Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 1, 147-160

DOI: 10.1515/amces-2016-0010

A MATHEMATICAL MODEL FOR FILE FRAGMENT DIFFUSION AND
A NEURAL PREDICTOR TO MANAGE PRIORITY QUEUES
OVER BITTORRENT

CHRISTIAN NAPOLI**, GIUSEPPE PAPPALARDO ¢, EMILIANO TRAMONTANA ¢

“Department of Mathematics and Informatics
University of Catania, Viale Andrea Doria 6, 95126, Catania, Italy
e-mail: |{napoli, pappalardo, tramontana}@dmi.unict.it

BitTorrent splits the files that are shared on a P2P network into fragments and then spreads these by giving the highest
priority to the rarest fragment. We propose a mathematical model that takes into account several factors such as the peer
distance, communication delays, and file fragment availability in a future period also by using a neural network module
designed to model the behaviour of the peers. The ensemble comprising the proposed mathematical model and a neural
network provides a solution for choosing the file fragments that have to be spread first, in order to ensure their continuous

availability, taking into account that some peers will disconnect.

Keywords: P2P model, neural network, wavelet, diffusion, file sharing.

1. Introduction

Nowadays, a wuser can share files by means of
several technologies, and each of them often relies on
some mechanism that checks whether potential access
bottlenecks will arise. Therefore, replicas are created to
offload a single server. Several factors contribute to the
selection of the file that will be replicated, i.e., the storage
space available, the number of requests, the bandwidth,
etc.

In peer to peer (P2P) systems using BitTorrent, a
shared file is split into fragments and the least available
ones are automatically chosen to be sent first to the
users requesting the file (Cohen, 2008). Fragments
availability is measured by the number of peers storing
a file fragment at a given moment, and periodically
computed by a tracker server storing peer ids, fragments
held, and files requested (Cohen, 2003). In order to
compute the distribution priority for each file fragment,
it is of paramount importance to synchronize with the
tracker and to get frequent updates since the status of
the BitTorrent network is prone to rapid changes, due
to the high variability of the number and availability of
peers that can leave the system at any time (Kaune et al.,
2010). This occurs so frequently that such a fundamental

*Corresponding author

BitTorrent mechanism may become ineffective, and as a
result some fragments can quickly become unavailable.
Moreover, the mechanism choosing fragments to spread
is unaware of communication latencies among peers; as a
consequence, fragment spreading occurs sooner on peers
nearby the ones holding the fragment to be spread, and the
furthest peers could disconnect before receiving the whole
fragment.

This paper proposes a model for spreading file
fragments that considers (i) latencies among peers, (ii)
a time-dependent priority for a fragment to be spread,
and (iii) the behaviour of peers for estimating their future
availability. We take into account the fact that more time
is needed to have a replica on the furthest peer ready to be
served to other peers, when compared with a nearer peer.
Moreover, the priority of fragments to be spread will be
computed again over time, as their availability changes.
The variation in priority is regulated in our model in such
a way as to maximise the availability of fragments over
time. To determine the dynamics of fragment spreading,
we use a diffusion model developed by analogy to a
diffusion model on a porous medium.

Moreover, we enhanced our mathematical model by
using the results of an appropriate neural predictor as in
the works of Napoli er al. (2014b; 2014a; 2015); Nowak
et al. (2015), Wozniak et al. (2015) and Fornaia et al.

@

{napoli, pappalardo, tramontana}@dmi.unict.it

amcsm

C. Napoli et al.

DELAY
. wavelet . neural I
analysis predictor

PRIORITY QUEUE
MANAGER

IMPROVED input data
BITTORRENT | MATHEMATICAL
NETWORK time series MODEL

f assigned priorities

Fig. 1. Overview of the ensemble of components for the pro-
posed solution.

(2015). This neural predictor aims at estimating the status
evolution of the BitTorrent system, hence overcoming the
sparse updates between peers and the tracker. Results
provided by the neural network are fed to the above
mentioned mathematical model, computing the fragments
to be spread. As a result, BitTorrent clients could take
early actions to facilitate the diffusion of file fragments, in
order to cope with the availability of evolving fragments.
Figure [I] shows an overall view of the proposed main
components and their interactions.

The rest of the paper is structured as follows.
Section [introduces the formalism used. Section [3
describes our diffusion model. Section[]details the design
of our neural predictor. Section [5] shows how the neural
predictor has been used. Section [6] provides the results of
our experiments. Finally, related works are discussed in
Section[Z} and Section[§] draws our conclusions.

2. Mathematical representations

In order to develop our diffusion model for BitTorrent
based on a physical porous medium, some conventions
must be chosen and some extrapolations are needed. We
first describe a continuum system using a continuum
metric; however, later on we will single out a few
interesting discrete points of the continuum. Due to
the analogy we make between a physical system and
BitTorrent, we use a distance metric (named §), which
will be defined as the network latency among nodes,
i.e., the hosts on a network holding peers, playing
as seeds (peers providing fragments) or leeches (peers
downloading fragments). Table[llists the symbols we use
along with their explanation for quick reference, whereas
the whole description is in the following.

For the nodes we use n' or n’: the first indicates
a generic i-esime node on the BitTorrent network, the
second indicates the a-esime node as seen from the
i-esime node. Of course, nfx and n{x could be different
nodes when ¢ # j. Double indexing is needed since, when
we use something like 6%/, it will represent the distance
of the j-esime node as measured by the i-esime node.
Moreover, let us denote by P,” the probability of diffu-
sion for the k-esime file fragment from the ¢-esime node
to the j-esime node. Finally, we distinguish between time
and time steps: the first will be used for a continuum
measure of temporal intervals and will be expressed by

Table 1. Symbols used and their meaning.
n',n’,n® || Nodes of the network
zi || File fragment
nt, || Node in the list of nodes held by n®
5% || Distance among nodes n’ and n’
P,ij Diffusion probability from n* to n? of zj,
Q' || Node list ordered based on distance from n’
® || Concentration of file fragments
D || Diffusion coefficient
T || Total users sharing or requesting zj,
Sk || Seeds of z
pr || Share ratio of 2
' Urgency to share fragment z;, from n’ to n’
s || Data time series (signal)
W || Wavelet transform
()
4

Wavelet function
Wavelet dual scaling function
dj,i || Wavelet coefficients
an || Wavelet residuals
N || Neural network

u || Neural network input

t || Time (continuous)

7 || Time step (discrete)

the Latin letter ¢, the second will indicate time steps (e.g.,
the steps of an iterative cycle) and we will use for it the
Greek letter 7. Therefore, while §%(¢) will represent the
continuous evolution during time ¢ of the network latency
0, which measures the distance from the i-esime node
to the j-esime node, the notation 6% () represents the
same measure at the 7-esime step, i.e., the time taken by
a ping from the ¢-esime node to the j-esime node, only
for the specific time step 7. Finally, we will suppose
that each node has the fragment z; of a file z and is
interested in sharing or obtaining other portions of the
same file; hence, we will compute the probability-like
function that expresses how easily the k-esime shared
fragment is copied from the i-esime node to the j-esime
node at a certain step 7, and we will call it P, (7).

