision.

State Vector

Perception

Actor Ai

External World

Other Actors

Resources

Context

Local Vision

Update
Storage

EAi = < < A1 >,…, < Ai >,…, < An >, < Res >, < Context > >

Fig. 1. From the external world to the actor’s local vision.

The local vision is the actor’s own knowledge about
the external world (the environment, resources etc.),
the relations with other actors (other actors’ states),
and its own profile (internal state). For an actor Ai,
the local vision is a state vector EAi (as depicted in
Fig. 2). This state vector is hierarchical and divided
into sub-vectors corresponding to states of every system
actor A1, A2, . . . , An (with n the number of the system’s
actors), including Ai’s own state vector, the resource
state vector Res and the context state vector Context.
Each sub-vector can be divided again into lower level
sub-vectors related to the actors’ component entities. For
instance, the element A1 may be a sub-vector composed
of m elements that can be other smaller sub-vectors or

442 T.P. Pham et al.

a final data value corresponding to an end-level attribute:
〈A1〉 = 〈A1

1, A
1
2, . . . , A

1
m〉. The division into sub-vectors

is done until the chosen granularity is reached.

EAi = 〈〈A1〉 . . . 〈Ai〉 . . . 〈An〉, 〈Res〉, 〈Context〉〉

〈A1〉 = 〈A1
1, A

1
2, . . . , A

1
m〉

〈A1
1〉 = 〈A11

1 , A11
2 , . . . , A11

m 〉
...
〈A1

m〉 = 〈A1m
1 , A1m

2 , . . . , A1m
m 〉

〈Ai〉 = 〈Ai
1, A

i
2, . . . , A

i
m〉

...
〈An〉 = 〈An

1 , A
n
2 , . . . , A

n
m〉

〈An
1 〉 = 〈An1

1 , An1
2 , . . . , An1

m 〉
...
〈An

m〉 = 〈Anm
1 , Anm

2 , . . . , Anm
m 〉

〈Res〉 = 〈R1, R2, . . . , Rp〉
〈Context〉 = 〈C1, C2, . . . , Cq〉

Fig. 2. Local vision for an actor Ai as a state vector.

Each state vector contains data elements representing
the knowledge perceived by the corresponding actor and
characterizing the involved entities. Moreover, it must
be stressed that all sub-state vectors 〈A1〉, 〈A2〉, . . . , 〈An〉
except 〈Ai〉 are the results of Ai’s perception, so they
are partial. This means that these vectors do not
contain the whole real state of the corresponding actors
A1, A2, . . . , An. However, the vector 〈Ai〉 contains its
own state that is supposed to be complete.

3.2. Definition of the misunderstanding. The local
vision allows an actor to be able to interact with the others
with a strategy and coordination. But the local vision
is not static: it evolves during interaction sequences.
The perceived data are not always identical between
different actors due to their differing perceptions and local
environments. Hence, their local visions may become
inconsistent during interactions. This may lead to a
different interpretation of the same fact (a sentence, an
action, a state, etc.). If the actors use such inconsistent
data in future interactions, a misunderstanding may arise.

We give the following definition from our previous
work (Pham et al., 2011): Two actors are in a misunder-
standing state when (i) they are in interaction with each
other, (ii) there are incoherent data in their local visions
about the same fact, and (iii) these data are used during
the interaction. A fact is considered as objective data or
an absolute reference to the system’s actors or resource
states. If we consider the interactions between two actors
as acts of language, a misunderstanding can be observed
when two actors think that they are talking about the same
thing whereas they actually are talking about different
subjects (Rapaport, 2003).

We formalize this definition as follows: Let two
actors A and B interact in the presence of the fact f from

Actor
A

Actor
B

Perception Perception

Interactions

ff

Local Vision EA

Perceptive
State EA

f

Local Vision EB

Perceptive
State EB

f

Real State Ef

Cohérence

Fig. 3. Actors A and B perceive the fact f in an interaction.

the external world. State vectors EA and EB are the
local visions of A and B. The atom Ereal

f is the absolute
reference to f . The knowledge perceived by A and B
about the fact f is represented by the atoms EA

f and EB
f .

From the point of view of the state vector, these atoms can
be a sub-state vector or a data value element of EA and
EB : EA

f ⊂ EA and EB
f ⊂ EB

The perception can be seen as an internal action that
cannot be observed by other actors and corresponding
to the local vision updates after having performed or
observed an action. The perception of A and B about f in
Fig. 3 is represented by the following formulas:

A : Ereal
f −→ EA

f ,

B : Ereal
f −→ EB

f .

Misunderstanding in interactions appears when EA
f

is different from EB
f : EA

f �= EB
f . Hence, the local visions

of A and B are incoherent. The distance DAB
f measures

the difference level between EA
f and EB

f : DAB
f =

|EA
f , EB

f |.
The ideal misunderstanding-free situation is when

the perception of A and B of a fact f is identical, i.e.,
EA

f = EB
f , and the distance DAB

f = ∅.

3.3. Elements that cause misunderstandings.
Misunderstandings in interaction have various causes:

Different references. This happens when interacting
actors have different contexts. The interactions between
the actors are carried out under a concrete context that
influences their behavior. The actors located in different
reference worlds will consider different things. For
instance, the word “bug” is a kind of insect but in the
computer world it refers to an error or a fault that produces
an incorrect program execution. If the interaction context
differs, actors’ local visions will not be synchronized and
misunderstanding conditions may be established.

A situation-based multi-agent architecture for handling misunderstandings in interactions 443

Different logics. The actions of an actor depend on its
own logic and deduction rules. For example, two actors
interact about the identity of some “old person”. For A,
an old person means a person over 60 years: old(x) ⇒
age(x)>60 year. For B, “old person” means the oldest
known person: old(x) ⇒ ∀y age(x) ≥ age(y). If B asks A
for an old person,B will expect the oldest person, whereas
A will just provide someone old but not especially the
oldest one. If B asks again, A may provide a different
answer, and A and B will be in a misunderstanding since
each actor has its own logic.

