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The problem of note onset detection in musical signals is considered. The proposed solution is based on known approaches
in which an onset detection function is defined on the basis of spectral characteristics of audio data. In our approach, several
onset detection functions are used simultaneously to form an input vector for a multi-layer non-linear perceptron, which
learns to detect onsets in the training data. This is in contrast to standard methods based on thresholding the onset detection
functions with a moving average or a moving median. Our approach is also different from most of the current machine-
learning-based solutions in that we explicitly use the onset detection functions as an intermediate representation, which
may therefore be easily replaced with a different one, e.g., to match the characteristics of a particular audio data source.
The results obtained for a database containing annotated onsets for 17 different instruments and ensembles are compared
with state-of-the-art solutions.
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1. Introduction

Segmentation may be deemed one of the most important
skills attributed to intelligence, either human or artificial.
Assigning significance to some spatially or temporally
correlated groups of data in an image or a sound file is an
elementary step of analysis, providing grounds for feature
extraction, description and, eventually, comprehension.

A fundamental stage in audio segmentation process
is onset detection or, especially in music information
retrieval (MIR), note onset detection. It is used as
a starting point in numerous practical applications,
including rhythm and tempo analysis (Laroche, 2003;
Peeters, 2005), query-by-humming (QbH) music search
engines (Huang et al., 2008; Typke et al., 2007), support
systems in music education (Zhang and Wang, 2009; Yin
et al., 2005) and parametric audio coding (Bartkowiak and
Januszkiewicz, 2012).

Note onsets are tightly related to attack transients in
musical signals. This is due to the fact that the sound
produced by a musical instrument is a non-stationary
signal in a short period of time after excitation occurs.
Detection of transients, in particular attack transients,
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is applicable in musical signal processing due to the
fact that during transient states the magnitude and the
phase of a signal tend to change rapidly. However,
the precise definition of the onset time, making it
possible to unambiguously locate it on the time axis,
is not a straightforward task (Bello et al., 2005; Lerch,
2012). Various definitions, including perceptual onset
time (POT), perceptual attack time (PAT), acoustic
onset time (AOT) and note onset time (NOT), have
been proposed (Repp, 1996; Lerch, 2012) in order to
highlight differences between the time when the onset is
perceivable by a human listener, when it is measurable by
audio monitoring devices, and simply when the note-on
command is triggered by a MIDI synthesizer.

Analysis of polyphonic music is especially difficult,
due to natural limitations of performers’ precision in
playing several notes simultaneously. Moreover, the
onset-specific type of change in the temporal and spectral
characteristics of a sound varies significantly for different
instruments and types of articulation. For example,
pitched non-percussive (PNP) sounds, as those produced
by bowed instruments, are generally considered more
difficult to analyze than pitched/non-pitched percussive
ones (PP/NPP), as intensity-related features may be not
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sufficient for successful segmentation (Zhang and Wang,
2009; Collins, 2005). Finally, it should be remembered
that musical instruments are basically modelled by
complex systems of linear and non-linear ordinary as
well as partial differential equations with time-varying
parameters (Rabenstein and Petrausch, 2008), and the
complete description of physical phenomena occurring in
onset-related transient states is definitely nontrivial. All
these factors make the task of building a universal onset
detector a real challenge, which justifies searching for
new, machine-learning-based methods which would be
able to deal with the uncertainties inherent in formulation
of the problem.

The classical approach in the onset detection task is
composed of construction of an onset detection function
(ODF), also known as a novelty function, and picking
the peaks of the ODF, which indicate the occurrence of
something new in the signal (Bello et al., 2005; Bello
and Sandler, 2003; Duxbury et al., 2003; Laroche, 2003).
In this work we propose a novel solution, combining the
ODF-based approach with machine learning. One of the
key advantages of our method (NN-based multi-ODF fu-
sion) is simultaneous application of many ODFs, allowing
covering a broad range of onset-relevant information.

The remainder of the paper is organized as
follows. The next section presents methods and
algorithms proposed in the literature, with an emphasis
on neural-network-based solutions (Section 2.3). In this
context, our approach is presented (Section 3), along
with the description of the audio dataset selected for
testing, details of the data preparation procedure and
testing schemes. The obtained results are displayed and
discussed (Section 4), and some conclusions and future
perspectives are formulated in the last section.