Eventually, we are interested in an analytical
computation for the urgency to share a fragment zj, from
n' to n/ for a time step 7, and we will call it x;7 (7).
In the following sections, we will distinguish between a
measured value and a value predicted by a neural network
using a tilde for predicted values as in Z.

3. Fragment diffusion on a P2P network

In our work, we compare the spreading of file fragments
for a shared file to the diffusion of mass through a porous
means. To embrace this view, it is mandatory to develop
some mathematical tools, which are explained in the
following.

A mathematical model for file fragment diffusion and a neural predictor. . .

3.1. Spaces and metrics. Users in a P2P BitTorrent
network can be represented as points spread on a
unidimensional space where a distance metric is given
by the corresponding network communication latency.
Therefore, for each node n* € N, the set of the nodes,
it is possible to define a function § : N x N — R such
that
S(nt,n?) =69, ¥n',n! €N, (D

where 0% is the amount of time taken to bring a small
amount of data (e.g., as for a ping) from n’ to n’. By
using the given definition of distance, for each node nt, it
is possible to obtain an ordered list ¢ so that
[N o o

20(n',ng) <o(n',ng,q). (2

O = {n; eN }
a=0

In such a way, the first item of the list will be né = nt

and the following items will be ordered according to their

network latency as measured by n’. Using this complete

ordering of peers, it is possible to introduce the concept of

content permeability and diffusion.

The adopted mathematical model will be defined
in a continuous set by means of a variable ¢ indicating
the distance between two points. In order to represent
the BitTorrent network, we need to associate one point
to one peer (or node) of the network, and to obtain
such a map we implement a discrete interpretation of
this mathematical model. Therefore, while the following
model will be developed as a continuous model, starting
from Section[3.3we will make use only of several discrete
points, each mapping the nodes of the network, and
the model will allow us to obtain their distance as §%.
Therefore, for each node n; € N, there exists a point j
in our discrete set so that it will be possible to define a
discrete distance 5§ ¥ ni,n; € N, while the points of
the continuous model lacking a correspondent real node
of the network will be ignored.

The motivation for having a continuous model to
start with is evident when considering how users share
files on a P2P system: each file consists of several
fragments, so sharing fragments can be seen as a diffusion
phenomenon. For this reason, we model fragment
spreading in terms of Fick’s diffusion law, which is
described in the following.

3.2. Fick’s diffusion law and its use for P2P. Fick’s

second law is commonly used in physics and chemistry to

describe the change of concentration per unit time of some

element diffusing into another. Using both the first and

second Fick laws, the diffusion of a content into a mean is

given as the solution of the vector differential equation
0P

5 =V (DY), 3)

where ® is the concentration, ¢ the time and D the
permeability to the content. Since this is a separable

equation and we make use of a l-dimensional metric
based on the distance 9§, and assuming D as constant
among the nodes, Eqn. (@) can be written as a scalar
differential equation,

o0 0
ot 9627

The partial differential equation (@), given initial and
boundary conditions, admits at least a solution known as
Green’s function, which describes how a single point of a
probability density (in this case, initially at § = 0) evolves
in time and space. Thus the evolution of the system from
any initial condition can be found simply by adding up
the right amount of probability density at the right points
in space, given by

“)

1 .
G(5,t) = — / e~ DEte—ig%5 ¢, (5)
27
It suffices to find a particular normalised solution, so that

/ G(o,1)ds = 1. ©)

In order to find an appropriate solution for the
problem of fragment spreading through the BitTorrent
network, it is possible to apply the infinite-source
diffusion boundary conditions and initial conditions. The
resulting particular solution can then be written as

G(6,1) = —— e r ™
= e .
’ VarDt

The Green function found permits us to study the
diffusion dynamics of a single content and, as a matter
of facts, it can be rewritten as a solution of Eqn. (@) in the
form

o) 1
[0} = o' —— Oy =
(6,1) = @0 (Tm) L= ®

where I is the complementary Gaussian error function,

I'(z) /xe_gzdf, Yz eRT. (9
0

= NG

Equation (@) can be computed as successive iterations
from a Taylor series,

2 & T J —z2
I'z)=1—— - ——., Vz eR*. (10)
-2y

In the work of Chiani et al. (2003), a pure exponential
approximation for Eqn. (IQ) has been proposed in which,
within an error of the order of 10~?, I'(x) is calculated as

e 3% Yz eRt. (1)

N~

aamcs

amcsm

C. Napoli et al.

! >
0.8

0.6
& 2
5]
0.4 g
0.2

0

10

10

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

30 > 2 4 6 8 10
peers time time

20

Fig. 2. Approximation of the concentration ® as in (I2)), com-
puted on a set of points having distances §*/.

Using (II) in (), it eventually follows that
‘1)(5, t) =~ ‘1)0 %€(q>06)2 + 56_%((1)06)2)
(12)
By = (4nDt) "z

for every node at a certain distance § € R at a time
t € RT. FigureRlshows a representation of concentration
®, which can be computed for file fragments, as given
by (I2), while varying the amount of peers and over time.

3.3. From concentration to probability. In Eqn. (12),
the scaling factor @ is a function of the time ¢. On the
other hand, the formalism used was developed mainly
to focus on the distance J, and handling ¢ merely as a
parameter. The above mathematical formalism is valid
as long as the distances &(n’, n’) remain time-invariant.
The common practice considers the distance between
nodes ¢ as time-invariant; however, the actual network
latencies vary (almost) continuously, with time, and a
stationary 2° ordered set is a very unlikely approximation
for the network. In our solution, we make the latency
time-dependent. In turn, this makes it possible to choose
a different fragment to be shared over time.

For the P2P system, Eqn. (I2) states that a certain
file fragment z}, in a node n' at a time ¢, has a probability
P,zj(to,t) to be given (or diffused) to node n?, at a
distance 0% (ty) from nf, within a time ¢, which is
proportional to ®(, ¢) so that

.. 01 ij 5ij)2 ij §i5)2
PP (to,t) = pf | cel¥ 7 4 2em 8000 3)

1
2
where pzj = pZJ (to,t), i.e., it depends on time ¢, and
t and carries both the diffusion factors and the temporal
dynamics. Since we are interested in a simple proportion,

and not a direct equation, we can also neglect the factor
47 and then write p,’ in the normalised form,

. 1 1 1
T(tg,t) = — + ——— - —. 14
pilto,t) = 7= Drlto) Vi (14

It is now important to have a proper redefinition of
the coefficient D. Let us say that T}, is the number of users
interested in file fragment z;, (whether asking or offering
it), S, is the number of seeds for the file fragment and py,
is the mean share ratio of the file fragment among peers
(including leeches). Then it is possible to consider the
urge to share the resource as an osmotic pressure which,
during time, varies the permeability coefficient of the
network D. In order to take into account the mutable state
in a P2P system, D should vary according to the amount
of available nodes and file fragments. We have chosen to
define

T (to)
Sk(to) + [Tk(to) — Sk(to)] px(to)

Then, by formally substituting D with Dy in ®q in
Eqn. (I2), we obtain the analytical form of the term p}’.