Semantic ambiguity. A wrong interpretation during
interactions may cause a different perception. Semantic is
internal (Rapaport, 2003): the external world is reflected
subjectively in the actor’s “mind” that creates its own
narrow knowledge. It is obvious that an actor can
interpret a fact as correct or wrong because of the lack
of information or the imperfection of the observation.
For instance, in an e-learning application, a camera has
to check the presence of a student. Due to a limited
camera scope, a student may be warned because of his/her
absence, whereas he/she is still there but out of the camera
scope.

3.4. Misunderstanding consequences. Misunder-
standings in interactions have also various outcomes:

Interaction deviation. The interaction chain between two
actors diverges from the planned scenario. An actor may
estimate incorrectly the state of its interaction partners
because of misunderstandings. As result, the actor will
make a wrong decision based on the wrong observed state
of its partners. Instead of an appropriate action according
to the plan, the actor’s behavior will diverge from its
normal logic and from the logic of other interacting actors.

Interaction deadlock. This problem arises when a
misunderstanding is revealed and the actors get stuck in
the middle of an interaction sequence. In this case, an
actor receives an answer or a demand that it does not
expect, because it is expecting some other reaction. The
interaction sequence will be broken. Both actors (or at
least one of them) do not know what to do any more.

Propagation. If misunderstanding is not detected or
revealed, it can be propagated along the scenario and the
execution of the application. Inconsistent data are not
treated and are kept for future interactions. Furthermore,
misunderstanding severity may increase.

4. How to manage misunderstandings

The aim of misunderstanding management is to avoid
misunderstanding occurrence as much as possible. If
it happens anyway, it should be eliminated. Moreover,
before a misunderstanding is detected, the interactions

between two actors may have already deviated from the
planned scenario. We must intervene to synchronize their
data and behavior.

4.1. Necessary occurrence conditions. A misunder-
standing may occur during an interaction sequence if the
following conditions are fulfilled:

C1 Actors’ presence: at least two actors participate in the
interaction sequence. The misunderstanding occurs
only when the actors interact with each other.

C2 Inconsistency of local data: the knowledge about the
same fact f is totally different or contains a part of
different data. There is a data inconsistency in the
actor’s local visions.

C3 Data sharing: inconsistent data are used as shared
information or common contents between the actors
during their interactions.

If the three conditions are met, a misunderstanding
will occur. Otherwise, it is not possible. For instance,
if two actors have inconsistent data but they never
interact with each other (C2 is satisfied but not C1), a
misunderstanding will not arise. Moreover, the actors may
have different data about the same fact, but if they do not
use it as shared data during the interaction (C1 and C2 but
not C3), they will not face misunderstanding.

4.2. Approaches. We classify the misunderstanding
management into four classes:

Ignoring. If a misunderstanding is minor, we can
just ignore it. This is similar to the ostrich algorithm
(Tanenbaum and Woodhull, 2006) in deadlock treatment.

Prevention. Misunderstanding occurrence can be
prevented by denying one of the three necessary
conditions mentioned previously. If one condition is
missing, we remove the possibility of misunderstanding
occurrence. The actors’ local vision should not contain
inconsistent data. Ideally, their knowledge should be
identical and coherent all along an interaction. Hence,
the actors’ data consistency should be checked after
each interaction sequence and synchronized if needed.
Moreover, shared data should be identified before
interactions begin. An explicit declaration of the shared
data allows the actors and system control agents to
check the consistency of the data before the actors use
them. If an inconsistency is detected, either the data are
synchronized between the actors concerned or isolated to
avoid its use during interactions.

Tolerance. It aims to detect a latent (potential)
misunderstanding during an interaction and resolve it
when it is revealed (i.e., when it becomes effective).
Misunderstandings are similar to the threats (fault, error,

444 T.P. Pham et al.

failure) affecting system service in the dependability
domain (Laprie et al., 2004). For instance, a byzantine
or inconsistent failure happens when some or all the
system users perceive differently service correctness. Au-
tomation surprise and mode confusion occur when the
system behaves differently than its users expect (King,
2011). These examples show the effects of different
actors’ perceptions. The principles of misunderstanding
tolerance are similar to fault tolerance with error
detection and system recovery. The implemented
mechanisms track down the system service deviation,
and put the system into a degraded mode or restoration.
We suggest adapting fault tolerant techniques to
misunderstanding management in interactive applications
by (i) regularly checking the actors’ local vision data in
order to detect and eliminate both latent (potential) and
revealed (effective) misunderstandings, if possible, before
interaction deadlock; (ii) resolving interaction deviation
or deadlock by appropriate handling mechanism: either
the system rollbacks to a misunderstanding-free state in
order to retry the last interaction or it goes on but with
reinforcement actions synchronizing the actors’ threads,
in the most transparent manner for the user and with
respect to the designer’s storyline.

Removal. It refers to misunderstanding detection
and elimination. It is mainly achieved using regular
coherency control to detect misunderstandings and data
synchronization to eliminate them.

4.3. Handling solution. To handle misunderstandings
in interactions, we explore two directions: the adaptability
structure and fault tolerance. Our solution relies on
three points: (i) we build a robust system architecture
with specific additional agent components that are in
charge of misunderstandings in interaction management;
(ii) we organize the scenario and system execution
using situation blocks that are not only the basic
narrative construction elements but also the execution
patterns that contextually confine interactions; (iii)
we integrate consistency management into situations’
dynamic execution, including data synchronization,
misunderstanding detection and treatment inspired and
adapted from fault tolerance techniques. Hence, we
structurally avoid a part of potential misunderstandings
before each interaction sequence start and guarantee a
misunderstanding-free state at its end.

In the following sections, we present and detail these
three contributions of our research.

5. Proposed agent-based architecture

Several architecture models for interactive systems have
been proposed according to the specific purpose of each
work. We chose the approach of a multi-agent system of
Sehaba et al. (2005) as a starting point to build our model.

