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In this paper we emphasize a similarity between the logarithmic type image processing (LTIP) model and the Naka–Rushton
model of the human visual system (HVS). LTIP is a derivation of logarithmic image processing (LIP), which further replaces
the logarithmic function with a ratio of polynomial functions. Based on this similarity, we show that it is possible to present
a unifying framework for the high dynamic range (HDR) imaging problem, namely, that performing exposure merging
under the LTIP model is equivalent to standard irradiance map fusion. The resulting HDR algorithm is shown to provide
high quality in both subjective and objective evaluations.
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1. Introduction

Motivated by the limitation of digital cameras in capturing
real scenes with a large lightness dynamic range, a
category of image acquisition and processing techniques,
collectively named high dynamic range (HDR) imaging,
has gained popularity. To acquire HDR scenes,
consecutive frames with different exposures are typically
acquired and combined into an HDR image that is
viewable on regular displays and printers.

In parallel, logarithmic image processing (LIP)
models were introduced as an alternative to image
processing with real operations. While initially modelled
from the cascade of two transmitting filters (Jourlin and
Pinoli, 1987), later it was shown that LIP models can be
generated by homomorphic theory and they have a cone
space structure (Deng et al., 1995). The initial model
was shown to be compatible with the Weber–Fechner
perception law (Pinoli and Debayle, 2007), which is not
unanimously accepted (Stevens, 1961). Currently, most
global human visual system (HVS) models are extracted
from the Naka–Rushton equation of photoreceptor
absorption of incident energy and are followed by further
modelling of the local adaptation. We will show in this
paper that the new LIP extension model introduced by
(Vertan et al., 2008) is consistent with the global human
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perception as described by the Naka–Rushton model. The
model no longer uses a logarithmic generative function
but only a logarithmic-like one, hence it will be named
the logarithmic type image processing (LTIP) model. In
such a case, the generative function of the LTIP model
transfers the radiometric energy domain into the human
eye compatible image domain; thus it mimics, by itself
and by its inverse, both the camera response function and
the human eye lightness perception.

The current paper claims three contributions. Firstly,
we show that the previously introduced LTIP model
is compatible with the Naka–Rushton/Michaelis–Menten
model of the eye global perception. Secondly, based
on the previous finding, we show that it is possible to
treat two contrasting HDR approaches unitary if the LTIP
model framework is assumed. Thirdly, the reinterpretation
of the exposure merging algorithm (Mertens et al., 2007)
under the LTIP model produces a new algorithm that leads
to qualitative results.

The paper is constructed as follows. In Section 2,
we present a short overview of the existing HDR trends
and we emphasize their correspondence with human
perception. In Section 3, state of the art results in the
LIP framework and the usage of the newly introduced
LTIP framework for the generation of models compatible
with human perception are discussed. In Section 4, we
derive and motivate the submitted HDR imaging, and
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Table 1. Comparison of the two main approaches to the HDR problem.
Method CRF recovery Fused components Fusion method Perceptual

Irradiance fusion
(Debevec and Malik, 1997)

Yes Irradiance maps
Weighted

convex combination
Yes (via TMO)

Exposure fusion
(Mertens et al., 2007)

No Acquired frames
Weighted

convex combination
No

(a) (b)

Fig. 1. HDR imaging techniques: irradiance maps fusion (a) and exposure fusion (b). Irradiance map fusion relies on inverting the
camera response function (CRF) in order to return to the irradiance domain, while exposure fusion works directly in the image
domain, thus avoiding the CRF reversal.

in Section 5 we a discuss implementation details and
achieved results, ending the paper with discussion and
conclusions.

2. Related work

The typical acquisition of a high dynamic range image
relies on the “Wyckoff principle”; that is, differently
exposed images of the same scene capture different
information due to the differences in exposure (Mann
and Picard, 1995). Bracketing techniques are used in
practice to acquire pictures of the same subject but with
consecutive exposure values. These pictures are then
fused to create the HDR image.

For the fusion step, two directions are envisaged. The
first direction, named irradiance fusion, acknowledges
that the camera recorded frames are non-linearly related
to the scene reflectance, and thus it relies on the irradiance
maps retrieval from the acquired frames, by inverting
the camera response function (CRF), followed by fusion
in the irradiance domain. The fused irradiance map is
compressed via a tone mapping operator (TMO) into a
displayable low dynamic range (LDR) image. The second
direction, called exposure fusion, aims at simplicity and
directly combines the acquired frames into the final image.
A simple comparison between these two is presented in
Table 1 and detailed in further paragraphs.

2.1. Irradiance fusion. Originating in the work of
Debevec and Malik (1997), the schematic of irradiance
fusion may be followed in Fig. 1(a). Many approaches

were schemed for determining the CRF (Grossberg and
Nayar, 2004). We note that the dominant shape is that of a
gamma function (Mann and Mann, 2001), a trait required
by the compatibility with the HVS.