Dy (to) £

15)

3.4. Discrete time evolution on each node. Indeed,
the physical nature of the adopted law works in the
entire variable space; however, for the problem at hand,
discrete-time simplifications are needed. Let us suppose
that for a given discrete time step 7 = 0 node n’
effectively measures the network latencies of a set of
nodes {n’}; then, an ordered set Q’ as in Eqn. @) is
computed. Now, for every node n’, probability P, is
computed for each of its own file fragment z; and for
every node n?. This probability corresponds to a statistical
prevision of the possible file fragments spreading onto
other nodes.

Suppose that for a while no more measures for § have
been taken; at a later discrete time step 7, file fragment
z,@ will be copied to the first node to be served, which is
chosen according to the minimum probability of diffusion,
latencies and time since the last measures were taken (see
the following subsection and Eqn. (I8)). Then, such a file
fragment is reaching other nodes if the latency for such
nodes is less than time ¢¢, computed as

ti(r) = > o(n',nl). (16)

()nkZO

Index k is used in Eqn. (I6) to refer to file fragment 2.
Indeed, it should be highlighted that since nodes need
and offer their own file fragments, the ordered set of nodes
referred by a given node should depend on resource zy,
ie, Q= {ng, }.
It is now possible to have a complete mapping of the
probability of diffusion by reducing the time dependence

A mathematical model for file fragment diffusion and a neural predictor. . .

from (tp,t) to a single variable dependence from the
discrete time-step 7. For each resource zj, as P’ (1)
stated, it is possible to reduce Dy/(to,t) to a one-variable
function Dy (7) by assuming that at ¢y we have 7 = 0
and considering only the values of Dy (to,¢) when ¢ is the
execution moment of a computational step 7.

3.5. Assigning priorities and corrections. Once all
P (1) have been computed and its values stored into a
proper data structure, it is actually simple to determine the
most urgent file fragment to share, which is the resource
that has the least probability to be spread, i.e., the k for
which P’ (7) is minimum.

Furthermore, we should consider that, over time, an
old measured ¢ differs from the actual value, and hence the
measure becomes less reliable. To take into account the
staleness of § values, we gradually consider the choice of
a fragment, less bound to 4, and this behaviour is provided
by the negative exponential in Eqn. (IZ7). Given enough
time, the choice will be based only on the number of
available fragments. However, we consider that by that
time a new measure for § would have been taken and
incorporated again into the model choosing the fragment.

Generally, for nodes having the highest latencies
with respect to a given node n’, more time will be
needed to receive a fragment from the node n’. We
aim at compensating such a delay by incorporating into
our model the inescapable latencies of a P2P network.
Therefore, the node that will receive a fragment first will
be among the furthest. For the model, we have then
chosen a decay law. Now it is possible to obtain a
complete time-variant analytical form of the spreading of
file fragments (see Fig.[3) defined as in the following:

efcréij

T P

Xy (7) : a7
where the decay constant ¢ can be chosen heuristically,
without harming the formulated law, and tuned according
to other parameters. If k indicates a file fragment and
k* the index of the most urgent file fragment to share,
this latter is trivially found as the solution of a maximum
problem so that

k* X;;j* (1) = ma {X;J(T)}) (18)

Figure [3] shows the decay of several computed Y
values for different peers requiring a file fragment z3 (3
is the fragment index). Of course, all the priorities depend
on the value of the two-dimensional matrix of values of
P;? (we mark that the index ¢ does not change within the
same node n"). Among these values, there is no need to
compute elements where ; = ¢ and for those elements
where the node n/ is not in the queue for resource zg.
In both the cases, it is assumed that P,” = 1. Moreover,

e K@

’5 (v)

X

7 8 9 10

Fig. 3. Time decay of some normalised x? (7) for increasing
time steps 7.

after n’ having completed to transfer z;, to the node n/, the
element of indices (j, k) is set to 1. In a similar fashion,
each peer is able to identify a possible resource to ask for
in order to maximise the diffusion of rare ones instead of
common ones.

4. Multiscale neural predictor to devise
availability trends for file fragments

Although the model proposed in Sections2landBlevolves
in time as in Eqn. (IZ), such a model is based on initial
conditions, essentially fragment availability, measured at
a certain time. On the other hand, it is only when
new data are received (e.g., when the tracker of the
BitTorrent network sends new information on the state
of the network, the number of peers and seeds for the
file fragments) that an updated result can be obtained
by changing the initial conditions in our mathematical
model as well. Therefore, while integrating certain
dynamics, the mathematical model alone can neither
predict, nor anticipate future network conditions by itself.
In order to predict the future state of the BitTorrent
network, and then suggest the appropriate priority actions
as a consequence, we developed an appropriate predictor
which takes advantage of several analysis methods as well
as machine learning techniques in order to tamper with the
timeline.

Our approach is built on wavelets and neural
networks to model the future trends of file fragments
availability in a near future.

4.1. Basis of wavelet decomposition. Wavelet
decomposition is a powerful analysis tool for physical and
dynamic phenomena that reduces the data redundancies

amcsb

C. Napoli et al.

and yields a compact representation expressing the
intrinsic structure of a phenomenon. In fact, the main
advantage when using wavelet decomposition is the
ability to pack the energy signature of a signal or a
time series, and then to express relevant data as a
few non-zero coefficients. This characteristic has been
proven very useful to optimise the performances of neural
networks (Gupta et al., 2004).

Like sine and cosine for Fourier transforms, wavelet
decomposition uses functions, i.e., wavelets, to express
a function as a particular expansion of coefficients in
the wavelet domain. Once a mother wavelet has been
chosen, it is possible, as explained in the following, to
create new wavelets by dilates and shifts of the mother
wavelet. Such newly generated wavelets, if chosen with
certain criteria, eventually form a Riesz basis of the
Hilbert space L?(R) of square integrable functions. Such
criteria are at the basis of wavelet theory and come
from the concept of multiresolution analysis of a signal,
also called multiscale approximation. When a dynamic
model can be expressed as a time-dependent signal, i.e.,
described by a function in L?(R), it is possible to obtain
a multiresolution analysis of such a signal. For the space
L?(R), such an approximation consists of an increasing
sequence of closed subspaces which approximate, with
a greater amount of details, the space L?(R), eventually
reaching a complete representation of L%(R) itself. A
complete description of multiresolution analysis and the
relation with wavelet theory can be found in the work of
Mallat (2009).