2. Previous work on onset detection

2.1. Methods based on onset detection functions.
Most of the ODF construction methods found in the
literature utilize information about the magnitude and/or
phase of STFT (short-time Fourier transform) frequency
bins in consecutive frames, for finding spectrum changes
indicating note onset occurrences. For example, one of the
simplest approaches, known as the spectral flux, is based
on a sum of half-wave rectified differences between the
k-th magnitude spectrum bins of two consecutive STFT
frames (Bello et al., 2005):

SF(n) =
∑

k

hwr(|Xk(n)| − |Xk(n− 1)|) , (1)

where Xk(n) is the k-th complex frequency bin of the
n-th frame and

hwr(x) =
x+ |x|

2

is the half-wave rectifier function, so that only positive
changes in the magnitude are taken into account.

Most of the methods which involve information
on phase changes rely on the differences between the
predicted and actual phases of each frequency bin. This
can be defined as

dϕk(n) = princarg[ϕk(n)− 2ϕk(n− 1) + ϕk(n− 2)] ,

where ϕk(n) is the k-th frequency bin of the n-th STFT
frame and the princarg operator maps the argument to the
[−π, π] range. In the case of musical signals, the ODF
depending solely on phase information may be sensitive to
changes in all spectrum bins regardless of their magnitude.
Therefore, it is worth combining the information on
magnitude and the phase, e.g., by weighing phase
deviation coefficients dϕk(n) by magnitude changes:

WPD(n) =
∑

k

|(|Xk(n)| − |Xk(n− 1)|) · dϕk(n)| .
(2)

A more sophisticated method based on the phase
spectrum was proposed by Bello and Sandler (2003), who
used phase deviation coefficients to build a bin histogram
of phase deviations for every STFT frame. Then the result
may be calculated with some statistical characteristics
(e.g., kurtosis) of such a distribution:

PHK(n) = Kurt(h(dϕ(n))) , (3)

where h is the bin histogram of the phase deviations.
There also exist methods which define the detection

function on the basis of the complex spectrum, thereby
taking into account both the amplitude and the phase.
Referring to Duxbury et al. (2003), the detection function
may be formulated as follows:

CD(n) =
∑

k

|Ŝk(n)− Sk(n)| , (4)

where |Ŝk(n) − Sk(n)| is the magnitude of the complex
difference between the expected (predicted) and the actual
k-th frequency bin of n-th STFT frame, where

Ŝk(n) = |Sk(n− 1)|ej(2ϕk(n−1)−ϕk(n−2)) .

The resulting detection functions are processed with
adaptive thresholding and peak-picking algorithms. A
moving average or a moving median is usually preferred
over a fixed threshold as it can follow the dynamics
of a sound (Duxbury et al., 2003; Böck et al., 2012).
Additionally, some methods for controlling the salience
of a peak are often applied (Dixon, 2006). Nevertheless,
unequivocal determination of the onsets is far from trivial,
and both false positives (FP: onsets reported in places
where no onset actually appears in the recording) and false
negatives (FN: actual onsets that have not been reported)
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are inherent to practically all the approaches proposed so
far.

Having denoted the correctly located onsets by
TP (true positives), the assessment of quality of the
onset detection may be expressed in terms of precision,
defined as the ratio TP/(TP+FP), and recall, defined as
TP/(TP+FN). Note that too low a threshold value leads
to reporting most of peaks, including the irrelevant ones,
and thus it results in excellent recall (low FN) but poor
precision (high FP). The opposite outcome (low recall and
high precision) is expected for too high a threshold value,
overshooting many relevant peaks. The harmonic mean of
precision and recall, known as the F-measure, is therefore
often reported as a “balanced” result of the onset detection
procedure (Dixon, 2006; Böck et al., 2012).

2.2. Multi-ODF fusion. A separate research direction,
especially related to our approach, is fusion of several
onset detection functions. This is accomplished either on
the feature-level by a set of pre-defined rules or a linear
combination of ODFs (Tian et al., 2014), or in the form of
the score-level fusion in which the decisions are taken on
the basis of the already computed onsets (Quintela et al.,
2009; Tian et al., 2014). However, despite the apparent
similarities to our solution (cf. Section 3), the differences
are indeed very significant. Tian et al. (2014) deliberately
refrain from using machine learning, while Quintela
et al. (2009) although they apply, e.g., KNN- and
SVM-based classifiers, operate on a completely different
representation of input data in the form of lists of
pre-computed onset candidates and their locations in
time. In this context, our neural-network-based approach
relying on unprocessed raw ODF values presents an
alternative point of view on the onset detection problem.

