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A new dynamic programming based parallel algorithm adapted to on-board heterogeneous computers for simulation based
trajectory optimization is studied in the context of “high-performance sailing”. The algorithm uses a new discrete space
of continuously differentiable functions called the multi-splines as its search space representation. A basic version of
the algorithm is presented in detail (pseudo-code, time and space complexity, search space auto-adaptation properties).
Possible extensions of the basic algorithm are also described. The presented experimental results show that contemporary
heterogeneous on-board computers can be effectively used for solving simulation based trajectory optimization problems.
These computers can be considered micro high performance computing (HPC) platforms—they offer high performance
while remaining energy and cost efficient. The simulation based approach can potentially give highly accurate results
since the mathematical model that the simulator is built upon may be as complex as required. The approach described
is applicable to many trajectory optimization problems due to its black-box represented performance measure and use of
OpenCL.
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1. Introduction

Trajectory optimization is an important issue in the
fields of robotics, aerospace engineering and optimal
control. In most cases, however, it cannot be solved
analytically because the corresponding mathematical
model is too complex and, as a result, the optimization
process has to be simulation based.1 This approach
allow us to obtain highly accurate results but—since the
cost (time complexity) of a single simulation is often
significant—also requires high computing power.

In most on-board (or embedded) systems, like
sailboat or autonomous robot trajectory planners, a
typical, cluster based HPC platform obviously cannot
be used. A common way of addressing this issue is
a simplification—sometimes radical, depending on the
target platform capabilities—of the mathematical model,
which can lead to very rough approximations of optimal

1 Since derivative related information is not available, meta-heuristics
(like evolutionary or swarm intelligence based algorithms) are often
used.

trajectories (unacceptable in many situations).
The aim of this paper is to present an alternative

approach to the simulation based trajectory planning
process, using contemporary onboard/mobile computers.
The approach is very general both from the deployment
point of view and because of the scope of the optimization
problems it covers. The main contributions of this paper
are the following:

• the concept of a multi-spline—a special discrete
space of C1-continuous functions, which can
represent a solution space in many variational
problems (Sections 4.2 and 4.1);

• the algorithm for simulation based trajectory
optimization, built upon the concept of the multi-
spline, massively parallel, and adapted to on-board
heterogeneous computer systems (Sections 4.4, 4.3
and 4.5);

• experimental results which show that contemporary
heterogeneous on-board computers can be treated as

rdebski@agh.edu.pl
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micro HPC platforms—they offer high performance
while remaining energy and cost efficient (Section 5).

The remainder of this paper is organized as follows.
The next section contains a review of related work.
Following that, the optimization problem is defined. Next,
the proposed algorithm is described, and some remarks
about augmenting the algorithm are also given. After that,
experimental results are presented and discussed. The last
section contains the conclusion of the study.

2. Related work

Johan Bernoulli originated the brachistochrone
problem2—generally regarded as the first scientific
formulation of the problem of trajectory optimization—in
1696. One of its first solutions, by Johan’s brother
Jakob, significantly contributed to the development of
the calculus of variations (see, e.g., Stillwell, 2010)—the
field of mathematics which played a substantial part in
trajectory optimization for the next 250 years.

The 1950s saw the real breakthrough in this
field with the development of the digital computer
and introduction of dynamic programming (Bellman,
1954), effective shortest path algorithms (Bellman, 1958;
Dijkstra, 1959) and the Pontryagin maximum principle
(Pontryagin et al., 1962). Together with non-linear
programming (NLP), these have become the foundations
for many effective trajectory optimization methods which
are commonly classified as either direct or indirect (von
Stryk and Bulirsch, 1992; Betts, 1998; Lewis et al.,
2000; Szynkiewicz and Błaszczyk, 2011). Trajectory
optimization methods based on the shortest path algorithm
(see, e.g., Crauser et al., 1998; Bertsekas, 2000; Rippel
et al., 2005) can be considered a special case of the first
approach.