One-dimensional decomposition wavelets of order
n for a signal s(t) give a new representation of the
signal itself in an n-dimensional multiresolution domain
of coefficients plus a certain residual coarse representation
of the signal in time. For any discrete time step 7, then, the
corresponding M order wavelet decomposition Ws(T) of
the signal s(7) will be given by the vector

WS(T) = [di(7),d2(7),...,dp(7) an(7)], (19)

where dy is the most detailed multiresolution
approximation of the series and d; the least detailed, and
a s 1s the residual signal.

These coefficients are computed by means of
successive iterations and by recursively applying a bank
of wavelet filters to the signal and its residuals (the
nature of such filters will be clear in the following).
The resulting coefficients are able to express intrinsic
time-energy features of the signal, i.e., features of a
time series, while removing redundancies and offering a
well-suited representation, we give as inputs for a neural
network.

It is now possible to give a more rigorous definition
of a wavelet. Let us take into account a multiresolution

decomposition of L?(R),
pcVoC...CV;C Vi C...C LAR).

If we call W; the orthogonal complement V;, then it
is possible to define a wavelet as a function ¥ () if the set
of {¢(z —1)|l € Z} is aRiesz basis of W, and also meets
the following two constraints:

—+o00
Y(x)de =0 (20)

— 00

and
—+o00

[o@)|* = [(@) (@) de = 1.

If the wavelet is also an element of 1/, then there exists a
sequence { gy } such that

b(x) =2 grip(2z —1).

kEZ

Then the set of functions {1; |7, € Z} is a Riesz basis
of L?(R). It follows that a wavelet function can be used
to define a Hilbert basis, which is a complete system, for
the Hilbert space L?(R). In this case, the Hilbert basis
is constructed as the family of functions {¢;;[j,! € Z}
by means of dilation and translation of a mother wavelet
function 1 so that 1;; = V/291)(27z — [). Hence, given a
function f € L?(R), it is possible to obtain the following
decomposition:

f(z) = Z (flbs) = Z djahja(x), (21)

JEL J,LEZ

where d;; are called wavelet coefficients of the given
function f in the wavelet basis given by the inner product
of ;1. Likewise, a projection on the space V; is given by

Pif(x) = (flpis)eis(@),

K3

where (; ; are called dual scaling functions. When
the basis wavelet functions coincide with their duals,
the basis is orthogonal. Choosing a wavelet basis for
the multiresolution analysis corresponds to selecting the
dilation and shift coefficients. In this way, by performing
the decomposition, we obtain the {d;|ans} coefficients
sets of (19).

For the present work, we adopted biorthogonal
wavelet decomposition (this wavelet family is described
by Mallat (2009)), for which symmetrical decomposition
and exact reconstruction are possible with finite impulse
response (FIR) filters (Rabiner and Gold, 1975). Figure 4]
shows the implemented biorthogonal wavelet functions
and the related filter coefficients.

An accurate study has shown that biorthogonal
wavelet decomposition optimally approximates and

A mathematical model for file fragment diffusion and a neural predictor. . .

1

A —o ()| —= glx
— (1) 0.8F - -0 h[x]|]]
0.61 |
0.5r 8
0.4r |
0 7 7 0.21 [))
0 i
1 1
o3 T ool o |
I
1
1 -0.4F : 8
- ¢
L L L _0'6 L L L L L L L
-1 -0.5 0 0.5 1 -8 -6 -4 -2 0 2 4 6 8

Fig. 4. Implemented biorthogonal wavelets (left) and the related wavelet filter (right).

denoises the time series under analysis. Such a wavelet
family is in good agreement with previous optimal results
obtained by the authors for the decomposition of other
phenomena. In fact, such a decomposition splits a
phenomenon in a superposition of mutual and concurrent
predominant processes with a characteristic time-energy
signature. For stochastically-driven processes, such as
stellar phenomena (Capizzi et al., 2012; Napoli et al.,
2010) or renewable energy and system load (Bonanno et
al., 2012b; 2012a), and for a large category of complex
and distributed systems, wavelet decomposition gives a
unique and compact representation of the leading features
for a time-variant phenomenon.

Then, the datasets regarding the time series of the
number of peers and seeds were decomposed by using
wavelet biorthogonal decomposition identified by the
couple of numbers 3.7, i.e., implemented by using FIR
filters with the 7th order polynomials degree for the
decomposition and the 3rd order for the reconstruction
(the filter coefficients are depicted in Fig.[d]) .

4.2. Wavelets and neural networks. A neural
network can be built to perform such a construction,
i.e., a neural network would act as an inverse second
generation wavelet transform. In the work of Bonanno
et al. (2014), a neural network with a rich representation
of past outputs like a fully connected recurrent neural
network (RNN), known as the Williams—Zipser network
or the nonlinear autoregressive network with exogenous
inputs (NARX) (Williams, 1989), has been proven able
to generalise as well as structure itself to behave as an
optimal discrete wavelet filter. Moreover, for such a kind
of RNNs, when applied to the prediction and modelling
of stochastic phenomena, like the analysed behaviour of
users, which lead to a variable number of access requests

in time, real time recurrent learning (RTRL) has been
proven to be very effective. A complete description of the
RTRL algorithm, NARX and RNNs can be found in the
work of Williams and Zipser (1989) or Haykin (2009).

RTRL has been used to train the RNN, and such a
trained RNN achieves the ability to perform lifting stages,
hence the matching of the time series dynamics at the
corresponding wavelet scale. This construction brings the
possibility to match non-polynomial and nonlinear signal
structures in an optimised straightforward /N-dimensional
mean square problem (Mandic and Chambers, 2001).
NARX networks have been proven able to use the intrinsic
features of time series in order to predict the following
values of the series (Capizzi et al., 2012). One class
of transfer functions for the RNN has to be chosen
to approximate the input-output behaviour in the most
appropriate manner. For phenomena having deterministic
dynamic behaviour, the relative time series at a given
time point can be modelled as a functional of a certain
amount of previous time steps. In such cases, the model
used should have some internal memory to store and
update context information (Lapedes and Farber, 1986).
This is achieved by feeding the RNN with a delayed
version of past data, commonly referred to as time delayed
inputs (Connor ef al., 1994).