2.3. Methods based on machine learning. The
popularity of machine learning applications for onset
detection is growing rapidly with some excellent results
reported in recent research. Neural networks are the tool
of choice (Lacoste and Eck, 2007; Böck et al., 2012),
although other data-driven techniques have also been
used (Davy and Godsill, 2002). The input data usually
consist of a time-frequency representation of the sound
signal, mapped non-linearly in the frequency domain
according to a perceptual model. Böck et al. (2012) used a
bank of triangular filters positioned at critical bands of the
Bark scale to filter the STFT magnitude spectra, computed
with three different window lengths in parallel. In this
way, the redundancy resulting from unnecessarily high
frequency resolution of the STFT in the upper frequency
range may be avoided. Hertz to mel scale mapping (Eyben
et al., 2010) and the constant-Q transform (Lacoste and
Eck, 2007) have also been applied for similar reasons.
Nevertheless, the problem of dimensionality reduction

of the data used as the neural network input is not
fully resolved, yet forcing system designers to apply
special preprocessing methods, including, e.g., random
sampling of the input window along time and frequency
axes (Lacoste and Eck, 2007).

The structure of the neural networks used in the
onset detection problem has often been subjected to
extensive research, and some non-standard approaches
have also been proposed. For instance, a multi-net
approach proposed by Lacoste and Eck (2007) is based
on merging the results obtained from several networks,
each trained with a different set of hyper-parameters, by
means of an additional “output” neural network followed
by a peak-picking procedure. Apart from the standard
questions regarding the number of hidden layers and
hidden neurons, several different NN types, including
the recurrent neural network (RNN), the feed-forward
convolutional neural network (CNN) and the LSTM
(long short-term memory) neural network, have been
considered (Böck et al., 2012; Eyben et al., 2010; Schlüter
and Böck, 2014).

3. Our solution: NN-based multi-ODF
fusion

In our approach a neural network is applied in a different
way for solving the onset detection problem. Instead
of taking a pre-processed spectrogram as the raw input,
we compute several onset detection functions and put
their values to the input of the neural network. The
network summarizes the information from all the ODFs
and generates its own onset probability estimation on this
basis (Fig. 1).

This approach follows the standard division of
a pattern recognition system into feature extraction
and classification blocks. The main role of the
feature extraction block is to compute the onset
detection functions which basically employ much more
problem-specific a priori knowledge compared with
approaches in which this knowledge has to be learnt
directly from spectral data. In this way the construction
of the classifier itself may be simplified and the input
space dimensionality may be kept reasonably low. This
is especially important as multi-dimensional data need
more training examples, which—in the case of the onset
detection problem—implies a laborious process of manual
annotation of audio files (Daudet et al., 2004).

3.1. Dataset. The dataset collected by Pierre
Leveau (Daudet et al., 2004) was chosen to test the
effectiveness of our solution. The collection contains
17 audio files representing a variety of music styles and
instruments. It was annotated by three expert listeners
for the total number of over 670 onsets, reported in the
corresponding ground-truth files. It should be noted that
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Fig. 1. Processing steps of our onset detection system. Top: audio data acquisition and spectrogram computation, bottom: construction
of several onset detection functions, neural network training and thresholding the output.

all the three annotations had to be consistent for any given
onset to be included in the database. For this reason, some
of the onsets are missing from the ground-truth files if
their timing differed between the annotators by more than
a predefined value (100 ms).

3.2. Data preparation. A basic tool used in
our solution is a multi-layer perceptron (MLP) with
one hidden layer and a non-linear (unipolar sigmoid)
activation function. As has been stated before, the input
of the neural network is based on the data obtained from
several onset detection functions aligned in time and
sampled uniformly within a sliding window. In fact, no
explicit sampling is necessary, as the ODFs are already
extracted from the audio signal on the per-frame basis. In
our approach the original audio files, recorded at fs =
44.1 kHz, were cut into frames of size N = 2048 with a
half-frame overlap, which resulted in computing the ODF
samples every K ms, where

K =
1

fs

N

2
≈ 23.22 . (5)

Four onset detection functions defined with the
formulas (1)–(4) were included into the study (Fig. 2,
left column), although any other type and number of
ODFs may be applied as well. The sliding window with
a fixed number of ns = 5 samples for each of the
four ODFs is used. A single input vector is therefore
composed of 20 samples plus additional four values
computed as arithmetic means of nm = 21 ODF samples
in the neighborhood of the sliding window. In this way
we incorporate the concept of a moving mean into our
solution, so that the classifier may benefit also from the

long-term information related to the average level of the
signal in a given interval. Finally, the neural network
has 24 inputs, and the input vector for a given location
of the sliding window, denoted by n, takes the form of a
concatenation of four vectors (cf. Fig. 2, right column):

x(n) = [vSF(n), vWPD(n), vPHK(n), vCD(n)] , (6)

defined as

vSF(n) =
[
SF (n− 2) , SF (n− 1) , SF (n) , . . .