The advantage of this approach is that each agent can be
organized and work autonomously and strategically. We
define four system control agents (Fig. 4 shows the overall
architecture):

Data System

Script Agent

Observation

Application

Adaptive System

Observer Agent

Director Agent

Behavior & Events

Handle

User

Situations
Library

Scenario
Modification

User State

Scenario Agent

Planned
Scenario

Adaptive
Scenario

User State
Analysis &
Distance
Calculation

Make Decision

Software and
Hardware
Resources

HCI
User Interface

Resources

User
Profiles

Data

Evaluate

Detect

Fig. 4. General agent-based architecture for an interactive sys-
tem.

• Observer agent: It observes the user’s behavior and
state, formalizes, normalizes and transfers them to
Scenario agent.

• Scenario agent: It makes decisions about the
scenario orientation according to the user’s state,
planned scenario and permanent objective defined
by the designer. This agent tries to find the best way
to orientate application execution. It takes charge of
the library of situations planned by the designer. The
situations (defined in Section 6) represent scenario
components and are the interaction and the activity
sequences that can take place in the application as,
for instance, all possible scenes in a theatre play.

• Director agent: This agent receives the decision
taken by Scenario agent. It takes in charge the
production of the adaptive scenario and realizes a
modification, an answer or an action adapted to the
users.

• Script agent: Its task is to track and handle
the inconsistency in three steps: (i) detection:

A situation-based multi-agent architecture for handling misunderstandings in interactions 445

detect, confine or partition the inconsistency between
situation actors in order to identify the causes of a
misunderstanding; (ii) treatment: apply the handling
mechanism or strategy to remove the inconsistency
and to correct the deflected state that causes the
incoherence; (iii) evaluation: estimate the efficiency
of the treatments in order to improve the employed
mechanism for the next time.

6. Situation-based scenario

6.1. Interactive storytelling approach. Interactive
storytelling is the unfolding of a story that the user’s
decisions impact (Champagnat et al., 2010; Lebowitz and
Klug, 2011). It defines how to generate scenarios which
are both interesting and coherent. We assume that the
interactions in an interactive application can be organized,
strongly or weakly, as a story scenario. That allows us
to adapt ideas from the storytelling domain to organize
interactions.

The scenario in interactive storytelling is represented
by a series of actions/events linked together by cause and
effect (Karlsson et al., 2006), by ordered link (Magerko
and Laird, 2004; Silva et al., 2003) or by hierarchical
task network planning (Paul et al., 2011), where each
task is decomposed into subtasks until primitive actions.
But these scenario structuring approaches are not suited
to build complex interaction sequences where the user’s
actions are free, non-predictable and depending on a great
amount of context data. Hence, we propose the notion
of a situation that can be seen as a scene encompassing
not only interactions execution but also interaction
management and resource use. Situations are the basic
narrative elements that facilitate interaction planning
and management by characterizing, contextualizing and
confining them.

6.2. Situation model for scenario structuring.
Interactions are split into a set of situations. Each
situation is a sequence of interactions between two or
more actors in a precise context to achieve a predictive
objective. It is characterized by (Fig. 5) pre-conditions,
post-conditions, a set of participating actors and a set of
resources. Since actors’ behavior, especially for human
actors, is not always precisely modeled, and due to the
influence of external events, the progression of a situation
can be considered an execution and adaptation black box
where the interactions are executed in a non-predictable
way. A situation also includes consistency management.
It represents a set of mechanisms devoted to prevention,
detection and treatment solutions, in order to redress and
adjust situation progression in spite of misunderstandings
and inconsistency problems. Consistency management
is carried out all along situation progression from local
context initialization to post-conditions completion.

Fig. 5. Elementary situation structure.

6.3. Situation graph and application execution.
Situations are considered plot structuring elementary
blocks. Each application provides a set of situations
defining all the possible interaction sequences that can
happen during application execution. They can be
grouped and linked together in order to build the overall
application scenario. The scenario is then represented
by a directed graph of situations. Each node is a
situation and each edge is a transition from one situation
to another. The situation graph shows the causal
relationships between scenario situations. A scenario may
have several beginnings and also some possible endings
(for instance, Fig. 10 in Section 8 depicts the situation
graph of the presented case study).

The situation-based scenario approach improves
execution control and interaction adaptation. Application
progression becomes a scenario unfolding from one
starting node to one final node on the predefined situation
graph (taken in charge by Scenario agent in the global
architecture). If more than one situation is possible, the
most pertinent one will be chosen by Scenario agent.
To increase the adaptability, we can avoid the definition
of a predefined graph. In that case, the choice of a
situation is made according to the pre-conditions that best
satisfy the global state and decision criteria. This method
is flexible, adaptive, and applicable in real time during
application execution, but it may lead to an uncontrollable
situation order or an infinite loop, if the post-conditions
and pre-conditions do not contain sufficient data. To avoid
this issue, we add a specific situation that handles the
absence of post/pre-condition matching when necessary
(Pham et al., 2011).

446 T.P. Pham et al.

7. Consistency management model

Handling mechanisms. The consistency management
that we propose consists of a set of specific methods,
techniques and mechanisms that aim to handle the
misunderstanding problem and to obtain data consistency
all along interactions. They are similar to dependability
techniques (Laprie et al., 2004).

Prevention mechanisms try to suppress
misunderstanding occurrence conditions in order to
avoid misunderstandings. To avoid data inconsistency,
the proposed technique is an explicit declaration of all
involved data before a situation’s interaction sequence
starts. It aims to identify and share the actors’ local
visions in order to decrease the possibility of interaction
deviation. If inconsistency is detected in the collected
data, the actors perform data synchronization. It is also
done during the interaction sequence in order to avoid the
inconsistency of data newly perceived.

Tolerance mechanisms guarantee interaction
continuation despite misunderstanding occurrence.

• Misunderstanding detection: regular check of (i)
the shared data used during interactions and (ii) the
deviation between the actors’ logics.