After reverting the CRF, the irradiance maps are
combined, typically by a convex combination (Debevec
and Malik, 1997; Robertson et al., 1999). For proper
displaying, a tone mapping operator (TMO) is then
applied on the HDR irradiance map to ensure that in
the compression process all image details are preserved.
For this last step, following the proposal of Ward
et al. (1997), typical approaches adopt an HVS-inspired
function for domain compression, followed by local
contrast enhancement. For a survey of TMOs, we refer the
reader to the works of Ferradans et al. (2012) and Banterle
et al. (2011).

Among other TMO attempts, a notable one was
proposed by Reinhard et al. (2002), which, inspired
by Ansel Adams’ Zone System, firstly applied a
logarithmic scaling to mimic the exposure setting of the
camera, followed by dodging-and-burning (selectively
and artificially increase and decrease image values for
better contrast) for the actual compression. Durand
and Dorsey (2002) separated, by means of a bilateral
filter, the HDR irradiance map into a base layer that
encoded large scale variations (thus needing range
compression) and into a detail preserving layer to form
an approximation of the image pyramid. Fattal et al.
(2002) attenuated the magnitude of large gradients based
on a Poisson equation. Drago et al. (2003) implemented
a logarithmic compression of luminance values that
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Table 2. Classical LIP model introduced by Jourlin and Pinolli, the logarithmic type (LTIP) model with the basic operations and the
parametric extension of the LTIP model. D is the upper bound of the image definition set (typically D = 255 for unsigned
int representation or D = 1 for float image representation).

Model Domain Isomorphism
Addition
u⊕ v

Scalar
multiplication

α⊗ u

LIP Dφ = (−∞, D] Φ(x) = −D log
D

D − x
u+ v +

uv

D
D −D

(
1− u

D

)α

LTIP Dφ = [0, 1) Φ(x) =
x

1− x
1− (1− u)(1− v)

1− uv
d

αu

1 + (α− 1)u

Parametric
LTIP

Dφ = [0, 1) Φm(x) =
xm

1− xm

m

√
1− (1− um)(1− vm)

1− umvm
u m

√
α

1 + (α− 1)um

matches the HVS. Krawczyk et al. (2005) implemented
the Gestalt based anchoring theory of Gilchrist et al.
(1999) to divide the image in frameworks and performed
range compression by ensuring that frameworks are
well-preserved. Banterle et al. (2012) segmented
the image into luminance components and applied
independently the TMOs introduced by Drago et al.
(2003) and Reinhard et al. (2005) for further adaptive
fusion based on previously found areas. Ferradans et al.
(2012) proposed an elaborated model of the global HVS
response and pursued local adaptation with an iterative
variational algorithm.

Yet, as irradiance maps are altered with respect to
reality by camera optical systems, additional constraints
are required for a perfect match with the HVS. Hence,
this category of methods, while being theoretically closer
to the pure perceptual approach, requires supplementary
and costly constraints as well as significant computational
resources for CRF estimation and TMO implementation.

2.2. Exposure merging. Noting the high
computational cost of irradiance maps fusion, Mertens
et al. (2007) proposed to implement the fusion directly in
the image domain; this approach is described in Fig. 1(b).
The method was further improved for robustness to
ghosting artifacts and details preservation in HDR
composition by Pece and Kautz (2010).

Other developments addressed the method of
computing local contrast to preserve edges and the local
high dynamic range. Another expansion was introduced
by Zhang and Cham (2012), who used the direction of
a gradient in a partial derivatives type of framework and
two local quality measures to achieve local optimality in
the fusion process. Bruce (2014) replaced the contrast
computed by Mertens et al. (2007) onto a Laplacian
pyramid with the entropy calculated in a flat circular
neighborhood for deducing weights that maximize the
local contrast.

The exposure fusion method is the inspiration
source for many commercial applications. Yet, in
such cases, exposure fusion is followed by further

processing that increases the visual impact of the
final image. The post-processing includes contrasting,
dodging-and-burning, and edge sharpening, all merged
and tuned in order to produce a surreal/fantasy-like aspect
of the final image.

While being sensibly faster, exposure fusion is not
physically motivated, nor perceptually inspired. However,
while the academic world tends to favor perceptual
approaches as they lead to images that are correct from
a perceptual point of view, the consumer world naturally
tends to favor images that are photographically more
spectacular, and the exposure merging solution pursuits
this direction.

