
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 3, 471–482
DOI: 10.1515/amcs-2015-0035

A STRATEGY LEARNING MODEL FOR AUTONOMOUS AGENTS
BASED ON CLASSIFICATION

BARTŁOMIEJ ŚNIEŻYŃSKI a

aDepartment of Computer Science
AGH University of Science and Technology, al. Mickiewicza 30, 30-057 Kraków, Poland

e-mail: Bartlomiej.Sniezynski@agh.edu.pl

In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the
most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification
can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the
agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied
for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement
learning using the farmer–pest domain and configurations of various complexity. In complex environments, supervised
learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge
representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process.

Keywords: autonomous agents, strategy learning, supervised learning, classification, reinforcement learning.

1. Introduction

The most common learning technique used in agent-based
systems to learn strategies is reinforcement learning
(Panait and Luke, 2005; Sen and Weiss, 1999; Tuyls
and Weiss, 2012). Only few works consider application
of classification or, more generally, supervised learning.
Reinforcement learning is a method that allows the
agent to improve its strategy using feedback from the
environment after the agent’s action execution. The
feedback is a scalar value, which represents a quality
of the action. Algorithms of this type are simple,
but the process of learning is relatively slow and
without complicated extensions it is difficult to learn in
environments having large state space (Kaelbling et al.,
1996). This is a result of the curse of dimensional-
ity, a well known problem of dynamic programming
(Bellman, 1957), on which the reinforcement learning
is based. Another disadvantage of this approach is
the difficulty of analyzing the generated knowledge by
humans. The second method of learning often used
in agent-based systems or evolutionary computations
relies on the processing of many agent generations,
improving their performance in subsequent iterations
(Panait and Luke, 2005). The necessity of maintaining

many populations of agents makes it difficult to apply
directly by a single, autonomous agent to learn its strategy
online. Therefore, this type of learning is not considered
here.

Given these observations, the main assertion of this
paper is that supervised classification can be successfully
applied online by autonomous agents to learn their strat-
egy effectively, using their own experience as a source of
training data.

The proposed model is based on artificial intelligence
methods. It goes along the AI approach proposed by
Shoham et al. (2003, pp. 7–8).

Classification is a type of supervised learning which
generates a classifier from training data (a set of labeled
examples). The training data are more than a feedback
needed by reinforcement learning. However, in many
domains the agent is able to create examples from its
observations (Śnieżyński, 2013a). Supervised learning
algorithms are more computationally demanding than
reinforcement learning, but in the proposed solution the
learning algorithm may be executed from time to time
only (e.g., when the agent is idle), and in the tested
domains the size of the training data was small (at most
hundreds of examples).

In our research, we make the following contributions

Bartlomiej.Sniezynski@agh.edu.pl

472 B. Śnieżyński

to the state of the art: we propose a strategy learning
model for autonomous agents based on classification;
we show in experiments that this model can be applied
for strategy generation; we compare the efficiency
of supervised learning and reinforcement learning in
configurations of various complexity and show that, in
a complex environment, supervised learning can improve
the performance of agents much faster that reinforcement
learning.

In the first part of the paper an overview of
the most important research results in the area of
agent-based systems in the context of machine learning
is provided. Against this background, the model allowing
autonomous agents to generate their strategy with the use
of classification is presented.

To cover cases with delayed results, the basic model
is extended using the time window approach. An
algorithm is defined to choose the action for execution.

Having the basic and extended models introduced,
experimental results are presented. The effectiveness
of learning agents using the proposed model and
reinforcement learning are compared through the
farmer–pest problem (Śnieżyński and Dajda, 2013)
in several configurations characterized by growing
complexity, for both immediate and delayed cases.
The results show that the model proposed allows more
rapid improvement of the agent’s efficiency than the
reinforcement learning approach. What is more, the
learned strategy is described by the knowledge, which has
a readable form.

The paper ends with concluding remarks
summarizing the results and providing an outline of
the most important contributions. Finally, directions for
future research are given.

2. Related research

A good survey of learning in multi-agent systems working
in various domains can be found in the works of Panait
and Luke (2005), Sen and Weiss (1999) as well as
Tuyls and Weiss (2012). The most popular learning
technique applied is reinforcement learning (Sutton and
Barto, 1998). The learning agent model assumes that the
agent interacts with the environment in discrete steps, sets
its state s by observing the environment, executes actions
and receives a reward r � R. The reward is high if actions
are good, and low if they are bad. The agent has to learn
which action should be executed in a given state. The
formal model of learning is based on a Markov process.

A lot of algorithms have been developed for
this model. In the experiments we use the SARSA
algorithm (Rummery and Niranjan, 1994). The strategy
is represented by a function Q that estimates the quality
value of the action in a given state: Q : Act � S � R,
where Act is a set of actions and S is a set of possible

states. Knowing the current state st � S and using its
current strategy, the agent chooses an appropriate action
at � Act. Usually, action with the highest Q value
is chosen. Next, using reward rt obtained from the
environment, the next state description st�1 � S, and the
action at�1 � Act that will be next executed, it updates
the Q function:

Δ :� rt � γQ�at�1, st�1� �Q�at, st�, (1)

Q�at, st� :� Q�at, st� � βΔ, (2)

where γ � 	0, 1
 is a discount rate (importance of
the future rewards) and β � 	0, 1
 is a learning rate.
The reward characteristics depend on the problem. It
represents the quality of the action. It has a high value
in the case of achieving a goal, and low in the case of a
failure.