• Interaction recovery: once a misunderstanding is
detected, the system applies one or several of the
following techniques: (i) rollback brings the system
back to a previous misunderstanding free state to
retry interactions; (ii) rollforward brings the system
to a new misunderstanding free state from which
interactions will go on; (iii) reinforcement requires
from one or several participant actors to do some
additional interactions.

Removal mechanisms involve misunderstanding
detection and correction, followed by reinitialisation
of the last interactions, or of the whole interaction
sequence. The detected misunderstandings are diagnosed
to determine their causes: Which data are inconsistent?
Which ambiguities exist in the interaction context? Are
there protocol faults? An appropriate correction method
is then applied to eliminate the related misunderstanding.
Finally, interactions are restarted from the last stable
point or from the beginning.

7.1. Inside the situation structure. Our situation
based architecture allows the integration of the previous
misunderstanding management mechanisms inside the
situation in order to control the misunderstandings and
their consequences all along situation execution. We
define three phases.

Prologue phase. Before interactions start, the
actors’ local visions are synchronized through explicit

declarations of interaction content and data. If the initial
data of the actors involved are identical, the possibility
of misunderstanding occurrence will be reduced. If
inconsistency exists, a negotiation step is performed
between the inconsistent actors. Then, either one or
several of them will modify their data, or the divergent
data will be isolated/removed and not considered during
interactions.

Interaction or the Dialogue phase. When interactions
are carried out, the actors will update their local
data, step by step, as they continuously observe and
perceive each other. Despite the initial local vision
agreement, misunderstandings may nevertheless occur
during interactions. This is why their local shared
knowledge is synchronized all along the interaction
sequence in order to avoid the divergence of local data
about the same facts in the actors’ local visions. One or
several techniques of reinforcement, rollback, rollforward
should be used.

Epilogue phase. All the interactions are done in the
previous phase. If the post-conditions are fulfilled, we
can exit the situation with the expected results. But
if, for some reason, we do not reach the expected
post-condition, Script agent has to detect and settle the
existing incoherency in order to avoid the propagation of
misunderstandings to other situations. The system may
also require that actors perform reinforcing interactions,
or, if necessary, make a rollback to a last known
stable state, which necessitates a regular state saving
mechanism. If it is not possible, a restart of the whole
situation should be done. The main goal of this phase is
to exit the situation with the appropriate post-conditions
and without latent or active misunderstanding. But the
rollback or reinforcing interactions may not lead the actors
towards the planned post-conditions. Thus, we add in
the situation model a special exception exit point that
allows the current situation to be stopped without expected
post-conditions and that leads to exception handling situ-
ations.

7.2. Formal validation in Uppaal. In order to validate
the proposed solutions and verify the system’s important
properties after consistency mechanisms integration, we
model our overall proposition using the Uppaal modeling
and simulation tool (Behrmann et al., 2004). We aim
to check what properties are preserved after consistency
mechanisms integration. Hence, we model a simple case
where the scenario is composed of two situations that
have the same behavior and the actors are considered
from the consistency management point of view. This
is a structural validation of the system’s behavior. When
the number of situation increases, we shall, additionally,
check the situation chaining and scenario validity. Dang
et al. (2013) show how to use linear logic to achieve this

A situation-based multi-agent architecture for handling misunderstandings in interactions 447

on a entertainment case study. Hereafter, we focus only
on structural validation.

7.2.1. Element modelling. The model of our
system contains five parts: (i) three models devoted
to actor’s different aspects (internal behavior,
communication channels and its local vision); (ii)
the situation block model that integrates the three-phase
misunderstanding handling mechanisms; (iii) the scenario
model of scenarized application execution presented
as a succession of two templated situations. The
communication between Uppaal models is done through
message exchange (sending/receiving).

Actor models. In order to represent the actor’s
processes and state, we conceive three automata:

• ActorLogic (Fig. 6 (left)) represents the actor’s
behavior logic by a four-action loop (Observe,
Evaluate, Decide, Act). If the actor receives wrong
messages, the bad data may disturb its evaluation,
decision and activities, and may lead to its blocking.
To handle inconsistent data, a synchronization state
(Sync) is added to check the actor’s local vision
before the normal activity loop.

• ActorMessenger (Fig. 7 (left)) is the communication
part devoted to data perception from messages sent
by other actors. The perception results may be the
states Expected, Lost or Unexpected. It influences
the actor’s actions.

• ActorInternalStates (Fig. 7 (right)) describes the
actor’s internal state: Nominal if nothing goes wrong
or nonNominal if the actor’s action is blocked.
According to these two states, different mechanisms
of consistency management can be realized: recover,
rollforward, exception treatment or restart.

These three automata describe the actors’ activity
and interaction including misunderstanding occurrence
and consistency management.

Situation model. The Situation model (Fig. 8)
represents a three-phase progress including
misunderstanding handling mechanisms as described in
Section 7.1. This model is devoted to situation dynamics
and presents different global states and transitions. We do
not distinguish which transition is carried out by which
agent among all system agents and actors of the general
architecture (Fig. 4). In particular, the Dialogue phase
is split into two states: Execution, corresponding to
interactions between participant actors, and Consistency,
corresponding to consistency management, where the
Situation automaton has to supervise the actors’ actions
states from ActorLogic automaton: CorrectAction,

DiviantAction or Blocked. Depending on these states,
different mechanisms will be selected and applied.

Scenario model. Application execution is in fact a
succession of transitions from one situation to another.
This process is divided into two steps: the choice of the
next situation and the execution of the chosen situation.
To model this execution, we built the Scenario automaton,
where the scenario is composed of two situations S0 and
S1, as shown in Fig. 6 (right). The Selecting location
refers to the decision state, the locations S0 and S1
correspond to the execution of the defined situations. In
this model, we suppose that the decision mechanism is
based only on the satisfaction of situations preconditions.
The transition from Selecting to S0 (or S1) represents the
chosen situation launching. Once this transition is done,
the Scenario automaton send an authorization message
to the Situation automaton in order to start situation
execution. When the post-conditions of the executed
situation are fulfilled, either the next situation is launched
or the automaton stops at the End location. If the Scenario
automaton receives the message except from the current
situation, it will move up to the ExceptionHandling state
and then finish anyway at the End final state.