3. Logarithmic type image processing

Typically, image processing operations are performed
using real-based algebra, which proves its limitations
under specific circumstances, like upper range overflow.
To deal with such situations, non-linear techniques have
been developed (Marković and Jukić, 2013). Such
examples are LIP models. The first LIP model was
constructed by Jourlin and Pinoli (1987) starting from the
equation of light passing through transmitting filters.

The LIP model was further developed into a robust
mathematical structure, namely, a cone/vector space.
Subsequently, many practical applications were presented
and an extensive review of advances and applications
for the classical LIP model is presented by Pinoli and
Debayle (2007). In parallel, other logarithmic models and
logarithmic-like models were reported. In this particular
work, we are mainly interested in the logarithmic-like
model introduced by Vertan et al. (2008), which has
a cone space structure and is named the LTIP model.
A summary of existing models may be followed in the
work of Navarro et al. (2013). Recently, parametric
extensions of LTIP models have also been introduced
(Panetta et al., 2011; Florea and Florea, 2013). LTIP
models are summarized in Table 2.
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3.1. Relation between LIP models and the HVS.
Since its introduction in the 1980s, the original LIP model
had a strong argument being similar to the Weber–Fechner
law of contrast perception. This similarity was thoroughly
discussed by Pinoli and Debayle (2007), who showed that
logarithmic subtraction models the increment of sensation
caused by the increment of light with the quantity existing
in the subtraction. Yet the logarithmic model of the
global perceived luminance contrast system assumed by
the Weber–Fechner model was vigorously challenged
(Stevens, 1961) and arguments hinted to the power-law
rules (Stevens and Stevens, 1963). Thus, we note that
the Stevens model is more in line with the LTIP one. On
the other hand, Stevens’ experiments were also questioned
(Macmillan and Creelman, 2005), so there does not seem
to be a definite answer in this regard.

Still, lately, the evidence seems to favor the
Naka–Rushton/Michaelis–Menten model of retinal
adaptation (Ferradans et al., 2012), thus an important
class of TMO techniques following this model for the
global adaptation step. The Naka–Rushton equation is
a particular case of the Michaelis–Menten model that
expresses the hyperbolic relationship between the initial
velocity and the substrate concentration in a number
of enzyme-catalyzed reactions. An example of such
a process is the change of the electric potential of a
photoreceptor (e.g., the eye cones) membrane, r(I) due
to the absorption of light of intensity I. The generic form,
called the Michaelis–Menten equation (Valeton and van
Norren, 1983), is

r(I) = ΔV (I)
ΔVmax

=
In

In + In
S

, (1)

where ΔVmax is the maximum difference of the potential
that can be generated, In

S is the light level at which the
photoreceptor response is half maximal (semisaturation
level), and n is a constant. Valeton and van Norren (1983)
determined that n = 0.74 for rhesus monkey. If n = 1,
the Naka–Rushton equation (Naka and Rushton, 1966)
is retrieved as a particular case of the Michaelis–Menten
model

r(I) = ΔV (I)
ΔVmax

=
I

I + IS . (2)

For the TMO application, it is assumed that the
electric voltage in the right is a good approximation of
the perceived brightness (Ferradans et al., 2012). Also,
it is not uncommon (Meylan et al., 2007) to depart
from the initial meaning of semisaturation for IS (the
average light reaching the light field) and to replace it
with a convenient chosen constant. TMOs that aimed to
mimic the Naka–Rushton model (Reinhard et al., 2002;
Tamburino et al., 2008) assumed that the HDR map input
was I and obtained the output as r(I).

On the other hand, the generative function of the LIP
model maps the image domain onto the real number set.

The inverse function acts as a homomorphism between
the real number set and the closed space that defines
the domain of LIP. For the LTIP model, the generative
function is ΦV (x) = x/(1 − x) while the inverse is

Φ−1
V (y) =

y

y + 1
. (3)

The inverse function (Eqn. (3)) mimics the
Naka–Rushton model (cf. (Eqn. (2)), with the difference
that, instead of the semi-saturation, IS , as in the
original model, it uses full saturation. Given this
observation, we interpreted the logarithmic-like model as
the mapping of the irradiance intensity (defined over the
real number set) onto photoreceptor acquired intensities,
i.e., human observable chromatic intensity. While the
logarithmic-like model is only similar and not identical
to the Naka–Rushton model of the human eye, it has the
strong advantage of creating a rigorous mathematical
framework of a cone space.

3.2. Relation between LIP models and the CRF.
The dominant non-linear transformation in the camera
pipe-line is the gamma adjustment necessary to adapt the
image to the non-linearity of the display and respectively
of the human eye. The entire pipeline is described by the
camera response function (CRF) which, typically, has a
gamma shape (Grossberg and Nayar, 2004).