4.3. Proposed multiscale neural predictor. As stated
in Section it would be desirable to have a neural
network able to predict the future evolution of the
availability of file fragments while also performing the
wavelet inverse transform. The first property is a common
characteristic of neural networks, since such solutions
are universal approximators, as demonstrated by Cybenko
(1989). For the latter property, we could use a mother
wavelet as the transfer function; however, mother wavelets

amcsm

C. Napoli et al.

lack some elementary properties needed by a proper
transfer function such as, e.g., the absence of local minima
and a sufficiently graded and scaled response (Gupta et al.,
2004). This leads us to look for a close enough substitute
to approximate the properties of a mother wavelet without
affecting the functionalities of the network itself. The
function classes that more closely approximate a mother
waveform have to be found among radial basis functions
(RBFs), which are good enough as transfer functions and
partially approximate half of a mother waveform. It is
indeed possible to properly scale and shift a couple of
RBFs to obtain a mother wavelet. If we define an RBF
function as f : [—1,1] — R, then we could dilate and
scale it to obtain a new function,

r _ +f(21‘+1), T e [_150)7
f(“’+2l)_{ “fr-1), ze @041,
Vv l € Z. With such a definition, starting from the
properties of the RBF, it is then possible to verify the
following:

2k+1
/ flx)dz =0, Y (hk)eZ®:h<k (23)
2h+1

Starting from @22) and 23), it is possible to verify
Egns. (20) and @I) for the chosen f, which we can
now call a mother wavelet. The chosen mother wavelet
is a composition of two RBF transfer functions that are
realised by the proposed neural network to obtain the
properties of a wavelet transform. The proposed RNN has
two hidden layers with an RBF transfer function.

For this work, the initial dataset was a time series
representing the past values of x;’ in Eqn. (I7). For more
practical notation, we indicate such a time series as x(7),
where 7 is the discrete time step of the data, sampled with
a fixed ratio. A biorthogonal wavelet decomposition of the
time series has been computed to obtain the correct input
set for the RNN as required by the devised architecture.
This decomposition has been achieved by applying the
wavelet transform as a recursive couple of conjugate
filters (see Fig.H) in such a way that the i-esime recursion
Wi produces, for any time step of the series, a set of
coefficients d; and residuals a;, so that

Wilai_1(7)] = [di(7),a:(7)], Vie[l,M]NN, (24)

where we intend ao(7) = x(7). The input set can then be
represented as a 7' x (M + 1) matrix of 7" time steps of an
M level wavelet decomposition, where the 7-esime row
represents the 7-esime time step as the decomposition

u(r) = [di(7),d2(7), ..., dar(7), ane (7)] - (25)

Each row of this dataset is given as the input value to
the M input neurons of the proposed RNN. The properties
of this network (Napoli et al., 2013) make it possible,

u(t:)
_»

Fig. 5. Selected recurrent neural network architecture.

starting from an input at a time step 7,, to predict how
rare fragments will be at a time step 7,,+... In this way, the
RNN acts like a functional

N[U(Tn)] = 2(Tngr), (26)

where r is the number of time steps of forecast in the
future. Figure [3] depicts a model of the RNN architecture
developed in this work.

5. Setup of the neural predictor

For the problem at hand, a five-level wavelet
decomposition has been selected that properly
characterises the data under analysis. Therefore, the
devised RNN (see Fig. Q) uses a six-neuron input layer
(one for each level detail coefficient d; and one for the
residual as). This RNN architecture presents two hidden
layers with sixteen neurons each and realises an RBF (as
explained in Section[4.3).
Inputs are given to the RNN in the following form:

e the wavelet decomposition of the time series u(7,)
for time step 7,

e the previous delayed decompositions u(7,—1) and
u(TTL*Q)’

e the last four delayed outputs x(7,4.) predicted by
the RNN.

Delays and feedback are obtained by using the
relative delay lines and operators (D). These feedback
lines provide the RNN with internal memory, hence the
modelling abilities for dynamic phenomena. For the
case study proposed in this paper, we have used several
different time series containing raw data coming from the
BitTorrent network, specifically for each shared file: (i)

A mathematical model for file fragment diffusion and a neural predictor. . .

the number of peers, (ii) the number of seeds, and (iii) the
sharing ratio.

We consider the time series complete (with no
missing information or data gaps) since the delivery of
the series is the responsibility of the tracker and since the
BitTorrent protocol requires to periodically negotiate with
the tracker. On the other hand, in the BitTorrent network,
such values are given on a file-related basis; in fact, we
have that a file is a set of fragments. Therefore, for the
l-esime shared file, represented as K, at a time ¢y the
raw values given by the BitTorrent tracker correspond to
vector &,

Tk(to)
G=1 Skto) |,
pi(to)

Vk:zkEKl, (27)

where Ty (to), Sk(to) and py(to) are the ones used in
Eqn. (I3). This means that at time t, we can compute
Dy (to) and, consequently, ® from Eqn. (12), as well as
X3 (to) from Eqn. (7). That is, for each time step T we
indirectly obtain ij (1) from the data given by the tracker
and then using our mathematical model.

As in Eqn. (T7), we note that and j are the indices
of the nodes in the BitTorrent network, and k represents a
file fragment. Once the time series of values x;’ has been
obtained, we want to predict the future availability of each
k-esime file fragment. Therefore, the above developed
RNN predictor has been trained for each shared file (not
just for a file fragment, since the time series to be fed to
the RNN are the same for each fragment belonging to the
same file). Moreover, given the definition of a file as a set
of fragments, it follows that

K, NKy, =0, Vi #ly. (28)

Therefore, for L shared files we would have L neural
networks (each one associated to a file) to obtain L
predictions of the parameter vectors in Eqn. 7). Then,
since files are shared among nodes, the results of the
predictions referring a file are spread to the corresponding
nodes. The L trained networks have all the same topology,
hence we need to store the trained weight matrices only,
in case of a restart. Then, each node n’ uses a subset of all
predictions, i.e., the ones related to the files the node has
got (see Fig.[6).

The employed RNNs were trained by using a
gradient descent back-propagation algorithm with a
momentum led adaptive learning rate as presented
by Haykin (2009). For a prediction of 2 hours in advance
of the time series, the relative error was less than 6%. The
output of the RNNs is the selected file fragment ids that
have to be sent first.

5.1. Predicted file availability. By considering both
the predicted Zx(7,+,) and the modeled xx(7++), it is

Nodes and the related shared files Neural networks

‘ Ki ‘ ‘ K> ‘
i=1
RNN n.2
k[K|
i=2
.
“," -
5] [
i=INT

Fig. 6. Employed associative topology among neural networks
and files.

0.07

0.06 S

o
=)
a1
T
i

0.041 4

o
=)
@
T
i

Distance 8" [s]

o
=)
]
T
i

g
o
=
T
i

ole | | | | | | |
0 5 10 15 20 25 30 35 40

Node number j

Fig. 7. Distances measured by node n' with respect to all the
42 nodes available in the experiment.

possible, at a time step 7,, to take counteracting actions
and improve the availability estimated for a future time
Tn+r» hence increasing the diffusion of rare file fragments.
This is achieved, in practice, by using altered values for
Dy (Tn4r), which account for the forecast of future time
steps. Such modified values are computed by our RNNs,
and then predicted future values for Tk (Tn+4r), Sk(Tntr)
and py (7,4) are sent to each node active as a peer.

Each time a new file becomes shared on the P2P
BitTorrent network, a new RNN is created and trained on
a server (e.g., requested from a cloud system (Borowik
et al., 2015; Napoli et al., 2016)), in order to provide
predictions related to peer availability of the novel set of
shared fragments. Values indicating the prediction are
sent to the peers periodically, and allow peers to update
their values of Dy (7). The update frequency can be tuned
in order to correctly match the dynamic of peers.