SF (n+ 1) , SF (n+ 2) , SF(n)
]
,

vWPD(n) =
[
WPD(n− 2) , WPD(n− 1) ,

WPD(n) , . . . ,WPD(n+ 1) ,

WPD(n+ 2) , WPD(n)
]
,

vPHK(n) =
[
PHK (n− 2) , PHK(n− 1) ,

PHK(n) , . . . ,PHK(n+ 1) ,

PHK(n+ 2) , PHK(n)
]
,

vCD(n) =
[
CD (n− 2) , CD(n− 1) , CD (n) ,

. . . , CD(n+ 1) , CD(n+ 2) , CD(n)
]
,

(7)

where the last element of the vector vSF(n) is computed
as

SF(n) =

n+�nm/2�∑

k=n−�nm/2�
SF(k) , (8)

and similarly for the remaining three vectors.
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Fig. 2. Left column: four ODFs of a sax solo recording (G. Gershwin, Summertime, from Porgy and Bess—the beginning) and their
selected fragment, marked with black rectangles in the left column, shown magnified in the right column. The vertical lines
mark the ground-truth onsets.
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Fig. 3. Target values (the circles) for a fragment of an audio file with onsets appearing in the middle of the 20th and the 30th frame.
The continuous line represents the ideal model (Gaussian curve) of the onsets.

At the output of the network, we expect a single
value indicating the probability that an onset appears in
the center of the sliding window at a given position, i.e.,
within the n-th frame, assuming the input vector in the
form defined by Eqn. (6). However, a binary response
(onset present/not present) may lead to misclassification
if the onset in the ground-truth data appears one frame
before or after the actual ODF peak, which may easily
happen due to unavoidable imprecision of the music
annotation process. We therefore decided to define a soft
condition for the onset presence, in which the target output
value of the network is modeled as a Gaussian curve
centered at the n-th frame. After some simplifications
and rounding, the consecutive target values for an onset
appearing in the n-th frame are set to (Fig. 3)

t(n) = 0.75,

t(n± 1) = 0.55,

t(n± 2) = 0.35, (9)

t(n± 3) = 0.25,

t(n± 4) = 0.25,

...

We decided to limit the range of output values to
[0.25, 0.75] instead of [0, 1] because the unipolar sigmoid
used as the neural activation function is unable to reach
the endpoints of the second of these intervals, which might
impede the learning process (Bishop, 1995).

The output of the neural network is treated as another
onset detection function for which the peak-picking and
thresholding procedures must be applied (cf. Section 2.1).
The obvious advantage with respect to the original ODFs
used to construct the input data is that there is no
correspondence to the energy of the input signal, and
hence a fixed threshold

T ∈ (0.25, 0.75) (10)

may be used instead of the moving average or median.
We also do not have to consider the characteristics of each

individual ODF, such as whether the onsets are indicated
by local maxima or minima.

3.3. Train/test procedures. Two training/testing
schemes were applied:

1. In the first scheme, one instrument was removed
from the dataset and all the remaining 16 were used
to train the network (1-vs-all scheme). After the
training had been finished, the removed instrument
was used to test the network and only the results for
this instrument (“unknown” in the learning phase)
were reported. This procedure was repeated 17
times, so that each instrument was treated as the
“unknown” one exactly once.

2. In the second scheme, a single audio file was used
both for training and for testing in the 10-fold
cross-validation procedure (c-v scheme). In this
case all the remaining instruments were deliberately
ignored and only a part (1/10) of the recording of the
chosen one was treated as the “unknown” test data.
The training was repeated 10 times, so that each 1/10
of the file was treated as the “unknown” one exactly
once. The arithmetic means of all these ten folds
were reported and the whole procedure was repeated
for the remaining audio files.