It has previously been pointed to the similarity
between the LTIP generative function and the CRF
(Florea and Florea, 2013). To show the actual relation
between the LTIP generative function and the CRF, we
considered the database of response functions (DoRF)
(Grossberg and Nayar, 2004), which consists of 200
recorded response functions of digital still cameras and
analogue photographic films. These functions are shown
in Fig. 2(a); to emphasize the relation, in subplot (b) of
the same figure we represented only the LTIP generative
function and the average CRF. As one may see, while the
LTIP generative function is not identical to the average
CRF, there do exist camera and films that have a response
function identical to the LTIP generative function.

To improve the contrast and the overall appearance
of the image, some camera models add an S-shaped tone
mapping that no longer follows the Naka–Rushton model.
In such a case, a symmetrical LTIP model, such as the one
described by Navarro et al. (2013), has greater potential
to lead to better results.

4. HDR by perceptual exposure merging

Once that camera response function, g, has been found,
the acquired images fi are turned into irradiance maps,
Ei, by (Debevec and Malik, 1997)

Ei(k, l) =
g−1 (fi(k, l))

Δt
, (4)
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(a) (b)

Fig. 2. Relation between the LTIP generative function ΦV and
camera response functions as recorded in the DoRF
database: full database (a), average CRF (solid) with re-
spect to the LTIP function (dashed) (b).

where Δt is the exposure time and (k, l) is the pixel
location. Further, the HDR irradiance map is calculated
as the weighted sum of the acquired irradiance maps
(Debevec and Malik, 1997; Robertson et al., 1999):

EHDR(k, l) =

∑N
i=1 w (fi(k, l)) · Ei(k, l)
∑N

i=1 w (fi(k, l))
, (5)

where w (fi(k, l)) are weights depending on the chosen
algorithm and N is the number of frames.

However, we stress that the weights are scalars with
respect to image values. This means that their sum is also
a scalar and we denote it by

η =

N∑

i=1

w (fi(k, l)) . (6)

Taking into account that the CRF may be
approximated by the LTIP generative function g and,
also, that the final image was achieved by a tone mapping
operator from the HDR irradiance map, we may write

fHDR(k, l) = g (EHDR(k, l)) . (7)

If we expand the HDR irradiance map using Eqn. (5),
we obtain

fHDR(k, l)

= g

(
1

η

N∑

i=1

w (fi(k, l)) ·Ei(k, l)

)

=
1

η
⊗ g

(
N∑

i=1

w (fi(k, l)) · Ei(k, l)

)

=
1

η
⊗
(

⊕
N∑

i=1

g (w (fi(k, l)) ·Ei(k, l))

)

=
1

η
⊗
(

⊕
N∑

i=1

(w (f(k, l)))⊗ g (Ei(k, l))

)

=
1

η
⊗
(

⊕
N∑

i=1

(w (fi(k, l)))⊗ fi(k, l)

)

,

(8)

where ⊗ and ⊕ are the LTIP operations shown in Table 2,

while
(
⊕∑N

i=1 ui

)
stands for

(

⊕
N∑

i=1

ui

)

= u1 ⊕ u2 ⊕ · · · ⊕ uN .

Equation (8) shows that one may avoid the
conversion of the input images to irradiance maps, as
the HDR image may be simply computed using additions
and scalar multiplications in the logarithmic domain.
Furthermore, we accentuate that Eqn. (8), if written
with real-based operations, matches the exposure fusion
introduced by Mertens et al. (2007); yet, we started our
calculus based on irradiance maps fusion. Thus, the
use of LTIP operations creates a unifying framework for
both approaches. In parallel, it adds partial motivation,
by compatibility with the HVS, for the exposure fusion
variant. The motivation is only partial as the LTIP model
follows only the global HVS transfer function and not the
local adaptation.

The weights, w (f(k, l)), should complement the
global tone mapping by performing local adaptation. In
the work of Mann and Mann (2001) these weights are
determined by derivation of the CRF, while in the paper
by Mertens et al. (2007) they are extracted as to properly
encode contrast, saturation and well-exposedness. More
precisely,

• contrast wC is determined by considering the
response of Laplacian operators (this is a measure of
the local contrast which exists in human perception
as center-surround ganglion field organization);

• saturation wS is computed as the standard deviation
of the R, G and B values, at each pixel location
(this component favors photographic effects since
the normal consumers are more attracted to vivid
images and has no straight-forward correspondence
to human perception);

• well-exposedness we is computed by giving small
weights to values in the mid-range and large weights
to outliers favoring the glistening aspect of consumer
approaches (more precisely, one assumes that a
perfect image is modelled by a Gaussian histogram
with μ mean and σ2 variance, and the weight of each
pixel is the back-projected probability of its intensity
given the named Gaussian).