6. Experiments

Figure [7] shows the measured distances of the available
nodes measured by the first node (i = 1). For our
experiments we used a mixture of hosts connected by the
Italian research and education fast network (GARR). The

@amcs

C. Napoli et al.

=2

3
- @

Fragment number k
%)

Fragment number k
%) -

I N
e N

o
o

=

N

Fragment number k
W

&

4

o
ok

4 6 8 10
Node number j

o
ok

1=3

Node number j

1=5

4 6 8 10
Node number j

=3
=l
1S
o
[N}

=6

N
.
N

'S

Fragment number k
)
. .
Fragment number k
e W

o
o

-

[N}

'S

Fragment number k
w

S

0 2 4 6 8 10
Node number j

o
[N

4

=7

6
Node number j

=8

®
1S
N}

4 6 8 10
Node number j

=9

[
.
[

'S

Fragment number k
%)
. .
Fragment number k
s W

o
.
o

=

N

Fragment number k
W

&

0 2 4 6 8 10 0 2 4
Node number j

Node number j

8 10 0 2 4 6 8 10
Node number j

Fig. 8. Evolution of a subnet composed of 10 nodes sharing 4 different file fragments (since 22 is missing). At a time step 7 = 4 the
fifth file fragment (22) is injected on node n' and then spread all over.

simulated BitTorrent network comprised 42 nodes sharing
5 files.

For the sake of clarity, we also simulated a
subnetwork of 10 nodes sharing 5 file fragments (see
Fig. B). In the latter example, at the initial condition
of the system, four of the file fragments happen to be
heterogeneously spread among peers of the P2P network,
while a fifth fragment (namely, z2) is not present within
the connected nodes. In the order, step after step, each
node selected a file fragment to require and a file fragment
to send, e.g., at the time step 7 = 1 the node n! tried to
send file fragment z4 to as many nodes as possible because
of its urgency (since it is the rarest fragment) starting from
n? (since it is the farthest node from n°). Simultaneously,
the nodes n?, n?, n%, n”, n® and n? sent the only fragment
they had at 7 = 0. Since both z; and z3 are equally rare,
the node n* at 7 = 0 sent these two fragments on a node
distance-basis (the furthest the first).

At a successive time step (7 = 1), the situation seems
to change radically because of the fragments that have
been just transferred among nodes. In this simulation, all
fragments, except zo because it is actually unavailable on
any node, have been shared among nodes, in a very low
number of time steps. It should be pointed out that from
7 = 1to 7 = 3 some previously rare fragments have been

rapidly spread and that only later on the most common
fragments will be transferred. At 7 = 3 the system of
peers seems to reach a steady situation: all fragments have
been shared, except fragment zo, since it is unavailable,
hence all the nodes are waiting for it.

Let us now suppose that, during the time step 7 = 4,
an eleventh node (additional to the previous network of
peers) transfers z; to n'; the result is then depicted in the
scenario at 7 = 5. In this second part of the experiment,
while the rarity of z is not important, then only the
distance of the nodes leads to the order of distribution.
For example, when 5 < 7 < 6, node n! sends the file to
n?, which is the most distant node with respect to nt. The
same strategy is then adopted by other nodes receiving it
until the fragment has been shared with all nodes (7 =
9). The described behaviour has been determined by the
model in Eqn. (I8).

Moreover, the evolution shown does not consider the
file fragments that could have been passed among the
nodes in between two different updates, and so that for
each step the value of y for n'® would drop to zero (the
highest values of x are an indication of the urgency of
receiving a fragment).

The described model and formula allow subsequent
sharing activities, after the initial time steps, to be

A mathematical model for file fragment diffusion and a neural predictor. . .

100

90

80

70

60

Available peers

50

40

30 | | | | | |
1000 2000 3000 4000 5000 6000 7000

Time [s]

Fig. 9. Measured node availability.

determined in terms of which fragments should be sent. In
the long run, this law will privilege the near nodes, while
in the short term, distant nodes are often the ones having
higher priority.

A more extensive comparison was performed by
simulating both our approach and the standard BitTorrent
protocol. We wanted to share a file of size 1 GB among
100 peers, therefore sharing 65536 file fragments, each
of size 16 KB. In our initial conditions there was only
one seed (i.e., a node with all the fragments), while each
of the other peers was provided with one file fragment
(a different fragment for each peer, therefore multiple
replicas of the fragments were on the network). We
decided to start with this setup in order to simplify the
comparisons of the results excluding the transient phase
(i.e., when only one seed begins to share a file with peers
that are not yet able to share the file). Finally, we supposed
that each peer could send one fragment and receive five
fragments at the same time. For the simulations we
used network latencies and nodes availability from real
data: we measured the latencies in our network (a partial
amount of data is given in Fig. [7), while we applied a
scaled profile of real peers availability on the traditional
BitTorrent network (see Fig.[B).

The resulting comparison is shown in Fig. while
our approach has a slow start (since it prefers to diffuse
replicas to remote peers instead of giving them to the
nearest peers), it definitively prevails over the standard
BitTorrent protocol due to the said ability to quickly adapt
to the number of replicas and peers available.

7. Related works

Several studies have analysed the behaviour of BitTorrent
systems from the point of view of fairness, i.e., how to

100

90r .

80 7

701 7

60 7

50+ : B 4

40r 7

30r 1

Number of peers with whole file

20r 8

10 — Traditional BitTorrentf
—— Proposed approach

0 ; ; ;
0 1000 2000 3000 4000 5000 6000 7000

Time [s]

Fig. 10. Performances of the proposed approach compared with
a traditional BitTorrent network for a 1 GB file shared
among 100 nodes.

have users contribute with contents that can be uploaded
by other users, levelling the amount of downloads
with that of uploads. Fewer works have studied the
problem of unavailability of contents in P2P BitTorrent
networks, while the main focus has often been on the
appropriate ranking systems that give priorities to peers
or moderate the interactions between them (Visan et al.,
2011). For networks consisting of a large number of
nodes, some priority management systems are based on
scalable algorithms that ensure rapid convergence, such as
Epidemic-style or gossip-based algorithms as in the work
of Ghit ez al. (2010).

Another approach is that of Qiu and Srikant (2004),
who propose to rank peers according to their upload
bandwidth; hence, when having to provide some contents,
the selection of peers is performed accordingly. One of
the mechanisms proposed to increase file availability has
been to use a multi-torrent, i.e., for ensuring fairness,
instead of forcing users to stay longer, contribution is
provided to uploaders for fragments belonging to different
files (Guo et al., 2005). Similarly, Kaune er al. (2010)
show that, by using the multi-torrent, availability can
be easily increased, and confirm that fast replication of
rare fragments is essential. Furthermore, bundling, i.e.,
the dissemination of a number of related files together,
has been proposed to increase availability (Menasche
et al., 2009).