Communication between models. Figure 9 summari-
zes the communication between the five automata of
our global simulation model. The arrows refers to
sending/receiving messages by the automata. The Sce-
nario automaton stays at the highest control level and
triggers the Situation automaton. Interactions between
the actor’s three models are triggered or modified by
the consistency management messages of the Situation
model.

begin[idCS]
Scenario Situation

mess[id_A][0]

idCS – Next Chosen Situation Identifier
id-S – Current Situation Identifier
id_A – Actor Identifier

diverge[id_A]
normal[id_A] ActorInternalStates

ActorLogic

ActorMessenger

except

explicitDeclar[id-S]
execute[id-S] end[id_A]

diverge[id_A]
blocked[id_A]

mess[id_A][1]
mess[id_A][2]
lost[id_A]

recover
restart
rollforward
except
terminate

Fig. 9. Exchanged messages between models.

448 T.P. Pham et al.

Fig. 6. Actor model (left) and Scenario model (right).

Fig. 7. ActorMessenger (left) and ActorInternalStates automata (right).

7.2.2. Properties validation. The toolkit Uppaal
supports not only an automata conceiving editor, but also
a simulator to run the system and a verifier to model and
check several system properties. We will check our model
for three properties: reachability, safety and the absence
of deadlock.

Reachability. This property can be understood as
follows: Is there a path starting at the initial state, such
that a given state formula is eventually satisfied along
that path (Behrmann et al., 2004)? We are particularly
interested in checking the reachability of all end states:
the scenario end, the situation end and the actor’s nominal
behavior end. These properties do not, by themselves,
guarantee the correctness of application execution and
actor interactions, but they validate the basic behavior of
the model. In Uppaal, we write this property using the
syntax E <> ϕ:

• E<>Scenario.End: the application scenario is
executed right to the End state,

• E<>Situation(0).End: the situation S0 can reach

the normal end,
• E<>Situation(1).End: the situation S1 can reach

the normal end,
• E<>Situation(0).Exception: the situation S0 can

reach the exception treatment exit,
• E<>Situation(1).Exception: the situation S1 can

reach the exception treatment exit,
• E<>ActorLogic(0).End and Actor-

Logic(1).End: two actors can realize their nominal
actions or preserve their interaction consistency.

These verified properties show that consistency
management can preserve system nominal behavior by
supervising actor interactions.

Safety. The safety property expresses that, under certain
conditions, something bad will never happen (Prigent
et al., 2005). It guarantees the respect of structural
constraints. It is verified in Uppaal by using path formulas
A[]ϕ and E[]ϕ where ϕ is the state formula:

• A[] not (Situation(0).nE>NA): the number of
actors in the situation S0 that reach the End location is

A situation-based multi-agent architecture for handling misunderstandings in interactions 449

Fig. 8. Situation model.

not higher than the total number of actors NA,
• A[] not (Situation(0).nB>NA): the number of

actors in the situation S0 that are in the Blocked location
is not higher than the total number of actors NA,

• A[] not (Situation(0).nD>NA): the number of
actors in the situation S0 whose actions diverge is not
higher than the total number of actors NA,

• A[] not (Situation(0).nE+ Situation(0).nB+ Sit-
uation(0).nD > NA): the number of state confirmation
messages sent by the actors is not higher than the total
number of actors NA,

• A[] not (Situation(0).End and Situation(0).nE <
NA): the situation S0 reaches the normal end with at least
all participant actors finishing their interaction correctly.

The same properties for the situation S1 are also
verified. This checking shows strict control of consistency
management on the choice of appropriate mechanisms
according to the actors’ states.

Absence of deadlock. The absence of deadlock or a
deadlock free system is when the system will never move
up to a state where there is no possible progress.

• A[] not deadlock: models are deadlock free.
Interactive application execution is an unpredictable

process caused by uncontrollable actor actions. The
conceived Uppaal models represent an abstract point
of view of system components logic and consistency
management layer control. Moreover, thanks to
the Uppaal simulator and its query language, we
can validate, step by step, system execution and

verify several important properties concerning integrated
misunderstanding handling. All previous properties
are verified. That shows structural correctness of our
proposed approach.

8. Online distance learning case study

To validate our approach, we applied our situation-based
methodology in our current online distance learning
(ODL) project (Trillaud et al., 2012). The project is
devoted to the development of an online distributed
platform that simulates a real classroom: teachers
and learners carry out learning sessions as in real
life but do so by interacting through a virtual class
environment3. The platform integrates an interactive
numeric board, a camera, a microphone and pedagogic
tools (as file sharing system or virtual notebook) to
support the courses. Figure 10 shows an example
of courses scenario based on 6 situations. The
users may face many difficulties: class supervision,
course quality assessment, misunderstandings due to
weak system interfaces and mechanisms to catch and
manage user behavior. The interactions between the
actors in ODL contains numerous factors that may
lead to misunderstandings: multi-meaning or implicit
behavior, supervision tools observation and interpretation
imperfection, system component failures, incomplete,
missing, implicit or wrong consigns, etc.

3http://foad-l3i.univ-lr.fr/portail/ (in French).

http://foad-l3i.univ-lr.fr/portail/

450 T.P. Pham et al.

Fig. 10. Situation-based scenario example.

8.1. Individual work situation description. To
deal with these various misunderstandings, we applied
our situation-based solution including consistency
management to a particular situation: Individual work
(SU-IW in Fig. 10). Each learner will work individually
and has to do the exercises distributed by the system.
The system provides additional exercises each time the
learners send the previous exercises report. The expected
post-condition is that all the learners reach a required
knowledge level MaxKnowledge.