We will assume the same procedure of computing the
weights with some small adjustments: while in the
work of Mertens et al. (2007) for well-exposedness both
outliers were weighted symmetrically, we favor darker
tones to compensate the tendency of LIP models to favor
bright tones, caused by their closing property. Details
on the precise implementation parameters values will be
provided in Section 6.1.
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5. Implementation and evaluation
procedure

Implementation. We implemented the HDR algorithm
described mainly by Eqn. (8) within the LTIP model and
weights similar to the procedure described by Mertens
et al. (2007) in Matlab. The actual values of the weights
are standard for contrast wC = 1, saturation wS = 1,
but differ for well-exposedness, where the mid range
(the parameter of the Gaussian distribution modelling it)
are μ = 0.37 and σ2 = 0.2. The choices are based
on maximizing the objective metrics and will be further
explained in Sections 6.1 and 6.3.

An example of the achieved extended dynamic range
image may be seen in Fig. 3.

The common practice is to evaluate HDR methods
using few publicly available images. We adopted the same
principle, employing more extensive public imagery data,
such as those of Čadı́k et al. (2008), an OpenCV example
library and some of Drago et al. (2003). We evaluated
the proposed algorithm on a database containing 22 sets
of HDR frames acquired from various Internet sources,
being constrained by the fact that the proposed method
requires also the original frames and not only the HDR
image. We made the full results and the code public1 so
as to encourage other people to further test it.

Evaluation. The problem of evaluating HDR images
is still open as HDR techniques include two categories:
irradiance map fusion which aims at correctness, and
exposure fusion, which aims at pleasantness. As
mentioned in Section 2.2, the irradiance map is physically
supported and typical evaluation is performed with
objective metrics that are inspired from human perception.
Thus the evaluation with such objective metrics will show
how realistic is one method (i.e., how closely is the
produced image to the human perception of the scene).

On the other hand, the exposure fusion methods
inspired by Mertens et al. (2007) are much simpler, and
produce results without a physical motivation, but these
are visually pleasant for the average user; consumer
applications further process these image to enhance the
surreal effects which are deemed, but fake. Thus, the
subjective evaluation and no-reference objective metrics
that evaluate the overall appearance will positively
appreciate such images, although they are not a realistic
reproduction of the scene.

Thus, to have a complete understanding of a
method’s performance, we will evaluate the achieved
results with two categories of methods: subjective
evaluation and evaluation based on objective metrics.

1The code, the color version of the images and supplementary results
are available at imag.pub.ro/common/staff/cflorea/LIP.

5.1. Objective evaluation. While not unanimously
accepted, several metrics were created for the evaluation
of TMOs in particular and HDR images in general. Here,
we will refer to the metrics introduced by Aydin et al.
(2008) as well as the more recent one by Yeganeh and
Wang (2013).

The metric of Aydin et al. (2008), called dy-
namic range (in)dependent image metrics (DRIM), uses
a specific model of the HVS to construct a virtual low
dynamic range (LDR) image from the HDR reference
and compares the contrast of the subject LDR image
to the virtual one. In fact, the HVS model and the
comparison can be merged together, so that the matching
is between the subject LDR image and the HDR reference,
skipping the virtual LDR image. The comparison takes
into consideration three categories: artificial amplification
of contrast, artificial loss of contrast and reversal of
contrast. The metric points to pixels that are different
from their standard perception according to the authors’
aforethought HVS modelling and a typical monitor setting
(γ = 2.2, 30 pixels per degree and viewing distance
of 0.5 m). For each test image, we normalized the
error image by the original image size (as described by
Ferradans et al. (2012)). The metric only assigns one type
of error (the predominant one) and has two shortcomings:
it heavily penalizes the global amplification error (which
is not so disturbing from a subjective point of view), and it
merely penalizes artifacts (such as areas with completely
wrong luminance), which, for a normal viewer, are
extremely annoying. Thus the metric, in fact, assigns a
degree of perceptualness (in the sense of how close that
method is to the human contrast transfer function) to a
certain HDR method.

A more robust procedure for evaluation was
proposed Yeganeh and Wang (2013), who, in fact,
introduced three scores:

• Structural fidelity, S, which uses the structural
similarity image metric (SSIM) (Wang et al., 2004)
to establish differences between the LDR image and
the original HDR one, and a bank of non-linear filters
based on the human contrast sensitivity function
(CSF) (Barten, 1999). The metric points to structural
artifacts of the LDR image with respect to the HDR
image and has a 0.7912 correlation with subjective
evaluation according to Yeganeh and Wang (2013).

• Statistical naturalness, N , gives a score of the
closeness of the image histogram to a normal
distribution which was found to match an average
human opinion.