The first scheme allows obtaining a universal onset
detector, trained on a variety of sound sources. The
task is more difficult here, as no data from the tested
recording are used in the training stage and the obtained
results for some instruments may be suboptimal if their
characteristics differ much from the general “population”.
One particular problem that was encountered during the
tests was that the results obtained for the clarinet and the
saxophone were significantly delayed with respect to the
annotated onsets in the ground-truth files (Fig. 4). This
observation corresponds to the delay of the signal energy
increase with respect to the beginning of embouchure,
which is specific to some woodwind instruments.
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Fig. 4. Relative differences in milliseconds between the annotations in the ground-truth files and the results obtained in the first testing
scheme (1-vs-all). For each instrument the optimal shift of all the onset positions, yielding the best F-measure, is reported.

Fig. 5. Results: the first testing scheme (one instrument vs. all the others). The numbers in brackets represent the total number of
annotated onsets for each instrument.

4. Results and discussion

The results obtained in the first testing scheme (1-vs-all),
after pre-shifting the ground-truth onsets accordingly, are
presented in Fig. 5. For each tested instrument, the
training was repeated 10 times, and the average value is
reported. These results were obtained after 100 training
epochs in the off-line mode (Bishop, 1995). In fact, due
to the large number of input vectors (ca. 10000), resulting
from application of the sliding window (Fig. 2) to all the
recordings from the training set, as few as 25 epochs
were enough to reach the overall F-measure value of
ca 78% (Table 1). Several networks with various numbers
of hidden neurons between 15 and 80 were tested, but
the variation in the outcomes was relatively low. The

presented results were obtained for 30 hidden units.

The results obtained in the second scheme (c-v) are
shown in Fig. 6. Here the data used for testing (1/10 of the
recording of a given instrument) were also disjoint from
the training data (the remaining 9/10). The train/test cycle
for a single instrument was repeated 10 times until every
fragment of the recording had been used exactly once for
testing. The value reported is the arithmetic mean of all
the ten folds. The number of training vectors is naturally
much lower here compared with the first testing scheme:
from 233 (distguit1 file) to 1169 (clarinet1) per each fold
and therefore the number of epochs must be appropriately
greater. The fixed number of 5000 epochs was set for all
the instruments, although the learning dynamics and the
speed of convergence varied greatly in many cases. This
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Fig. 6. Results: the second testing scheme (cross-validation: 1/10 of a recording vs. the remaining 9/10). The numbers in brackets
represent the total number of annotated onsets for each instrument. Note that the number of onsets in the classic3 dataset (four)
appeared too small to successfully train the classifier for this case.

variability was observed during the tests in the obtained
sequences of values of the training error E, defined as

E =

√√√√ 1

M

M∑

n=1

|y(n)− t(n)|2, (11)

where M is the number of available audio frames, t(n) is
the expected target value (Eqn. 9) and y(n) is the actual
value obtained at the output of the neural network for the
n-th frame.

For example, the error value E after 5000 epochs
for the piano and cello recordings reached the levels
of 0.038 and 0.15, respectively, indicating the relative
complexity of detection of the pitched, non-percussive
cello onsets. Applying an individual approach to each
instrument and using more flexible stopping criteria to
control the generalization error (e.g., with a validation set)
would supposedly lead to a further improvement of the
results.

Independence of the output range of the network on
the energy of the signal is an advantage, allowing usage
of a single, fixed value T (Eqn. (10)) to threshold the
output of the network. However, this value still has to be
appropriately set in order to achieve the desired precision
and recall levels. Maximization of the F-measure required
the threshold value of 0.4 in the first testing scheme and
0.43 in the second one (Fig. 7). Comparison of the
obtained values of precision, recall and the F-measure for
both testing schemes is presented in Table 1.

4.1. Discussion. The general expectations on the
superiority of the second testing scheme (c-v) are
obviously met, as can be seen in Table 1. Training the
network on the same type of data as those used for testing

Fig. 7. Relation of the F-measure (ordinate) to the MLP output
threshold (abscissa) for the second testing scheme (c-v).

leads to obtaining a more specialized and more effective
onset detector. This is very well visible in the case of
bowed instruments (cello and violin), which are of a very
specific (PNP) onset type. Their F-measure was 0.354 and
0.643 in the first testing scheme and 0.721 and 0.882 in the
second one. Low values of recall can be also observed in
Fig. 5 for these two instruments, which may suggest that

Table 1. Overall results of the onset detection tests.

Scheme 1 Scheme 2
(1-vs-all) (c-v)

Correctly detected onsets 486 569
Precision 0.856 0.821

Recall 0.724 0.863

F-measure 0.785 0.842



Note onset detection in musical signals via neural-network-based multi-ODF fusion 211

Table 2. Results for ODF subgroups, sorted by the F-measure
(‘X’ means that the corresponding ODF was included
in the input set).