To speed up the learning process, various techniques
are developed. One of them is the temporary differences
mechanism TD(λ � 0) (Watkins, 1989), which updates
not only the last state but also those visited recently. The
parameter λ � 	0, 1
 is a recency factor. The values close
to zero mean that traces are very short.

In reinforcement learning, various techniques are
used to prevent computations from getting stuck into a
local optimum. The idea is to explore the solution space
better by choosing nonoptimal actions from time to time
(e.g., random or not performed in a given state yet). In
Boltzmann selection (Sutton and Barto, 1998) instead of
selecting the action with the highest value, the action a�

is selected in state s with probability P �a�, s� calculated
according to the following formula:

P �a�, s� �
eQ�a

�,s��τ�
a e

Q�a,s��τ
, (3)

where τ � 0 is a temperature parameter. High values
of τ make the probability of all actions almost the same,
regardless their quality.

Supervised learning allows generating an
approximation of some function f : X � Cat
which assigns labels from the set Cat to objects from
set X . To generate knowledge, a supervised learning
algorithm needs labeled examples which consist of pairs
of f arguments and values. If the size of Cat is small,
like in this research, the learning is called classification,
Cat is the set of classes (categories), and the learned
approximation of f is called the classifier.

In the experiments we use three supervised learning
algorithms: naı̈ve Bayes (NB), C4.5 and RIPPER. NB is
a simple probabilistic classifier, in which every attribute
describing examples depends on the category. Learning
is a process of calculation of a priori and conditional
probabilities. C4.5 is a decision tree learning algorithm
developed by Quinlan (1993). The basic idea of learning
is as follows. The tree is learned from examples

A strategy learning model for autonomous agents based on classification 473

recursively. If (almost) all examples in the training data
belong to one class, the tree consisting of the leaf labeled
by this class is returned. Otherwise, the best attribute for
the test in the root is chosen (using the entropy measure),
training examples are divided according to the selected
attribute values, and the procedure is called recursively
(for every attribute test result with the rest of attributes and
appropriate examples as parameters). RIPPER, developed
by Cohen (1995), generates decision rules instead of trees.
The classifier is represented by an ordered list of rules
which have conjunction of tests on attribute values in the
premise part and a class in a conclusion. During the
growing phase, rule preconditions are extended by adding
a new test to premises to give right decisions on training
examples. After growing, the pruning phase is executed
to avoid overfitting. In this phase, tests are removed from
preconditions.

Reinforcement learning has been applied in many
domains. One of them is the predator–prey domain. It
is a simple simulation with two types of agents: predators
and preys. The aim of a predator is to hunt a prey. The
prey is captured if the predator (or several predators if
cooperation is tested) is close enough. In the work of
Tan (1993), predator agents use reinforcement learning
to learn a strategy minimizing time to catch a prey.
Additionally, agents can cooperate by exchanging sensor
data, strategies or episodes.

Another environment is a grid world (Sutton, 1990),
in which an agent can move vertically or horizontally and
has to arrive to the goal state walking around obstacles.
Extensions to this environment are added to make it
more complex. For example, in the work of Lin (1992),
energy sources and enemies are added. Also the taxi
domain (Dietterich, 2000) can be considered an extension
in which an agent has to transport passengers between
selected locations.

In complex domains, reinforcement learning
suffers from a computational problem caused by
the large state space. Therefore, various techniques
are proposed, like state generalization with the use
of approximators, e.g., neural networks (Zhang
and Dietterich, 1995), hierarchical decomposition
(Dietterich, 2000), or Q-decomposition (Russell and
Zimdars, 2003). Application of these methods makes the
model much more complex. Another solution is proposed
by Bazzan et al. (2011). Low-level agents are supervised
by tutors that observe low-level agents. Supervisors
store tuples representing joint states, actions and average
rewards. Using this basis, they recommend actions to
low-level agents. This allows agents to learn how to
cooperate.

Many agent models and architectures have been
developed so far (Wooldridge, 2009). An example of
classification of models can be found in the work of
Russell and Norvig (2009), where the following types

are distinguished: a simple reflex agent, a model-based
reflex agent, a goal-based agent, a utility-based agent and
a general learning-agent. Only the last one is adaptable
and similar to the solution proposed in this paper. The
model proposed below is more specific because of the
assumed supervised learning. A common architecture is
BDI (belief-desire-intention) (Rao and Georgeff, 1991),
in which beliefs represent the agent’s current knowledge,
desires represent its current objectives, and intentions
represent the current goals that are chosen to be achieved
by the agent.

There are few works on supervised learning
applications in multi-agent systems. Some of them are
discussed below. Rule induction is used in multi-agent
solutions for vehicle routing problems (Gehrke and
Wojtusiak, 2008). However, in this work, learning is done
off-line. First, rules are generated by the AQ algorithm
(the same as used in this work) from global traffic data.
Next, agents use these rules to predict traffic. There is an
extension of this work (Śnieżyński et al., 2010). Agents
use a hybrid learning algorithm. Rule induction is used
to decrease the size of the search space for reinforcement
learning.

Airiau et al. (2008) add learning capabilities to
the above-mentioned BDI model (Singh et al., 2010).
Decision tree learning is used to support plan applicability
testing. Each plan has its own decision tree to test if it
may be used in a given context. As a result, plans may
be modified by providing additional conditions limiting
their applicability. The knowledge learned has an indirect
impact on the agent strategy because it has influence on
the probability of choosing plans for execution.