• Overall quality, Q, which integrates the structural
fidelity, S, and statistical naturalness, N , by

Q = aSα + (1− a)Nβ , (9)

imag.pub.ro/common/staff/cflorea/LIP
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Example of HDR imaging: initial, differently exposed frames (a)–(e) and the HDR image obtained by using the proposed
algorithm (f).

where a = 0.8012, α = 0.3046, β = 0.7088 as
found in the work of Yeganeh and Wang (2013). The
metric has a 0.818 correlation with human opinion.

The structural fidelity appreciates how close a TMO
is to the CSF function, thus is theoretical oriented
measure, while the structural fidelity is a subjective
measure and shows how close a TMO is to the consumer
preferences.

5.2. Subjective evaluation. On the subjective
evaluation, for HDR images, Čadı́k et al. (2008) indicated
the following criteria as being relevant: luminosity,
contrast, color and detail reproduction, and lack of image
artifacts. The evaluation was performed in two steps. First
they analyzed comparatively, by means of an example, the
overall appearance and existence of artifacts with respect
to the five named criteria in the tested methods; next, they
followed with subjective evaluation where an external
group of persons graded the images.

To perform the external evaluation, the authors
instructed 18 students in the 20–24 years range to examine
and rank the images on their personal displays, taking into
account the five named criteria. We note that the students
follow computer science or engineering programme, but
they are not closely related to image processing. Thus, the
subjective evaluation could be biased towards groups with
technical expertise.

The testing was partially blind: the subjects were
aware of the theme (i.e., HDR), but not of the source
of each image. While we introduced them to a method
for monitor calibration and discussed aspects of the view
angle and distance to monitor, we did not impose these
as strict requirements since the average consumer does
not follow rigorous criteria for visualization. Thus, the

subjective evaluation was more related to how appealing
an image is.

6. Results

6.1. Algorithm parameters. To determine the best
parameters of the proposed method, we resorted to
empirical validation.

Logarithmic model. The first choice of the proposed
method is related to the specific logarithm image
processing model used. While we discuss this aspect
by means of an example shown in Fig. 4, top row
((b)–(d)), we have to stress that all the results fall in
the same line. The LTIP model provides the best
contrast, while the classical LIP model (Jourlin and
Pinoli, 1987) leads to very similar results, with marginal
differences like a slightly flatter sky and less contrast
on the forest. The symmetrical model (Patrascu and
Buzuloiu, 2001) produces over–saturated images. Given
the choice between our solution and the one based on
the results of Jourlin and Pinoli (1987), as differences
are rather small, the choice relies solely on the perceptual
motivation detailed in Section 4.

Next, given the parametric extension of the LTIP
model by Florea and Florea (2013), we asked which is
the best value for the parameter m. As shown in Fig. 4,
bottom row ((e)–(h)), the best visual results are obtained
for m = 1, which corresponds to the original LTIP
model. Choices different fromm = 1 use direct or inverse
transformations that are too concave and, respectively, too
convex, thus distorting the final results. Also, the formulae
become increasingly complex and precise computation
more expensive. Concluding, the best results are achieved
with models that are closer to the human perception.

Algorithm weights. In Section 4 we nominated three
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(a) normally exposed frame (b) LTIP, m = 1 (c) LIP (d) symmetrical LIP

(e) LTIP, m = 0.5 (f) LTIP, m = 0.75 (g) LTIP, m = 1.33 (h) LTIP, m = 2

Fig. 4. Normal exposed image frame (a) and the resulting image obtained by the standard LTIP model (b), the classical LIP model (c),
the symmetrical model introduced by Patrascu (d). Images obtained with the parametric extension of the LTIP model (e)–(h).

categories of weights (contrast – wC , saturation wS and
well-exposedness) that interfere with the algorithm. For
the first two categories, values different from standard
ones (wC = 1 and wS = 1) have little impact.

The well-exposedness, which is described by mainly
the central value μ of the “mid range”, has significant
impact. As one can see in Fig. 5, the best result is achieved
for μ = 0.37 while for larger values (μ > 0.37), the
image is too bright and, respectively, for smaller ones
(μ < 0.37) it is too dark. While a μ = 0.4 produced
similar results, the objective metrics reach the optimum in
μ = 037. Changing the variance also has little impact.
These findings were confirmed by objective testing, as
further shown in Section 6.3.