The above proposed mechanisms differ from our
proposal, since we take into account several novel factors:
the dynamic of data exchange between distant peers, a
decay for the availability of peers, and the forecast of
contents availability. Such factors have been related to
a proposed model, which manages to select the rarest

amcs@

C. Napoli et al.

content to be spread, taking into account the future
availability and the peers that should provide and take
such a content.

8. Conclusions

This paper has proposed a solution that improves the
availability of fragments on a P2P BitTorrent system by
adopting a mathematical model and a neural network,
each properly devised for the problem at hand. The model
is able to precisely describe diffusion of fragments and
the urgency to share fragments, thanks to the mapping
that we have proposed of mass diffusion through a
porous means and the derived equations. The neural
network approximates the availability of peers, and
hence fragments, at later time points, by retaining the
characteristics of the behaviour of users. This has
been achieved firstly by wavelet-transforming of the
time series of peer availability, and secondly by feeding
such results to a nonlinear autoregressive neural network,
which is able to both perform predictions and apply an
anti-wavelet transform. By using the estimates of future
fragments availability provided by our neural network
into the fragment diffusion model, we can then select the
fragments that have to be quickly spread to counteract
their disappearance due to some user disconnection.

The proposed approach can be easily embedded on a
P2P BitTorrent system, while preserving modularity and
separation of concerns (Banno et al., 2010; Giunta et al.,
2011; Calvagna and Tramontana, 2013; Tramontana,
2013), since the computational cost due to prediction and
modelling is essentially up to the tracker itself, hence
freeing peers of the burden. This choice would tap into a
resource, the tracker, which is an existing component that
peers have to connect to. For the computational cost, an
instance of our ensemble (predicting the neural network
and the fragment diffusion model) suffices to give accurate
suggestions for a file and all its fragments, and updates to
peers are given at widely spaced time intervals.

References

Banno, F., Marletta, D., Pappalardo, G. and Tramontana, E.
(2010). Tackling consistency issues for runtime updating
distributed systems, Proceedings of the IEEE International
Symposium on Parallel & Distributed Processing, Work-
shops and PhD Forum (IPDPSW), Atlanta, GA, USA,
pp. 1-8.

Bonanno, F., Capizzi, G., Coco, S., Napoli, C., Laudani, A. and
Lo Sciuto, G. (2014). Optimal thicknesses determination
in a multilayer structure to improve the SPP efficiency for
photovoltaic devices by an hybrid FEM—cascade neural
network based approach, Proceedings of the IEEE In-
ternational Symposium on Power Electronics, Electrical
Drives, Automation and Motion (SPEEDAM), Ischia, Italy,
pp. 355-362.

Bonanno, F., Capizzi, G., Gagliano, A. and Napoli, C. (2012a).
Optimal management of various renewable energy sources
by a new forecasting method, Proceedings of the IEEE In-
ternational Symposium on Power Electronics, Electrical
Drives, Automation and Motion (SPEEDAM), Sorrento,
Italy, pp. 934-940.

Bonanno, F., Capizzi, G. and Napoli, C. (2012b). Some
remarks on the application of RNN and PRNN for
the charge-discharge simulation of advanced lithium-ions
battery energy storage, Proceedings of the IEEE Interna-
tional Symposium on Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM), Sorrento, lItaly,
pp. 941-945.

Borowik, G., Wozniak, M., Fornaia, A., Giunta, R., Napoli,
C., Pappalardo, G. and Tramontana, E. (2015). A
software architecture assisting workflow executions on
cloud resources, International Journal of Electronics and
Telecommunications 61(1): 17-23.

Calvagna, A. and Tramontana, E. (2013). Delivering dependable
reusable components by expressing and enforcing design
decisions, Proceedings of the IEEE Computer Soft-
ware and Applications Conference (COMPSAC) Workshop
(QUORS), Kyoto, Japan, pp. 493-498.

Capizzi, G., Napoli, C. and Paterno, L. (2012). An innovative
hybrid neuro-wavelet method for reconstruction of missing
data in astronomical photometric surveys, Proceedings of
the International Conference on Artificial Intelligence and
Soft Computing (ICAISC), Zakopane, Poland, pp. 21-29.

Chiani, M., Dardari, D. and Simon, M.K. (2003). New
exponential bounds and approximations for the
computation of error probability in fading channels, IEEE
Transactions on Wireless Communications 2(4): 840-845.

Cohen, B. (2003). Incentives build robustness in BitTorrent,
Workshop on Economics of Peer-to-Peer Systems, Berke-
ley, CA, USA, Vol. 6, pp. 68-72.

Cohen, B. (2008). The BitTorrent protocol specification,
http://jonas.nitro.dk/bittorrent/
bittorrent-rfc.html.

Connor, J.T., Martin, R.D. and Atlas, L. (1994). Recurrent neural
networks and robust time series prediction, Transactions
on Neural Networks 5(2): 240-254.

Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function, Mathematics of Control, Signals and
Systems 2(4): 303-314.

Fornaia, A., Napoli, C., Pappalardo, G. and Tramontana,
E. (2015). Using AOP neural networks to infer user
behaviours and interests, XVI Workshop “From Object to
Agents” (WOA), Napoli, Italy, pp. 46-52.

Ghit, B., Pop, F. and Cristea, V. (2010). Epidemic-style global
load monitoring in large-scale overlay networks, Proceed-
ings of the International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), Fukuoka,
Japan, pp. 393-398.

Giunta, R., Pappalardo, G. and Tramontana, E. (2011). Aspects
and annotations for controlling the roles application classes

http://jonas.nitro.dk/bittorrent/
bittorrent-rfc.html.

A mathematical model for file fragment diffusion and a neural predictor. . .

play for design patterns, Proceedings of the IEEE Asia Pa-
cific Software Engineering Conference (APSEC), Ho Chi
Minh, Vietnam, pp. 306-314.

Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X. and Zhang,
X. (2005). Measurements, analysis, and modeling of
BitTorrent-like systems, Proceedings of the ACM SIG-
COMM Conference on Internet Measurement, Berkeley,
CA, USA, pp. 35-48.

Gupta, M.M., Jin, L. and Homma, N. (2004). Static and Dy-
namic Neural Networks: From Fundamentals to Advanced
Theory, Wiley-1EEE Press, New York, NY.

Haykin, S. (2009). Neural Networks and Learning Machines,
Vol. 3, Prentice Hall, New York, NY.

Kaune, S., Rumin, R.C., Tyson, G., Mauthe, A., Guerrero, C.
and Steinmetz, R. (2010). Unraveling BitTorrent’s file
unavailability: Measurements and analysis, I[EEE Interna-
tional Conference on Peer to Peer Computing (IEEE P2P),
Delft, The Netherlands, pp. 1-9.