In the work of Barrett et al. (2012) the C4.5
algorithm is used by the agent to build a model of
teammates. Here also the predator–prey environment is
used in experiments. A similar problem is discussed by
(Hernandez-Leal et al., 2013), with the agent building
models of other agents that change its strategy. Here also
the C4.5 algorithm is used, but it is combined with an
MDP (Markov decision process).

There are several works in which inductive logic
programming (ILP) is applied. There is a good
background paper considering machine learning and
especially ILP for multi-agent systems (Kazakov and
Kudenko, 2001). Supervised learning (the subject of
this paper) can be considered a special case of ILP,
where a simple logic program defining one predicate
only is learned. ILP shows its advantage over
classical rule induction in complex domains, whereas
most multi-agent applications are relatively simple
(conclusions of Kazakov’s work). Therefore, supervised
learning seems to be enough in most cases.

This work is based on several previous works (e.g.,
Śnieżyński, 2013a; 2013b; Śnieżyński and Dajda, 2013),
in which supervised learning was applied to generate the

474 B. Śnieżyński

agent’s strategy. However, in these papers, no formal
model was defined. There were also no experiments with
delayed action results and the entropy measure.

3. Model

A general idea of the model is presented in Fig. 1.
The learning agent observes the environment and the
observation is represented by percepts. The processing
module has three main tasks: it updates the agent’s current
state, stores experience in the training data base and
chooses an action to be executed by applying a classifier to
an example representing the current percepts and the state.
The classifier represents the agent’s knowledge about the
efficient strategy. It is generated by a supervised learning
algorithm from the training data representing the agent’s
experience.

Fig. 1. Idea of the strategy learning model for autonomous
agents.

3.1. Formal model. Let Per and Act represent sets of
possible percepts and actions, respectively. S represents
the set of the agent’s states. The state may contain some
information about past events.

To define how the experience is expressed, we use the
following notation. The learning domain is represented by
examples x � X . Examples are described by attributes
A � �a1, a2, . . . , an�, where ai : X � Di, and Di is a
domain of attribute ai. Therefore, attribute values xA �
�a1�x�, a2�x�, . . . , an�x�� � XA are used instead of x.
Every example x may be assigned to one of the categories:
cat�x� � Cat. Because we consider classification, we
assume that �Cat� is small. The experience is defined as a
set of all possible labeled examples:

Exp �
�xA, cat�x���. (4)

The experience is used as input data for a learning
algorithm L : 2Exp � C, which generates a classifier
c � C. The classifier is used to assign the category to a
given example: c : XA � Cat.

The agent’s strategy learning model based on
classification (SLMc) may be defined as the following
tuple:

SLMc � �Per,Act, A,Exp, P, L, Tt, ct, st, s0, pert�,
(5)

where the first four symbols are defined above, P is the
processing module,L is the learning algorithm, Tt � Exp
is the current training data (in time stamp t), ct � C is
the current classifier, st, s0 are current and initial states,
respectively, and pert � Per are current percepts.

Taking into account the main tasks, the processing
module P may be decomposed into the following three
components:

P � �SU,EG, SM�. (6)

SU : Per, S,Act � S is a state update function
used to determine the next internal state of the agent,
taking into account percepts, the previous state and the
last executed action.

EG : Per, S � Exp is an experience generator,
which transforms percepts and the current state into a
labeled example, which may be stored in the training data.
It may be decomposed into two functions: description
D : Per, S � XA describing percepts and the state by
attributes, and category determination CD : Per, S �
Cat, which chooses a category for the example, usually
taking into account the observed results of the action
chosen in the previous step or in the past.

SM : Per, S � Act is a strategy module, which
uses the classifier ct to choose the best action. Two
approaches are considered in the model:

• Decision class (DC): category represents an action
to be executed. Such a solution can be applied,
when the number of actions to choose from is small.
To choose the action for execution, SM applies
description D to pert and st, and uses the classifier
ct to determine the action for the example xA

t �
D�pert, st�.

• Quality class (QC): the category represents the
quality of action. In experiments, two categories are
used: Cat �
good, bad�. If rewards are continuous,
success may be defined as a reward above a certain
threshold. In case of the QC, attributes A are
used to describe percepts, the current state and the
action. The QC approach fits environments in which
the number of actions is high (see, e.g., Śnieżyński
and Kozlak, 2005) or there are delays in observable
action results (see the next subsection). To choose
the action for execution, SM prepares examples

A strategy learning model for autonomous agents based on classification 475

xA
ai
� D�pert, sai� for every analysed action ai �

Act: the previous action stored in st is replaced by
ai. Classifier ct is used to classify all xA

ai
and SM

chooses the action which has the best quality (the
highest certainty of the good category). A classifier
that is able to return the certainty of categories for a
given example is needed in QC.

The SM definition should also contain some
exploration strategy.