6.2. Comparison with the state of the art. To test
against various state-of-the-art methods, we used the HDR
irradiance map (stored as .hdr file) which was either
delivered with the images (and typically produced using
the method from (Robertson et al., 1999)), or produced
with some code online available.2

For comparative results we considered exposure
fusion in the variant modified according to Mertens
et al. (2007) as well as Zhang and Cham (2012) using
the author released code and the TMOs applied on the
.hdr images described by Ward et al. (1997), Fattal
et al. (2002), Durand and Dorsey (2002), Drago et al.
(2003), Reinhard et al. (2005), Krawczyk et al. (2005)
and Banterle et al. (2012) as they are the foremost such
methods. The code for the TMOs is taken from the Matlab
HDR Toolbox (Banterle et al., 2011) and is available

2The HDR creator package is available at cybertron.
cg.tu-berlin.de/pdci09/hdr_tonemapping/
download.html

Table 3. HDR image evaluation by the average values for struc-
tural fidelity (S), statistical naturalness (N ) and the
overall quality (Q), detailed in Section 5.1. With bold
letters we marked the best result according to each cat-
egory, while with italic the second one.

Method S [%] N [%] Q [%]

Ward et al. (1997) 66.9 14.38 72.7
Fattal et al. (2002) 59.9 6.4 61.0

Durand and Dorsey (2002) 81.7 41.0 85.4
Drago et al. (2003) 82.3 50.2 87.0

Reinhard et al. (2005) 83.1 50.5 87.5
Krawczyk et al. (2005) 71.7 36.8 76.6
Banterle et al. (2012) 83.7 52.1 87.8
Mertens et al. (2007) 81.7 64.2 89.4

Zhang and Cham (2012) 77.6 59.7 83.4
Proposed, μ = 0.5 81.0 39.2 84.5
Proposed, μ = 0.4 81.6 52.1 87.3

Proposed, μ = 0.37 81.5 57.4 88.0
Proposed, μ = 0.32 81.4 53.7 87.4

online.3 The implemented algorithms were optimized
by the Toolbox creators to match with the initial article
reported results and for better performance; hence, we
used the implicit values for the algorithm parameters. We
note that envisaged TMO solutions include both global
operators and local adaptation. A set of examples with
the results produced with all the methods is presented in
Fig. 6.

6.3. Objective metrics.

Structure and naturalness. We started the evaluation

3The HDR toolbox may be retrieved from www.banterle.com/
hdrbook/downloads/HDR_Toolbox_current.zip

cybertron.
cg.tu-berlin.de/pdci09/hdr_tonemapping/
download.html
www.banterle.com/
hdrbook/downloads/HDR_Toolbox_current.zip
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(a) μ = 0.32 (b) μ = 0.37 (c) μ = 0.4 (d) μ = 0.5

Fig. 5. Output image when various values for mid-range (μ) in well-exposedness weight were used. The preferred choice is μ = 0.37.

(a) proposed (b) Pece and Kautz (2010) (c) Banterle et al. (2012) (d) Krawczyk et al. (2005)

(e) Reinhard et al. (2005) (f) Drago et al. (2003) (g) Durand and Dorsey (2002) (h) Fattal et al. (2002)

Fig. 6. Resulting images obtained with HDR state of the art imaging techniques (irradiance maps fusion followed by TMO and expo-
sure fusion).

using the set of three objective metrics from the work
of Yeganeh and Wang (2013). The results obtained are
presented in Table 3. The best performing version of the
proposed method was for μ = 0.37.

The proposed method, when compared with various
TMOs, ranked first, according to the overall quality and
statistical naturalness, and it ranked fifth according to
structural fidelity (after Banterle et al., 2012; Reinhard
et al., 2005; Drago et al., 2003; Durand and Dorsey, 2002).
Our method was penalized when compared to other TMOs
due to their general adaptation being closer to the standard
contrast sensitivity function (CSF) (Barten, 1999). Yet we
stress that some TMOs (Krawczyk et al., 2005; Banterle
et al., 2012) work only for calibrated images in specific
scene luminance domain.

When compared with other exposure fusion methods
(Mertens et al., 2007; Zhang and Cham, 2012), it
ranked second for the overall quality after Mertens
et al. (2007). This is an expected result as standard
exposure fusion was built to match a subjective opinion
score as the envisaged metrics did, too. Yet the
proposed method outperformed the overall performance
of the exposure fusion introduce by Zhang and Cham
(2012). Furthermore, a more recent algorithm, namely,
ExpoBlend (Bruce, 2014), reports the overall quality on
two image that we used too (“Memorial” and “Lamp”).

On these images, the proposed method outperformed
ExpoBlend: on “Memorial” we reach 95.5% compared
with 93.2%, while on “Lamp” we reach 90.1% compared
with 89.4% reported by Bruce (2014).

Furthermore, the proposed method is the closest
to the standard exposure fusion result (Mertens et al.,
2007), which is currently the state-of-the-art method for
consumer applications while building HDR images. This
aspect is shown in Table 4, where we computed the natural
logarithm of the root-mean-square to the image resulting
from standard exposure fusion and, respectively, the
structural similarity when compared to the same image.