Lapedes, A. and Farber, R. (1986). A self-optimizing,
nonsymmetrical neural net for content addressable
memory and pattern recognition, Physica D: Nonlinear
Phenomena 22(1): 247-259.

Mallat, S. (2009). A Wavelet Tour of Signal Processing: The
Sparse Way, Academic Press, Cambridge.

Mandic, D.P. and Chambers, J. (2001). Recurrent Neural Net-
works for Prediction: Learning Algorithms, Architectures
and Stability, John Wiley & Sons, Inc., New York, NY.

Menasche, D.S., Rocha, A.A., Li, B., Towsley, D. and
Venkataramani, A. (2009). Content availability and
bundling in swarming systems, Proceedings of the ACM
Conference Co-NEXT, Rome, Italy, pp. 121-132.

Napoli, C., Bonanno, F. and Capizzi, G. (2010). Exploiting solar
wind time series correlation with magnetospheric response
by using an hybrid neuro-wavelet approach, Advances in
Plasma Astrophysics: Proceedings of the International As-
tronomical Union, Giardini Naxos, Italy, pp. 156—158.

Napoli, C., Pappalardo, G. and Tramontana, E. (2013). A hybrid
neuro-wavelet predictor for QoS control and stability, in M.
Baldoni et al. (Eds.), Proceedings of Artificial Intelligence
(AlxIA), Lecture Notes in Computer Science, Vol. 8249,
Springer, Berlin pp. 527-538.

Napoli, C., Pappalardo, G. and Tramontana, E. (2014a). An
agent-driven semantical identifier using radial basis neural
networks and reinforcement learning, XV Workshop “From
Objects to Agents” (WOA), Catania, Italy, Vol. 1260.

Napoli, C., Pappalardo, G. and Tramontana, E. (2014b).
Improving files availability for BitTorrent using a diffusion
model, Proceedings of the IEEE International WETICE
Conference, Parma, Italy, pp. 191-196.

Napoli, C., Pappalardo, G., Tramontana, E., Nowicki, R.,
Starczewski, J. and Wozniak, M. (2015). Toward work
groups classification based on probabilistic neural network
approach, in L. Rutkowski et al. (Eds.), Proceedings of the
International Conference on Artificial Intelligence and Soft
Computing (ICAISC), Lecture Notes in Computer Science,
Vol. 9119, Springer, Berlin, pp. 79-89.

Napoli, C., Pappalardo, G., Tramontana, E. and Zappala,
G. (2016). A cloud-distributed GPU architecture for
pattern identification in segmented detectors big-data
surveys, Computer Journal 59(3): 338-352, DOI:
10.1093/comjnl/bxul47.

Nowak, B., Nowicki, R., WoZniak, M. and Napoli, C. (2015).
Multi-class nearest neighbour classifier for incomplete data
handling, in L. Rutkowski et al. (Eds.), Proceedings of the
International Conference on Artificial Intelligence and Soft
Computing (ICAISC), Lecture Notes in Computer Science,
Vol. 9119, Springer, Berlin, pp. 469—-480.

Qiu, D. and Srikant, R. (2004). Modeling and performance
analysis of BitTorrent-like peer-to-peer networks,
SIGCOMM Computer Communication Review
34(4): 367-378.

Rabiner, L.R. and Gold, B. (1975). Theory and Application of
Digital Signal Processing, Prentice-Hall, Inc., Englewood
Cliffs, NJ.

Tramontana, E. (2013). Automatically characterising
components with concerns and reducing tangling,
Proceedings of the IEEE Computer Software and Applica-
tions Conference (COMPSAC), Workshop QUORS, Kyoto,
Japan, pp. 499-504.

Visan, A., Pop, F. and Cristea, V. (2011). Decentralized
trust management in peer-to-peer systems, Proceedings
of the International Symposium on Parallel and Dis-
tributed Computing (ISPDC), Cluj-Napoca, Romania,
pp. 232-239.

Williams, R.J. (1989). A learning algorithm for continually
running fully recurrent neural networks, Neural Compu-
tation 1: 270-280.

Williams, R.J. and Zipser, D. (1989). Experimental analysis of
the real-time recurrent learning algorithm, Connection Sci-
ence 1(1): 87-111.

Wozniak, M., Potap, D., Gabryel, M., Nowicki, R., Napoli, C.
and Tramontana, E. (2015). Can we process 2D images
using artificial bee colony?, in L. Rutkowski ef al. (Eds.),
Proceedings of the International Conference on Artifi-
cial Intelligence and Soft Computing (ICAISC), Lecture
Notes in Computer Science, Vol. 9119, Springer, Berlin,
pp- 660-671.

Christian Napoli received the B.Sc. degree in
physics from the Department of Physics and As-
tronomy, University of Catania, in 2010, and the
M.Sc. degree in astrophysics in 2012. Since 2009
he has been a student research fellow at the De-
partment of Electrical, Electronics, and Infor-
matics Engineering, University of Catania, and a
collaborator of the Astrophysical Observatory of
Catania as well as the National Institute for Nu-
clear Physics. He is currently pursuing a Ph.D. in
informatics with the Department of Mathematics and Informatics, where
he is also a research fellow in several projects. His current research
interests include neural networks, artificial intelligence, distributed sys-
tems and computational models, with emphasis on hybrid neural network
modelling techniques for massively parallel architectures.

aamcs

amcsm

C. Napoli et al.

Giuseppe Pappalardo has been a full professor of computing science
at Catania University since 2002. His research is mainly in the area of
distributed computing. In particular, he has focused on several topics,
including formal description of distributed systems (with realistic ap-
plications and contributions to semantical foundations and verification
techniques), fault tolerance issues in distributed replicated systems and
remote procedure calls, the generalisation of the notion of implemen-
tation based on the new concept of interface diversity, the definition of
reflective software architectures for the transparent evolution and adap-
tation of distributed systems.

Emiliano Tramontana has been an assistant
professor of computing science at Catania Uni-
versity since 2007. The main areas of his re-
search concern software engineering and dis-
tributed systems. More specifically, his research
activities have included innovative solutions for
consistent update of distributed applications at
runtime; more modular and reusable versions of
some of the most commonly used design pat-
terns; architectural and algorithmic solutions to
negotiate QoS parameters and for the management of resources in or-
der to meet the thresholds provided on QoS parameters; concepts and
metrics for analysing the modularity of software systems and to suggest
improvements on the quality of the code through refactoring techniques.

Received: 20 January 2015
Revised: 14 July 2015

	Introduction
	Mathematical representations
	Fragment diffusion on a P2P network
	Spaces and metrics
	Fick's diffusion law and its use for P2P
	From concentration to probability
	Discrete time evolution on each node
	Assigning priorities and corrections

	Multiscale neural predictor to devise availability trends for file fragments
	Basis of wavelet decomposition
	Wavelets and neural networks
	Proposed multiscale neural predictor

	Setup of the neural predictor
	Predicted file availability

	Experiments
	Related works
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