An integral part of the model is the algorithm of
the agent, which is presented as Algorithm 1. At the
beginning, the values of the current state (st), training
data (Tt) and classifier (ct) are initialized. Variable act
representing an action from the previous round is set to
the null value. In the loop current observations variable
is set (pert). Next, state update function (SU) is used to
calculate the current state value (st). An example is added
to Tt (Lines 7–9) if action results are interesting to the
agent, which depends on the application. In some domains
(like in the one described below), all examples are stored.
In other domains, some examples may be omitted, like in
Fish–Banks (Śnieżyński and Kozlak, 2005), where only
these actions that give very high or very low income are
considered interesting. If the classifier is empty (Line 11),
the action is random. Else, the action act is chosen using
the strategy module (SM) and it is executed. Finally,
from time to time (or when the agent is idle) the current
classifier is updated (Line 17) using the learning algorithm
(L) and training data (Tt).

The proposed model makes the strategy learning
efficient even in environments with a large state space,
because the computational complexity of supervised
learning grows slower with the number of attributes than
reinforcement learning, where adding one dimension to
the state space causes exponential growth. What may be
also important in some domains, if a symbolic knowledge
representation is applied in the classifier (e.g., the decision
tree or rules), it is also possible to analyze the generated
strategy by humans.

3.2. Delayed rewards. Application of SLMc in
environments in which results of action executions are
observable immediately is straightforward. To cover cases
with delayed results, an appropriate state representation
using the time window should be applied. Also, a specific
algorithm in SM should be used to choose the action
for execution. An important part of the algorithm is the
estimation of the impact of action variation (for a given
range of time distances between action execution and the
observed effects) on certainties of categories. The impact
may be measured using entropy or maximal dispersion.

When a time window of size dt is used, the sequence
of percepts and actions executed (of the length dt) are
stored in the state. Therefore, every example x in time

Algorithm 1. Algorithm of the learning agent.

Require: Agent model MSLMc � �Per,Act, A,Exp,
P,L, Tt, ct, st, s0, pert�, where P � �SU,EG, SM�

1: st :� s0
2: Tt :� �
3: ct :� null; act :� null
4: while agent is alive do
5: pert :� observations of the environment
6: st :� SU�pert, st, act�
7: if results of the previous action are interesting then
8: ex :� EG�pert, st�
9: Tt :� Tt �
ex�

10: end if
11: if ct � null then
12: act:= random action
13: else
14: act :� SM�pert, st�
15: execute act
16: if it is learning time (e.g., every 100 steps) then
17: ct :� L�Tt�
18: end if
19: end if
20: end while

stamp t represents a sequence and we use the following
notation:

X � ��xt � �xt, xt�1, . . . , xt�dt�1�. (7)

Every xi in the sequence is described by attributes A:

xA
i � �a1�xi�, a2�xi�, . . . , an�xi�, a�xi��. (8)

For simplicity, we assume that the last attribute a�xi� �
Act represents an action executed in time step i. However,
several attributes may be also used to describe the action.
Categories Cat �
good, bad� are used to represent
a success or failure of executing actions a�xi� in the
sequence ��xt .

Because the QC approach is applied, the agent needs
a classifier c � C, which for a given sequence ��xt returns
the certainty of a given category y: c���x A

t , y� � 	0, 1
.
The classifier should be also able to work with unknown
attribute values.

SM has to select the best action act� � Act for
the current time t using ct (Algorithm 1, Line 14). We
propose to apply a special algorithm for SM (Algorithm
2). It works as follows:

1. Prepare ��xt by setting all attributes describing the
current and previous states and leaving action
attributes unknown. If t � dt, then attributes
describing non-existing states are also set to
unknown value (Lines 1–5).

476 B. Śnieżyński

2. Consider consecutive possible delays. Variable
��x act

delay is equal to ��xt with state and percepts
descriptions moved back delay steps and filling
newer time steps with an unknown values. Calculate
δdelay representing the entropy (or dispersion) of
certainties of positive class for various actions
executed with assumed delay (Lines 6–16).

3. Find delay del� for which δdelay suggests the highest
impact of the action change (Lines 17–21).

4. Check the certainty of the category good for various
actions substituted at assumed del� delay and return
the one with the highest certainty (Lines 22–23).

4. Testing environment

We tested the proposed model on a farmer–pest problem1.
This environment borrows the concept from a specific
aspect of the real world, in which farmers struggle to
protect their fields and crops from pests. Each farmer
(this is the only type of agent in the problem) can manage
multiple fields. On each field, multiple kinds of pests can
appear. Each pest has a type assigned and a specific set
of attributes e.g., the number of legs or the color. The
values of these attributes depend on the pest type. To
protect the field, the farmer can take advantage of multiple
means (e.g., pesticides) called actions. However, each
pest type has different resistance to each farmer’s actions
(hereinafter referred to as the resistance matrix). Usually,
the problem is time-limited to a discrete number of turns.
In every turn an agent can execute one action only. This
makes simple strategies like applying all actions for every
pest inefficient.

The key assumption here is that the farmer agent is
not aware of the possible types of pests nor the resistance
matrix. What he/she can see are the pests’ attributes.
Based on them, he/she needs to learn how to recognize
different pest types. To learn the resistance matrix, the
agent needs to experiment with different actions and
observe their effects (i.e., whether or not the pest dies).
To make the problem more complicated, the effects are
not always immediate and they depend on the resistance
matrix. The resistance of the specific pest type to a
specific action is evaluated by the time after which the
pest dies (the pest’s immunity to the action is evaluated
as infinite time). Pests can also have a maximum life-span
after which they die regardless of the agent’s actions. This
maximum life span is called the alive time.

The problem can be further extended by introduction
of deviations to the observed values of the pests’ attributes

1The proposed approach was also applied in other problems
(Śnieżyński, 2013a; 2014); however, this was done before the formal
model was formulated.