Perceptualness. One claim of the current paper is that
the proposed method adds perceptualness to the exposure
fusion. To test this, we compared our method against
standard exposure fusion (Mertens et al., 2007) using the
perceptual DRIM metric of Aydin et al. (2008). Over
the considered database, the proposed method produced
an average total error (the sum of three categories) 2%
smaller than standard exposure fusion (64.5% compared
to 66.8%). On individual categories, the proposed method
produced a smaller amount of amplification of contrast,
with comparable results on the loss and reversal of
contrast. Thus, overall, the results confirm the claim.
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Table 4. HDR image evaluation by taking the log of root mean
square to standard exposure fusion. The best values are
marked with bold letters.

Method logRMSE [dB] SSIM

Ward et al. (1997) 149.9 83.5
Fattal et al. (2002) 281.1 38.1

Durand and Dorsey (2002) 160.5 74.4
Drago et al. (2003) 148.4 74.7

Reinhard et al. (2005) 148.4 74.8
Krawczyk et al. (2005) 136.9 66.4
Banterle et al. (2012) 147.9 75.2

Proposed 72.1 93.8

(a) Durand and Dorsey (2002) (b) proposed

Fig. 7. Examples of artifacts produced by state-of-the-art meth-
ods compared with the robustness of the proposed
method. Close-ups point to artefact areas.

6.4. Artefacts. The HDR-specific objective metrics
have the disadvantage of not properly weighting the
artifacts that appear in images, while human observers are
very disturbed by them. This fact was also pointed out
by Čadı́k et al. (2008), and to compensate we performed
visual inspection to identify disturbing artefacts. The
proposed method never produced any artefact in the tested
image sets. Examples of state of the art methods and
artefacts produced may be seen in Fig. 7.

In direct visual inspection, when compared against
the standard exposure fusion method (Mertens et al.,
2007), our algorithm shows details in bright areas, while
normal, real-based operations do not. This improvement
is due to the closing property of the logarithmic addition
and respectively scalar amplification. This aspect is also
visible when comparing with the most robust TMO based
method, namely, that by Banterle et al. (2012). Examples
that illustrate these facts are presented in Fig. 8.

6.5. Subjective ranking. Non-experts ranked the
images produced with the proposed method, standard
exposure fusion, the methods of Banterle et al. (2012),
Pece and Kautz (2010), Drago et al. (2003) and Reinhard
et al. (2005). Regarding the results, the proposed method
was selected as the best one by 10 users, exposure fusion
(Mertens et al., 2007) by 7, while the rest won 1 case.
Also the second place was monopolized by the “glossier”
exposure fusion based method.

When compared with the direct exposure fusion
introduced by Mertens et al. (2007), due to the perceptual
nature of the proposed method, a higher percentage
of the scene dynamic range is in the visible domain;
direct fusion losses information in the dark-tones domain
and respectively in the very bright part; this is in fact
the explanation for the narrow margin of our method’s
advance.

7. Discussion and conclusions

In this paper we showed that the LTIP model is
compatible with the Naka–Rushton equation modelling
light absorption in the human eye and similar with the
CRF of digital cameras. Upon these findings, we asserted
that it is possible to treat different approaches to HDR
imaging unitary. Implementation of the weighted sum
of input frames is both characteristic to irradiance map
fusion and to exposure fusion. If implemented using
LTIP operations, the perceptualness is added to the more
popular exposure fusion. Finally, we introduced a new
HDR imaging technique that adapts standard exposure
fusion to logarithmic type operations, leading to an
algorithm which is consistent in both theoretical and
practical aspects. The closing property of the LTIP
operations ensures that details are visible even in areas
with high luminosity, as previously shown.

The method maintains the simplicity of
implementation typical to exposure fusion, since
the principal difference is the redefinition of the
standard operations and different parameter values. The
supplemental calculus associated with the non-linearity
of LTIP operation could easily be trimmed out by the use
of look-up tables, as shown by Florea and Florea (2013).

The evaluation results re-affirmed that, in an
objective assessment aiming at naturalness and
pleasantness of the image, the proposed method
outperforms irradiance map fusion followed by TMOs
as they try to mimic more a theoretical model which is
not perfect and is not how the normal user expects HDR
images to look. The same conclusion was emphasized by
the subjective evaluation, where methods developed in
the image domain are preferred as the resulting images
are more “appealing”. The method outperformed, even by
a small margin, standard exposure fusion when evaluated
with DRIM metric showing that it is more HVS oriented.
The proposed method, having an HVS inspired global
adaptation and “glossy” tuned local adaptation, by a
narrow margin, ranks best in the subjective evaluation.
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(a) Banterle et al. (2012) (b) proposed (c) Mertens et al. (2007) (d) proposed

Fig. 8. Examples of the loss of details produced by state-of-the-art methods compared with the robustness of the proposed method.
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