Because of the long test duration and development
for the real platform prototype, we chose to experiment
with our misunderstanding management mechanisms and
agent-based architecture through a multi-agent simulation
with the GAMA platform4. All system actors are
modeled and simulated using this platform. We use
probabilistic models to represent human actors’ behavior.
Even though the simulated agents do not behave exactly
as real people do, it is sufficient for our purpose
because we aim to illustrate and check the benefits of
our consistency management mechanisms on a simple
case study. Moreover, the simulation experimentation
allows parameter tuning and comparison of several
experimentation campaigns5.

8.1.1. Agents. We have four types of agents: Teacher,
Learner, Observer and ODL System. Observer’s role is to
observe the state of sent exercises in order to evaluate the
learners’ accumulated knowledge level. The distribution
mechanism based on these observations and learners’ skill
level evaluations is taken in charge by ODL System agent
that is a combination of the other three agents of our
model, introduced in Section 5: Scenario, Script and Di-
rector agents (Fig. 4).

Learner agent has to connect to the classroom before
receiving the distributed exercises. The factors that
influence exercise finishing probability include: exercise
difficulty level, the deadline and the learner’s smartness
level. The learner’s knowledge level in a current session
is updated after each sent and corrected exercise, and
this level will be used by his/her own Observer agent to

4https://code.google.com/p/gama-platform/.
5We started to perform the same experimentation on our ODL envi-

ronment prototype mentioned above (work in progress).

determine if he/she reached the required level, and the
exercise distribution will end.

Observer agent’s role is that of the go-between for
the learner under its responsibility and the ODL system.
It observes and estimates the learner’s state and transfers
it to the system. Observer has to check the result of the
exercise report (finished or not, accuracy rate), and also
supervise the learner’s knowledge level in order to be able
to notify exercise session ending to the ODL system.

Teacher agent in this situation plays the role of a
moderator by supervising all learners’ work and checking
exercise distribution undertaken by the ODL system.

ODL System agent is a special agent that represents
and simulates all the remaining components in our online
distance learning platform, including the other system
actors, software and pedagogic resources according to our
overall architecture in Fig. 4.

8.1.2. Interaction between agents and consis-
tency mechanisms. Figure 11 summarizes the main
interactions representing communications between the
agents above. To start an exercise session, the teacher and
all of the learners have to connect first. The first exercise
will be calculated with a random difficulty level and a
random deadline. This first decision will be validated
or not by the teacher and then sent to the corresponding
learner if accepted. Once the learner receives distributed
exercise, he/she begins working and sends the report after
finishing. This rapport will be analyzed by Observer agent
in charge, before redirecting it with observing data to ODL
System. The observing data contain the exercise finishing
state, accuracy rate, learner knowledge level and estimated
smartness level. ODL System uses these observing data
for the next distribution: exercises will be adapted to the
learner’s level so that he/she can finish it with a higher
accuracy rate. This strategy suits naturally the learner’s
desire to be able to terminate exercise session as soon as
possible.

However, the observation is never perfect. Observer
agent can commit an error implying wrong observing
data. Potential misunderstandings in this situation may
occur when the system distributes exercises that are
incoherent given the learners’ skills and expectation.
They can result from wrong learners exercise state
observation or from an inappropriate distributed exercise
level. Misunderstanding handling is done inside the
situation during its 3-phase progression.

Prologue phase. The system checks each learner’s
connection status to begin exercise series distribution.

Dialogue phase. In this situation, the interaction content
refers to the exercise distribution and reporting. During
the learners’ work, each Observer agent supervises its
associated learner’s working state and exercise report to
collect data: partial or total termination, work duration,

https://code.google.com/p/gama-platform/.

A situation-based multi-agent architecture for handling misunderstandings in interactions 451

Fig. 11. Agents’ main interactions in the simulation.

thee correctness rate. To avoid wrong estimation
of the learner’s skill and knowledge level, Observer
synchronizes some of the observed data by asking Learner
to agree with the collected data before forwarding the
report to ODL System. This synchronization does not
intend to correct the observation but just to check whether
or not this observation is accurate for the simulation
analysis purpose.

Epilogue phase. To finish the situation, the learners must
reach a given skill level after a given number of exercises.
If a learner reaches this number without reaching the
required skill level, the series will be stopped after a
session deadline to avoid an abnormal long series. The
system sends a StopSignal message to all learners to
confirm the end of the exercise series after a predefined
timeout. It refers to exception treatment.

8.2. Experimentation results. We run the simulation
of the Individual work situation with the following
parameters: 50 learners, one teacher, max knowledge
level = 25, max difficulty level = 20, session
deadline = 250 steps of simulation. We will measure
a set of important factors influenced by potential
misunderstandings:

• Ne: total number of distributed exercises,

• Nnotend: total number of real non-finished exercises,

• Nbad: number of bad observation by all observers,

• Ncor: number of system observation corrections
while detecting wrong observed states (it refers

to synchronization times where consistency
management is performed to remove incoherent
data),

• LI: learners’ interest level that increases when the
learners succeed and decreases when they fail their
exercises,

• Ttotal: total session times (in steps) until the last
learner has finished his/her series.

The data are recorded and calculated for the average
values from 10 simulations launching times in each
measure. We compare these data between two cases:
“With” and “Without” consistency management. The
results are summarized in Table 1. The total distributed
exercises number Ne is twice as big in the “Without” case
than in the “With” case. The average number of finished
exercises in “Without” series is higher than in the “With”
series: 747.4 vs 363.4, also depicted in Fig. 12 (left). It is
obvious that the session duration in the “Without” case is
almost twice longer than in the “With” case.

Figure 12 (right) shows the number of learners that
have finished their whole series during situation execution
in the “With” and “Without” consistency management
cases. The lines shows that the learners work with more
exercises and with longer duration Ttotal in the “Without”
case. We can make the same observation with the average
measure values in Table 1.