Algorithm 2. Strategy module algorithm (SM) for
delayed rewards.
Require: ct � C, pert � Per, st � S, avm �

entr, disp� representing a method used to measure
action variation

Ensure: act� � Act is the best action for given current
state and perception calculated using ct classifier

1: ��xt :� D�pert, st�; therefore ��xt has a form of

�
��
xA
t ,
���
xA
t�1, . . . ,

������
xA
t�dt�1�

2: if t � dt then
3: Fill attributes representing earlier time steps in ��xt

with unknown values
4: end if
5: Substitute attributes representing actions in ��xt by

unknown values
6: for delay :� 0 to dt� 1 do
7: for all act � Act do
8: ��x act

delay :� �uA
1 , u

A
2 . . . , uA

delay,
��
xA
t ,
���
xA
t�1, . . .,

����������
xA
t�dt�1�delay�, where uA

i means that all
attributes have unknown values at position i

9: In ��x act
delay set action at position delay � 1 equal

to act
10: end for
11: if avm � entr then
12: δdelay :�

�
a
ct���x

a
delay, good� log2 ct�

��x a
delay, good�

{Actions with certainty of good category equal
to zero are omitted in the sum}

13: else
14: δdelay :� max

a
ct���x

a
delay , good� �

min
a

ct���x
a
delay, good�

15: end if
16: end for
17: if avm � entr then
18: del� :� arg min

delay
δdelay

19: else
20: del� :� arg max

delay
δdelay

21: end if
22: act� � argmax

act
ct���x

act
del� , good�

23: return act�

or limiting the number of attributes the farmer agent can
see.

In multi-agent systems, cooperation between agents
is an important issue. The proposed environment offers
several types of cooperation which can be taken into
account. Some types of pests can attack several farms and
the same action should be simultaneously executed in all
of them to eliminate vermins. We can demand help-action
execution by other agents to kill specific pests. Of course,
such an extension makes the environment harder, because
some synchronization mechanism is necessary.

A strategy learning model for autonomous agents based on classification 477

Another interesting aspect is the communication
between farmer agents which allows them to exchange
obtained knowledge, in this way improving their
efficiency in fighting the pests. It is also a kind of
cooperation.

Beside various configuration dimensions, the
problem offers a flexibility in defining the goals and
end-conditions as well. For example, the typical goal
will be to kill as many pests as possible or to maintain
the highest sum of time periods in which there were no
pests on the fields. As for the end-condition, it can be
defined in terms of time (given the time period or number
of turns in case of discrete timing), results (reaching
a specific number of kills) or other properties (e.g., a
limited number of actions will enforce the farmer agent to
optimize his/her choices).

The strategy learning model for this environment
with immediate action results can be defined as
follows. Pests are described by pest attributes Ap �
�ap1, a

p
2 . . . a

p
n�, where api has a domain Dp

i . The agent
also observes if pests were killed last time, which is
represented by pk � PK �
y, n�. Hence, percepts are
values of these attributes and pk: Per �

�
i D

p
i � PK ,

Act �
act1, act2, . . . actm�. If there are no delays in
action results, then the state may represent the last action
only: S � Act, and state update replaces the previous
action: SU�per, s, a� � a. We use the QC approach,
and therefore examples will be described by percepts (pest
attributes) and action: A � �Ap, Act�, and categories
Cat �
good, bad� are used. As a result, experience
Exp �

�
iD

p
i �Act� Cat.

Example generation is straightforward: EG is the
defined by description, which simply omits pk: D�per �
�v1, v2, . . . , vn, pk�, s� � �v1, v2, . . . , vn, s�, and by
category determination, which depends on pk:

CD�per � �v1, v2, . . . , vn, pk�, s�

�

�
good if pk � y,

bad if pk � n.

(9)

SM applies ct to per and all actions, and returns the
action which gets the highest certainty of good category. If
action results are delayed, SM is defined in Algorithm 2.
The Boltzmann selection method is used for exploration.
The learning algorithm L is any supervised learning
algorithm which gives, in the result, classifier c that, for a
given example, returns certainties of categories, and works
with unknown attribute values.

5. Experiments

The objective of experiments is to show that the proposed
strategy learning model based on classification improves
agents’ effectiveness and to compare the learning speed
with reinforcement learning. Using the farmer–pest

problem, we are able to make experiments in various
conditions: in chosen state-space sizes, with and without
delays, using simple and complex dependencies between
pest attributes and their types. We analyze how
quickly agents improve their performance and show that
various conditions favor different learning algorithms,
and the proposed model may improve results faster than
reinforcement learning.

Four learning agents take part in every experiment.
They use reinforcement learning (SARSA) and the
proposed strategy learning model, for which three types
of learning algorithm (L) are tested: naı̈ve Bayes, C4.5 or
RIPPER. Their results are compared with those obtained
by the fifth agent that executes random actions. Pests are
described by four attributes. The number of actions is the
same as that of pest types p: Act �
act1, act2, . . . actp�,
and every pest pk of type k can be killed by actk only after
d turns.