A special kind of trajectory optimization problems
are those having black-box represented performance
measures. A typical example of this is when the
performance measure values are received from computer
simulation (see, e.g., Dębski, 2014a). In such an
instance, most classic optimization methods cannot be
used (at least not directly) and the optimization process
is often based on soft-computing/AI methods (Vasile and
Locatelli, 2009; Ceriotti and Vasile, 2010; Pošík et al.,
2012; Szłapczyński and Szłapczyńska, 2012; Zamuda and
Sosa, 2014; Sun and Wu, 2011; Ćurković et al., 2009; Li
and Lü, 2014; Bai et al., 2012; Kojic et al., 2013; Zhou
et al., 2011).

Many existing trajectory optimization case studies
are related to robotics or aerospace engineering (see, e.g.,
Rippel et al., 2005; Krozel et al., 2006; Ceriotti and Vasile,
2010), but there are also others (see, e.g., Dębski, 2014b),
and a number of those address (autonomous) sailboat

2 Discussed in a broad sense by Sussmann and Willems (1997).

trajectory planing (Philpott and Mason, 2001; Philpott
et al., 2004; Böttner, 2007; Stelzer and Pröll, 2008; Pêtres
et al., 2011; Dalang et al., 2015).

Another important research area in the context of
this paper is related to the parallelization of trajectory
optimization (and graph) algorithms (Crauser et al., 1998;
Jasika et al., 2012) including the possibility of their
GPU-acceleration (see, e.g., Harish and Narayanan, 2007;
Arora et al., 2009; Wagner et al., 2012; Singla et al., 2013;
Park et al., 2013; Dębski, 2014b).

3. Problem formulation

Consider a sailboat going from point A(qA, yA) to
B(qB , yB), where (qi, yi) are the coordinates of the
corresponding point in either the Cartesian or polar
system. We assume that the true wind does not change
significantly in time and therefore can be expressed by the
following static vector field (see Fig.1):

vvvt(q, y) = M(q, y) q̂qq +N(q, y) ŷyy, (1)

where M(q, y), N(q, y) are scalar functions, and q̂qq, ŷyy are
unit vectors representing the axes of the corresponding
coordinate system.

q

y

BA

y (q)(*)

y (q)(2)

y (q)(1)

SA - sailing area
True wind (vector) field

Fig. 1. Sailboat trajectory optimization problem: example ad-
missible trajectories connecting points A and B, with
y(∗)(q) representing the optimal trajectory; the true wind
vector field: vvvt(q, y) = M(q, y) q̂qq +N(q, y) ŷyy.

The set of admissible ˜AB trajectories (i.e., the
problem domain) consists of C1-continuous functions
which cover the given sailing area SA (see Fig.1) and do
not violate the constraints “embedded” in a sailboat model
(these constraints can be related to the state and/or control
variables). This model is used to evaluate each trajectory
(y(i)) through simulation; therefore,

J [y(i)] = SimulationFor [y(i), config (vvvt, . . .)], (2)

where J represents the given performance measure and
config (vvvt, . . .) is the simulator configuration.
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The sailboat trajectory optimization problem under
consideration is to find, among all admissible trajecto-
ries, the one with the best value of the performance mea-
sure J . The explicit formula of the performance measure
is unknown, i.e., it is “opaque” (or black-boxed) to the
optimization routine. In a special case, when

J [y(i)] = Δt[y(i)], (3)

where Δt is a time interval (duration), we get the
minimum-time problem.

4. Proposed algorithm

The approach proposed in this paper is based on the
following two main steps:

1. transformation (using a grid based discretization
scheme) of the continuous optimization problem into
a search problem over a specially constructed finite
graph; in this graph, vertices correspond to the grid
nodes, and edges to pieces of the trajectory (see
Sections 4.1, 4.2, 4.3),

2. application of dynamic programming to find the
approximation of the optimal trajectory represented
as a piecewise-defined function of class Ck, where
k ≥ 1 (see Sections 4.4, 4.5).