Why do we have this difference result? When
consistency management is integrated in situation
execution to handle the potential misunderstandings, the
observers have to adjust their observed data according

452 T.P. Pham et al.

Table 1. Statistical data comparison between 2 cases: “With” (Wi) and “Without” (Wo) consistency management.
Ne Nnotend Nbad Nobsnon Ncor LI Ttotal

Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo Wi Wo

1 330 735 23 64 83 103 93 114 83 0 78.98 66.1 988 2692
2 363 692 45 28 87 76 110 88 87 0 77.73 76.41 1104 2640
3 361 744 44 55 94 97 114 114 94 0 76.35 69.06 1076 2700
4 383 768 47 73 110 99 129 118 110 0 77.31 65.18 1160 2724
5 347 744 32 60 87 99 109 115 87 0 77.94 67.31 1024 2688
6 360 806 37 65 111 117 122 135 111 0 77.55 64.68 1108 2760
7 392 737 66 59 93 92 118 108 93 0 73.06 66.88 1188 2692
8 379 752 42 66 117 100 131 112 117 0 77.65 65.88 1140 2712
9 353 722 37 69 96 100 111 111 96 0 77.49 67.55 1048 2672
10 361 774 40 62 93 115 117 134 93 0 74.18 65.92 1084 2728
Ave. 363.4 747.4 42.4 60.1 97.1 99.8 115.9 114.9 17.8 0 76.82 67.71 1092 2641

Fig. 12. Comparison between 2 cases: “With” and “Without” consistency management.

to the learners’ disagree acknowledgements. Hence, the
learner’s skill level estimation will converge faster to
the real value, and the difficulty level of the distributed
exercises is more appropriate to his/her skills. The result is
that learners can finish all the exercises and with a higher
correctness rate. In contrast, if no mechanism is added to
control the inconsistency between learners and observers,
a non-finished exercise can be perceived as finished, and
vice versa. Skill estimation is less correct: higher or lower
than the real one. There is a higher probability that the
ODL system gives to the learners too difficult or too easy
exercises. That delays skill level progression, making the
learners take more time to terminate the series.

9. Conclusion

In this paper, we presented the situation-based design
methodology and consistency management mechanisms
to handle misunderstandings in interactions. Our
approach is to contextualize the interactions between
actors into situations and add to these basic narrative
blocks consistency management mechanisms split into
three steps: Prologue (data declaration and consistency
verification), Dialogue (interaction unfolding, local
visions synchronization and misunderstanding treatment),

and Epilogue (data update and agreement attainment).
Our aim is to provide a management pattern that
could be systematically used by application designers
or developers that allows them to incorporate their own
verification, synchronization, prevention and tolerance
mechanisms adapted to the specific misunderstandings of
their applications.

We formally modeled the proposed approach using
the Uppaal tool in order to validate important structural
properties. We also applied our methodology to a case
study from an online distant learning project. We built a
simulation of the Individual work situation and integrated
into it the proposed solutions to show how consistency
management operates on a simulation example. From
the experimentation results, we found out that our
mechanisms reduce incoherent data between learners
and observers and improve the performance of exercise
distribution: a shorter session duration, a lower exercise
number, faster required level attainment, etc. Even if the
simulation is simple and does not cover exhaustively all
the possible interactions that can occur in such a situation,
it illustrates the benefits of misunderstanding management
during interaction progression.

The presented work focuses on the architectural and

A situation-based multi-agent architecture for handling misunderstandings in interactions 453

structural part of our approach. Our current research in
progress aims to complete this work from the algorithmic
point of view. We are developing post/pre condition
matching algorithms and multiple criteria based decision
algorithms for situation selection. The first results are
presented in the work of Ho et al. (2014).

References

Barber, H. and Kudenko, D. (2008). Generation of
dilemma-based interactive narratives with a changeable
story goal, International Conference on Intelligent Tech-
nologies for Interactive Entertainment, Cancun, Mexico,
pp. 6:1–6:10.

Behrmann, G., David, A. and Larsen, K. (2004). A tutorial
on Uppaal, in M. Bernardo and F. Corradini (Eds.),
Formal Methods for the Design of Real-Time Systems,
Lecture Notes in Computer Science, Vol. 3185, Springer,
Berlin/Heidelberg, pp. 200–236.

Champagnat, R., Delmas, G. and Augeraud, M. (2010).
A storytelling model for educational games: Heros
interactive journey, International Journal of Technology
Enhanced Learning 2(1): 4–20.

Combefis, S., and Pecheur, C. (2009). A bisimulation-based
approach to the analysis of human-computer interaction,
ACM SIGCHI Symposium on Engineering Interactive
Computing Systems (EICS’09), Pittsburgh, PA, USA,
pp. 101–110.

Dang, K.D., Pham, P.T., Champagnat, R. and Rabah, M.
(2013). Linear logic validation and hierarchical modeling
for interactive storytelling control, in D. Reidsma, H.
Katayose and A. Nijholt (Eds.), Advances in Computer
Entertainment, Lecture Notes in Computer Science, Vol.
8253, Springer, Berlin/Heidelberg, pp. 524–527.

Dey, A.K. (2001). Understanding and using context, Personal
and Ubiquitous Computing 5(1): 4–7.

Dourish, P. (2004). What we talk about when we talk about
context, Personal and Ubiquitous Computing 8(1): 19–30.

Ho, H.N., Rabah, M., Nowakowski, S. and Estrailler, P. (2014).
Trace-based weighting approach for multiple criteria
decision making, Journal of Software 9(8): 2180–2187.

Hommel, B., Pösse, B. and Waszak, F. (2000). Contextualization
in perception and action, Psychologica Belgica
40(4): 227–245.

Jiang, H. (2005). Confidence measures for speech recognition:
A survey, Speech Communication 45(5): 455–470.

Karlsson, B., Ciarlini, A.E.M., Feijo, B. and Furtado, A.L.
(2006). Applying a plan-recognition/plan-generation
paradigm to interactive storytelling, Workshop on AI
Planning for Computer Games and Synthetic Characters
(ICAPS 2006), Cumbria, UK, pp. 31–40.

Karsenty, L. and Botherel, V. (2005). Transparency strategies
to help users handle system errors, Speech Communication
45(3): 305–324.