Data were collected by running simulation software
developed in Java (Weka’s J48 and JRip implementations
of C4.5 and RIPPER were used)2. Every experiment
consists of 100 simulations. Every simulation consists
of 20 consecutive games. 80�d pests may appear in
every game. Knowledge of agents is preserved from
game to game, although it is cleared between simulations.
Supervised learning is executed between games while
reinforcement learning is performed after every turn. In
the experiments we check how the performance of agents,
measured by eliminated pests, changes during simulation.
The figures present the efficiency (performance) of agents
defined as means of numbers of pests eliminated by every
agent in consecutive games.

Agents applying supervised learning are
implemented using the proposed model (and
Algorithm 1). Algorithm 2 is used for action choice
in the strategy module (SM).

Three experiments with various configuration
settings were performed. Action variation was measured
using dispersion or entropy. Action at eliminated the pest
pt after delay d � 1. In all experiments we used a time
window of size dt � 8.

Tuning learning algorithms’ parameters. To choose
the best configurations for all algorithms and make the
comparison fair, the learning algorithm parameters were
tuned using the hill-climbing algorithm. For every set
of parameters considered, its score was calculated as the
average efficiency of the learning agent in the last round
in simulation executed 100 times. Simulation used the
simple environment described below in Experiment 1, but
d was equal to four. The following parameter values
obtained the best score for SARSA: λ � 0.9, γ �

2The software and settings necessary to run the experiments are avail-
able from the author on an e-mail request.

478 B. Śnieżyński

0.8, β � 0.3, τ � 0.05. For supervised learning
algorithms, only τ had to be tuned: for Naı̈ve Bayes
τ � 0.15, for C4.5 τ � 0.15 and for RIPPER τ � 0.1.
These values were used in all experiments.

Experiment 1: Action variation measures compari-
son. This experiment is designed to compare two action
variation measures used in the strategy module (SM):
entropy and dispersion. We use two environments: simple
and complex. The time window size was equal to the
delay: dt � d � 8.

In the simple environment, pests are described by
four attributes with discrete values. Every pest pk of type
k has its unique values of all attributes a1, a2, a3, a4:

ai�p
k� � 10k, i � 1, . . . , 4, k � 1, . . . , 8. (10)

It is possible to recognize every type using any of
the attributes. In the complex environment, attributes
with domains of size two or three are used. The
attribute values are presented in Table 1. As we can
see, distributions are chosen in such a way that no single
attribute can be used to recognize the pest type. Tests on
several attributes are necessary. Two configurations of the
complex environment are used: with four pests (Type 1–4)
and for eight pests. In both d � dt � 8.

Table 1. Pest’s attribute values for the complex environment.
Pest size legsno speed jump
type 40 10 40 30 40 20 10 40 20 10

1 x x x x
2 x x x x
3 x x x x
4 x x x x
5 x x x x
6 x x x x
7 x x x x
8 x x x x

Two agents use the dispersion measure (JRip, J48)
and two use entropy (JRip Entropy, J48 Entropy).

The results are presented in Fig. 2. One can notice
that for four pest types (b) the learning process is faster
than for eight pest types (a) and (b). The reason is
that there are fewer possible pest descriptions and fewer
possible actions to try (equal to the number of pest types).

In all configurations, the JRip-Entropy agent learns
faster than JRip-Dispersion. In the fifth game the
difference is statistically significant (using the t-test,
at p � 0.05). J48 yield similar results for both
measures. Therefore, in the following experiments the
action variation was measured using entropy.

Experiment 2: Simple environment. In this
experiment simple environment described above was
used. To compare learning algorithms in various

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

JRip Entropy
JRip

J48 Entropy
J48

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

JRip Entropy
JRip

J48 Entropy
J48

(b)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

JRip Entropy
JRip

J48 Entropy
J48

(c)

Fig. 2. Means of numbers of pests eliminated by every agent in
consecutive games in Experiment 1 for simple configu-
ration (a), complex configuration and four pests (b) and
eight pests (c).

conditions, three values of d were used in the experiments:
2, 4 and 8.

The results are presented in Fig. 3 (a)–(c). The
random agent and NB agent have poor results. The

A strategy learning model for autonomous agents based on classification 479

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

Naive Bayes
Sarsa

J48
JRip

Random

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

Naive Bayes
Sarsa

J48
JRip

Random

(a) (d)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

Naive Bayes
Sarsa

J48
JRip

Random

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

Naive Bayes
Sarsa

J48
JRip

Random

(b) (e)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

Naive Bayes
Sarsa

J48
JRip

Random

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14 16 18 20 22

po
in

ts

game

Naive Bayes
Sarsa

J48
JRip

Random

(c) (f)

Fig. 3. Means of numbers of pests eliminated by every agent in consecutive games in Experiment 2 for d � 2 (a), d � 4 (b) and d � 8
(c), and in Experiment 3 for d � 2 (e), d � 4 (f) and d � 8 (g).

explanation for NB is simple. This model is not able to
take into account the dependency between state attributes
and action attributes, which is crucial in the proposed
model with delays. The remaining learning agents
perform much better. If d is larger, the learning process

is slower. For SARSA, the difference is especially
noticeable. For d � 2 (a), SARSA is almost as fast as C4.5
and outperforms RIPPER. For d � 4 (b) it is slower than
C4.5 and RIPPER, but finally the results are still good.
In the case of d � 8 (c), SARSA is not able to achieve

480 B. Śnieżyński

as good results as the two supervised algorithms in the
observed time and the difference is statistically significant
(using the t-test, at p � 0.05). The state space is too large.
At the beginning (first several games), SARSA is worse
than the random choice and NB. In the second game,
the difference is statistically significant (using the t-test,
at p � 0.05). This shows that reinforcement learning
needs more trials to avoid a false local optimum. In this
experiment in the last game RIPPER and C4.5 are always
better than the random choice and NB, and the difference
is significant (using the t-test, at p � 0.05).