These two steps can be repeated several times—the
next stage mesh (grid) can be generated through mesh
refinement making use of the best trajectory found so far
(see Fig. 5). This can be considered a form of iterative
improvement algorithm.

4.1. Trajectory segments representation. In direct
method based trajectory optimization—usually used when
the process is simulation based—it is often necessary
for candidate solutions to be smooth, and therefore a
piecewise linear approximation (i.e., C0-continuous) of
the trajectory cannot be applied. In such cases, C1

continuity (i.e., the first derivative is continuous) is usually
sufficient, which means that we can represent trajectories
as cubic Hermite splines. Each segment of such a spline
is a third-degree polynomial specified by its values and
the first derivatives at the end points of the corresponding
interval (see Fig.2). Thus, we can think of each segment
as having two degrees of freedom at both its ends, which
makes it very “flexible” in the process of trajectory
shaping.

If we assume the following representation of the
segment3 shown in Fig. 2:

s
(i)
H (q) = d(i) + c(i)q + b(i)q2 + a(i)q3, (4)

3 The i-th segment of a cubic Hermite spline; H stands for “Her-
mite”.

q

�2

�1

y s (q)
(i)

Hy=

s
(i+1)

H

s
(i-1)

H

1P

2P

Fig. 2. i-th segment—connecting points P1(q1, s
(i)
H (q1)) and

P2(q2, s
(i)
H (q2))—of the cubic Hermite spline s

(i)
H (q);

α1 and α2 represent slopes of tangents to s
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points P1 and P2, respectively.
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which are the coefficients of the cubic Hermite
spline segment that connects points P1(q

(i)
1 , y

(i)
1 ) and
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2 ) and has the first derivatives at q(i)1 and q
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1 and β
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2 , respectively.

4.2. Multi-spline: The solution space representation.
A grid based discretization of the original (continuous)
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problem domain transforms the trajectory optimization
problem into a search problem. An example of such a
discretization (grid G) is shown in the upper part of Fig. 3.
This grid is based on equidistant nodes, which are grouped

�
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Fig. 3. Solution space representation: multi-spline MS
(AB)
H

built (spanned) on regular grid G.

in rows and columns: four regular rows plus two special
ones—containing the start (A) and end (B) points—and
four columns. The total number of nodes in such a grid is
equal to

|G| = nc (nr − 2) + 2, (8)

where nc and nr are the numbers of columns and rows
(including the two special ones), respectively.

If we assign nts additional values to every node of
grid G, we obtain a new structure (Gex) called an ex-
tended grid (corresponding to grid G). The aim of these
values is to store (at each node) nts different slopes (i.e.,
first derivatives) needed next to calculate the coefficients
of cubic Hermite spline segments (see Eqns. (4) and (7)).

Joining the nodes (now treated as vertices) from
subsequent rows of Gex with the use of the corresponding
cubic Hermite spline segments (treated now as edges),
we get a directed graph that represents the new solution
space. This collection of spline segments “spanned” on
the nodes from subsequent rows of Gex forms a discrete
space of C1-continuous functions called a MULTI-SPLINE

(see Fig. 3). It has the following properties:

• its knots (i.e., the places where the spline segments

connect) are defined by a special representation of
the extended grid Gex (see Fig. 3),

• when seen as a graph (knots are vertices, spline
segments are edges), it is directed (from A to B or
vice-versa), acyclic and “topologically sorted” (i.e.,
the edges in layer l are followed by those from layer
l + 1 and the vertices in row r are followed by those
from row r + 1, see Fig. 3),

• it is built from ncn
2
ts [(nr − 3)nc + 2] different

spline segments;

• the discrete search space it spans represents
nnr
ts n

nr−2
c different trajectories connecting points A

and B; this value corresponds to the “inter-row
complete” graph (i.e., the one in which all vertices
from subsequent rows are connected);

• each of its internal layers (again, in the “inter-row
complete” graph) consists of n2

cn
2
ts spline segments,

where nr, nc and nts are the numbers of rows (including
the two special ones), columns and tangent slopes,
respectively.