King, G.G. (2011). General aviation training for automation
surprise, Journal of Professional Aviation Training & Test-
ing Research 5(1): 46–51.

Laprie, J. C., Randell, B., Landwehr, C. and Member, S. (2004).
Basic concepts and taxonomy of dependable and secure
computing, IEEE Transactions on Dependable and Secure
Computing 1(1): 11–33.

Lebowitz, J. and Klug, C. (2011). Interactive Storytelling for
Video Games: A Player-Centered Approach for Creating
Memorable Character and Stories, Focal Press, Waltham,
MA.

Lopez-Cozar, R., Callejas, Z. and Griol, D. (2010). Using
knowledge about misunderstandings to increase the
robustness of spoken dialogue systems, Knowledge-Based
Systems 23(5): 471–485.

Magerko, B. and Laird, J.E. (2004). Mediating the tension
between plot and interaction, AAAI Workshop Series:
Challenges in Game Artificial Intelligence, San Jose, CA,
USA, pp. 108–112.

Paul, R., Charles, D., McNeill, M. and McSherry, D.
(2011). Adaptive storytelling and story repair in a
dynamic environment, in M. Si et al. (Eds.), International
Conference on Interactive Digital Storytelling (ICIDS),
Lecture Notes in Computer Science, Vol. 7069, Springer,
Berlin/Heidelberg, pp. 128–139.

Pham, P.T., Rabah, M. and Estraillier, P. (2011). Handling the
misunderstanding in interactions: Definition and solution,
International Conference on Software Engineering & Ap-
plications (SEA 2011), Singapore, pp. 47–52.

Pham, P.T., Rabah, M. and Estraillier, P. (2013). Agent-based
architecture and situation-based scenario for consistency
management, Federated Conference on Computer Sci-
ence and Information Systems (FedCSIS 2013), Kraków,
Poland, pp. 1065–1070.

Picard, F. and Estraillier, P. (2010). Context-dependent
player’s movement interpretation application to adaptive
game development, Three-Dimensional Image Processing
(3DIP) and Applications, San Jose, CA, USA.

Prigent, A., Champagnat, R. and Estraillier, P. (2005).
Scenario building based on formal methods and adaptative
execution, International Simulation and Gaming Asso-
ciation Conference (ISAGA2005), Atlanta, GA, USA,
pp. 1–19.

Rapaport, W.J. (2003). What did you mean by that?
Misunderstanding, negotiation, and syntactic semantics,
Journal Minds and Machines 13(3): 397–427.

Sehaba, K., Estraillier, P. and Lambert, D. (2005). Interactive
educational games for autistic children with agent-based
system, International Conference on Entertainment Com-
puting (ICEC’05), Sanda, Japan, pp. 422–432.

Silva, A., Raimundo, G. and Paiva, A. (2003). Tell me that
bit again... Bringing interactivity to a virtual storyteller,
in O. Balet, G. Subsol and P. Torguet (Eds.), Virtual
Storytelling. Using Virtual Reality Technologies for Sto-
rytelling, Lecture Notes in Computer Science, Springer,
Berlin/Heidelberg, pp. 1–10.

454 T.P. Pham et al.

Tanenbaum, A.S. and Woodhull, A.S. (2006). Operating
Systems Design and Implementation, Pearson Education,
Upper Saddle River, NJ.

Trillaud, F., Pham, P.T., Rabah, M., Estraillier, P. and Malki, J.
(2012). Situation-based scenarios for e-learning, Interna-
tional Conference on e-Learning (EL 2012), Lisbon, Por-
tugal, pp. 121–128.

Young, R.M., Riedl, M.O., Branly, M. and Jhala, A. (2004). An
architecture for integrating plan-based behavior generation
with interactive game environments, Journal of Game De-
velopment 1(1): 51–70.

Thao Phuong Pham obtained her Ph.D. in
computer science at the L3i Laboratory in La
Rochelle (France) in 2013. Her research domain
refers to interaction consistency management in
interactive systems using situation-based scenar-
ios and fault tolerant techniques. Besides, she ex-
plores other domains such as algorithmic, AI, im-
age processing and software engineering.

Mourad Rabah obtained his Ph.D. in com-
puter science at the LAAS-CNRS Laboratory in
Toulouse (France) in the dependability domain.
Since 2002, he has been an associate professor
at the University of La Rochelle within the L3i
Laboratory. His current work deals with interac-
tive adaptive systems, where the system adapts
its execution to users interactions and behaviors.
He explores the application of fault tolerant tech-
niques in order to improve application scenario

structuring and adaptation decision-making in interactive systems. He is
currently participating in several e-learning projects where the adapta-
tion to learners’ progression is partially based on system traces.

Pascal Estraillier is a full professor at the Com-
puter Sciences Department and the Laboratory
L3i at the University of La Rochelle. He is also
a scientific adviser in the Directorate National
Management of Research and Innovation at the
French Ministry of Research, in charge of the
ICT area. His research concerns the architec-
ture of software components in distributed and
cooperative systems. He applies its results to the
multi-agent paradigm and uses formal specifica-

tion theories in order to validate the behavior and interactions between
components, and to manage interoperability constraints. The results are
mainly applied to games, serious game and e-learning domains in many
international research projects.

Received: 30 June 2014
Revised: 2 December 2014

	Introduction
	Related work
	Misunderstandings in interactions
	Context and the actor's local vision
	Definition of the misunderstanding
	Elements that cause misunderstandings
	Misunderstanding consequences

	How to manage misunderstandings
	Necessary occurrence conditions
	Approaches
	Handling solution

	Proposed agent-based architecture
	Situation-based scenario
	Interactive storytelling approach
	Situation model for scenario structuring
	Situation graph and application execution

	Consistency management model
	Inside the situation structure
	Formal validation in Uppaal
	Element modelling
	Properties validation

	Online distance learning case study
	Individual work situation description
	Agents
	Interaction between agents and consistency mechanisms

	Experimentation results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