Experiment 3: Complex environment. In this
experiment the complex environment from Experiment 1
was used. Three values of d were used in experiments: 2,
4 and 8. Action variation was measured using entropy.

The results for the complex environment are
presented in Fig. 3(d)–(f). NB is not working again. The
less d, the better results can be finally achieved. For d � 2
(d), C4.5 and SARSA learn quickly and outperform other
agents (the result is statistically significant at p � 0.05).
For d � 8 (f), C4.5 is statistically better than others (at
p � 0.05) and RIPPER is better than SARSA. Again,
during the initial games, one may observe very poor
results of SARSA (even worse than the random choice).

Comparing the results for both environments, we
can observe that a change in the environment complexity
affects the RIPPER algorithm more than SARSA and
C4.5. For the same d, SARSA has similar learning speed
in both cases. This is caused by the tabular Q-function
representation, which has the same performance for both
cases. C4.5 is only slightly slower for the complex
environment. This classifier is able to separate classes
well even in more complex environment. The RIPPER
classifier has a worse accuracy for the second one.

6. Conclusion and further research

In this paper we present a model of agent strategy
generation using supervised learning. We compared
the performance of the reinforcement and supervised
learning algorithms: SARSA, naı̈ve Bayes, C4.5 and
RIPPER in the farmer–pest problem, which is a scalable
multi-dimensional problem domain for testing agent
learning algorithms. This environment provides numerous
configurable dimensions, which enables preparation of
different testing conditions.

The experimental results show that supervised
learning provides efficiency improvements faster than
reinforcement learning. When actions have delayed
results, naı̈ve Bayes cannot be used for learning because
of the attribute independence assumptions. In such
conditions, SARSA has poor results during several initial
games (worse than the random choice).

For simple environments, in which any attribute
value allows choosing the right action, every learning
algorithm produces fast improvements, unless the reward
delay d is too large (it is a problem especially for SARSA).
If the environment is more difficult, when it happens
that the agent should take into account values of several
attributes to choose an appropriate action, and d is not
small (d � 4), the C4.5 and RIPPER supervised learning
algorithms perform better than SARSA.

It should be noted that, when the knowledge
learned by agents should be interpreted by humans,
supervised learning algorithms with symbolic knowledge
representation should be preferred (if this gives acceptable
results). Knowledge stored during the learning process
can have a form which makes it possible to be interpreted
by a human. Especially decision rules or trees are good
choices.

Future work will be concentrated on the execution of
experiments with more algorithms. Another aspect of the
work will be the extension of testing environment to cover
cooperation between agents and delays in action results.
Symbolic knowledge representation makes it possible
to take into account complex dependencies between
environment attributes and decisions to be made. Next,
we are planning other applications like resource allocation
(Cetnarowicz and Drezewski, 2010).

Acknowledgment

The research presented in this paper was supported by the
Polish Ministry of Science and Higher Education under
the AGH University of Science and Technology grant no.
11.11.230.124.

References
Airiau, S., Padham, L., Sardina, S. and Sen, S. (2008).

Incorporating learning in BDI agents, Proceedings of the
ALAMAS+ALAg Workshop, Estoril, Portugal.

Barrett, S., Stone, P., Kraus, S. and Rosenfeld, A. (2012).
Learning teammate models for ad hoc teamwork, AA-
MAS Adaptive Learning Agents (ALA) Workshop, Valencia,
Spain.

Bazzan, A., Peleteiro, A. and Burguillo, J. (2011). Learning
to cooperate in the iterated prisoners dilemma by means
of social attachments, Journal of the Brazilian Computer
Society 17(3): 163–174.

Bellman, R. (1957). Dynamic Programming, A Rand
Corporation Research Study, Princeton University Press,
Princeton, NJ.

Cetnarowicz, K. and Drezewski, R. (2010). Maintaining
functional integrity in multi-agent systems for resource
allocation, Computing and Informatics 29(6): 947–973.

Cohen, W.W. (1995). Fast effective rule induction, Proceedings
of the 12th International Conference on Machine Learning
(ICML’95), Tahoe City, CA, USA, pp. 115–123.

A strategy learning model for autonomous agents based on classification 481

Dietterich, T.G. (2000). Hierarchical reinforcement learning
with the MAXQ value function decomposition, Journal of
Artificial Intelligence Research 13: 227–303.

Gehrke, J.D. and Wojtusiak, J. (2008). Traffic prediction for
agent route planning, in M. Bubak et al. (Eds.), Com-
putational Science—ICCS 2008, Part III, Lecture Notes
Computer Science, Vol. 5103, Springer, Berlin/Heidelberg,
pp. 692–701.

Hernandez-Leal, P., Munoz de Cote, E. and Sucar, L.E. (2013).
Learning against non-stationary opponents, Workshop on
Adaptive Learning Agents, Saint Paul, MN, USA.

Kaelbling, L.P., Littman, M.L. and Moore, A.W. (1996).
Reinforcement learning: A survey, Journal of Artificial In-
telligence Research 4: 237–285.