SF WPD PHK CD F-measure

X X 0. 490

X X 0. 657
X X X 0. 658
X X 0. 687

X X X 0. 729
X X 0. 732

X X 0. 734
X X 0. 735

X X X 0. 774
X X X 0. 781

the threshold of 0.4 used in the first scheme is too high
in these cases. The PNP onsets are sufficiently different
from most of the other onsets (used for training) to make
the network “hesitate” and generate lower output values.

Comparing the results in Figs. 5 and 6, we can
observe that for some instruments (e.g., synthbass) the
onset detector trained on the other recordings performs
better. The explanation may be that these instruments
have relatively few onsets in the annotated ground-truth
files, so the network simply does not have sufficient data
for building a proper model of an onset when no other
recordings are used (the second scheme). This is best
seen in the case of the classic3 file, containing only four
annotated onsets, which results in zero values of both
recall and precision. This file is specific also because it
contains a fragment of orchestral music with very soft,
slow onsets, presenting substantial problems to human
annotators. Due to the imprecise timing, a significant
number of the actual onsets were not included in the
ground-truth data (cf. Section 3.1), leading to extremely
low precision values also in the first testing scheme
(Fig. 5). This may be, however, regarded more as a
demonstration of the fundamental ambiguities underlying
the formulation of the onset-detection problem in general.

The relative influence of the individual onset
detection functions was evaluated in a separate group of
tests in which the input vectors were reduced to contain
the values of only two or three ODFs. The first testing
scheme (one instrument vs. all the others) was applied
for these tests. For each subgroup the threshold yielding
the highest F-measure value was sought (the threshold
values fell within the range 0.36–0.42). The results
presented in Table 2 indicate that the complex-domain
spectrum (Eqn. (4)) contains the most useful onset-related
information. Its removal leads to a rather rapid drop
of the obtained results, which is generally not observed
to such an extent in the case of the other ODFs. The

information carried by individual ODFs overlaps in a
non-trivial way, which may be observed e.g. on the
basis of the PHK onset detection function (Eqn. (3)):
the set WPD+PHK+CD performs definitely better than
WPD+CD, while SF+WPD+PHK is actually worse than
SF+WPD, indicating (perhaps) the need to increase the
number of hidden neurons in the network structure.
The problem complexity also partially stems from the
heterogeneity of the sound sources in our database.
Replacing one onset detection function with another
may help some instrument types or a music genre,
while degrading the results for others. An example
shown in Fig. 8 reveals that changing PHK to WPD in
3-ODF configuration, although generally yields inferior
results, for piano recordings leads to some enhancement
(best seen for the piano+vocal recording in the classic2
set). A repository containing more detailed results is
available (Stasiak, 2015) and may be used for further
comparison and analysis.

The obtained results are comparable to
state-of-the-art solutions (cf. the F-measure results
reported in MIREX (2013): eleven algorithms, median:
0.8025, max: 0.8727). The results reported in the
literature for this particular dataset (Daudet et al., 2004)
are also similar, including, e.g., the recall value of ca 80%
for the EER point in the work of Alonso et al. (2005)
or the values of the F-measure for several instruments
(violin: 87%, trumpet: 89%, piano: 98%) obtained on the
extended Leveau database by Lee and Kuo (2006).

5. Conclusions

In this work a solution of the onset detection problem
in musical signals, based on a feed-forward multi-layer
non-linear neural network, was presented. Unlike many
other approaches based on direct analysis of the spectrum,
the intermediate representation built upon classical onset
detection functions was applied. In this way the input
data are already presented in domain-relevant form, which
allows simplifying the construction of the neural network
and the training process.

The obtained results are comparable to
state-of-the-art solutions. It should be noted that
several improvements may be easily introduced into the
proposed method, including, e.g., application of more
perceptually-motivated onset detection functions (and
a different number of ODFs, if necessary), controlling the
generalization error and modification of the stop criteria
for the training process and, eventually, preliminary
automatic classification of the recordings with respect to
the type of instruments. This last operation may allow us
to use several networks trained for different onset types,
similarly as in the presented second testing scheme.

Concluding, a decided advantage of the presented
solution is its relative simplicity and extensibility. In
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Fig. 8. Comparison of the F-measure value obtained for two different ODF subgroups.

future work, more training data will be used to obtain
more reliable models, leading to further improvements of
the results.
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