Kazakov, D. and Kudenko, D. (2001). Machine learning and
inductive logic programming for multi-agent systems, in
M. Luck et al. (Eds.), Multi-Agent Systems and Applica-
tions, Springer, Berlin/Heidelberg, pp. 246–270.

Lin, L.-J. (1992). Self-improving reactive agents based on
reinforcement learning, planning and teaching, Machine
Learning 8(3–4): 293–321.

Panait, L. and Luke, S. (2005). Cooperative multi-agent
learning: The state of the art, Autonomous Agents and
Multi-Agent Systems 11(3): 387–434.

Quinlan, J. (1993). C4.5: Programs for Machine Learning,
Morgan Kaufmann, San Francisco, CA.

Rao, A.S. and Georgeff, M.P. (1991). Modeling rational
agents within a BDI-architecture, in J. Allen, R. Fikes
and E. Sandewall (Eds.), Proceedings of the 2nd Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, Morgan Kaufmann: San Mateo, CA,
pp. 473–484.

Rummery, G.A. and Niranjan, M. (1994). On-line q-learning
using connectionist systems, Technical report, Cambridge
University, Cambridge.

Russell, S.J. and Zimdars, A. (2003). Q-decomposition for
reinforcement learning agents, Proceedings of the 20th
International Conference on Machine Learning (ICML-
2003), Washington, DC, USA, pp. 656–663.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A
Modern Approach, 3rd Edn., Prentice-Hall, Upper Saddle
River, NJ.

Sen, S. and Weiss, G. (1999). Learning in Multiagent Systems,
MIT Press, Cambridge, MA, pp. 259–298.

Shoham, Y., Powers, R. and Grenager, T. (2003). Multi-agent
reinforcement learning: A critical survey, Technical report,
Stanford University, Stanford, CA.

Singh, D., Sardina, S., Padgham, L. and Airiau, S. (2010).
Learning context conditions for BDI plan selection,
Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, Toronto,
Canada, pp. 325–332.

Śnieżyński, B. (2013a). Agent strategy generation by rule
induction, Computing and Informatics 32(5): 1055–1078.

Śnieżyński, B. (2013b). Comparison of reinforcement and
supervised learning methods in farmer–pest problem
with delayed rewards, in C. Badica, N.T. Nguyen and
M. Brezovan (Eds.), Computational Collective Intelli-
gence, Lecture Notes in Computer Science, Vol. 8083,
Springer, Berlin/Heidelberg, pp. 399–408.

Śnieżyński, B. (2014). Agent-based adaptation system for
service-oriented architectures using supervised learning,
Procedia Computer Science 29: 1057–1067.

Śnieżyński, B. and Dajda, J. (2013). Comparison of strategy
learning methods in farmer–pest problem for various
complexity environments without delays, Journal of Com-
putational Science 4(3): 144 – 151.

Śnieżyński, B. and Kozlak, J. (2005). Learning in a multi-agent
approach to a fish bank game, in M. Pchouek, P. Petta
and L.Z. Varga (Eds.), Multi-Agent Systems and Applica-
tions IV, Lecture Notes in Computer Science, Vol. 3690,
Springer, Berlin/Heidelberg, pp. 568–571.

Śnieżyński, B., Wojcik, W., Gehrke, J.D. and Wojtusiak, J.
(2010). Combining rule induction and reinforcement
learning: An agent-based vehicle routing, Proceedings of
the International Conference on Machine Learning and
Applications, Washington, DC, USA, pp. 851–856.

Sutton, R. and Barto, A. (1998). Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learn-
ing), The MIT Press, Cambridge, MA.

Sutton, R.S. (1990). Integrated architecture for learning,
planning, and reacting based on approximating dynamic
programming, Proceedings of the 7th International
Conference on Machine Learning, Austin, TX, USA,
pp. 216–224.

Tan, M. (1993). Multi-agent reinforcement learning:
Independent vs. cooperative agents, Proceedings of the
10th International Conference on Machine Learning,
Amherst, MA, USA, pp. 330–337.

Tuyls, K. and Weiss, G. (2012). Multiagent learning: Basics,
challenges, and prospects, AI Magazine 33(3): 41–52.

Watkins, C.J.C.H. (1989). Learning from Delayed Rewards,
Ph.D. thesis, King’s College, Cambridge.

Wooldridge, M. (2009). An Introduction to MultiAgent Systems,
2nd Edn., Wiley Publishing, Chichester.

Zhang, W. and Dietterich, T.G. (1995). A reinforcement learning
approach to job-shop scheduling, Proceedings of the 14th
International Joint Conference on Artificial Intelligence,
Montreal, Canada, pp. 1114–1120.

482 B. Śnieżyński

Bartłomiej Śnieżyński received his Ph.D. de-
gree in computer science in 2004 from the AGH
University of Science and Technology in Cracow,
Poland. In 2004 he worked as a postdoctoral fel-
low under the supervision of Prof. R.S. Michal-
ski at the Machine Learning and Inference Lab-
oratory, George Mason University, Fairfax, VA,
USA. Currently, he is an assistant professor in
the Department of Computer Science at AGH.
His research interests include machine learning,

multi-agent systems, and knowledge engineering. He is a member of
the Polish Information Processing Society (PTI) and the Polish Artificial
Intelligence Society (PSSI).

Received: 14 July 2014
Revised: 8 January 2015

	Introduction
	Related research
	Model
	Formal model
	Delayed rewards

	Testing environment
	Experiments
	Conclusion and further research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