4.3. Multi-spline adaptation. Since a multi-spline
can be built (spanned) on an arbitrary grid (including
non-uniform ones), its structure can be adapted/optimized
to the domain of the problem under consideration.
Therefore, in iterative improvement method based
computations, the multi-spline can be optimal at each
iteration step (but the initial structure of the multi-spline
has to be “guessed”).

The adaptation/refinement process can utilize—at
every step of the iterative improvement algorithm—the
current approximation of the optimal trajectory (i.e., the
best trajectory found so far). Two examples of such
an approach are presented in Fig. 4. At each iteration
step the current approximation of the optimal trajectory
is used as the reference for the next step multi-spline.
In some cases it can be sufficient to adapt/refine only
the vertical positions of nodes (as shown in Fig. 4(a)),
but most often this process has to include the tangent
slopes as well (see the tangent slopes range reduction and
rotation of the reference slope in Fig. 4(b)). In general, as
the grid corresponding to Gex can be very irregular, the
multi-spline adaptation/refinement process can be highly
complex.

The approach used in this paper (simple yet
“effective enough” in experimental verification of the
proposed algorithm) assumes the following for each
iteration step i:

• the numbers of Gex columns (nc) and tangent slopes
at each of its nodes (nts) are constant, i.e., nc(r) =
const and nts(r) = const , where r = 1, 2, . . . , nr−
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Fig. 4. Multi-spline adaptation in iterative improvement method
based computation: (on the left) a segment of the current
approximation of the optimal trajectory is used to build
the next multi-spline—refining only vertical positions of
nodes (a), or both vertical positions of nodes and tangent
slopes (b). Note: for readability, only one multi-spline
segment (the reference one) is drawn.

2 is the row index (r = 0 and r = nr − 1 correspond
to “special nodes” rA and rB , respectively),

• the range of vertical positions of the Gex nodes can
change with r,4

Δy(i)r = |y(i)r,nc−1 − y
(i)
r,0| (9)

• the range of tangent slopes at each Gex node change
only with r, i.e., it does not depend on the column
index c,

Δα(i)
r = |α(i)

r,0,nts−1 − α
(i)
r,0,0|; (10)

• the refined ranges of both vertical positions of nodes
and tangent slopes form geometrical sequences, i.e.,

Δy(i)r = ky Δy(i−1)
r , 0 < ky < 1, (11)

Δα(i)
r = kαΔα(i−1)

r , 0 < kα < 1; (12)

• the current (i-th) vertical positions of nodes are
calculated in the following way:

y(i)r,c = ỹ(i−1)
r − ky

Δy
(i−1)
r

nc − 1

(⌈

nc − 1

2

⌉

− c

)

,

(13)

4Subscripts are used to represent discrete function arguments, so

Δy
(i)
r corresponds to Δy(i)[r].

where r = 1, 2, . . . , nr − 2, c = 0, 1, . . . , nc − 1 and
ỹ
(i−1)
r is the vertical position of the reference node

for row r (the corresponding node from the current
approximation of the optimal trajectory);

• the current (i-th) tangent slopes are calculated in the
following way (they depend only on r):

α(i)
r,c,s = α̃(i−1)

r − kα
Δα

(i−1)
r

nts − 1

(⌈

nts − 1

2

⌉

− s

)

,

(14)
where r and c are as defined above, s =
0, 2, . . . , nts − 1 and α̃

(i−1)
r is the reference tangent

slope for row r (from the current approximation of
the optimal trajectory). Note: the reference tangent
slope can be also calculated as the central difference
approximation of the first derivative:

α(i)
r = atan

(

ỹ
(i−1)
r+1 − ỹ

(i−1)
r−1

q̃
(i−1)
r+1 − q̃

(i−1)
r−1

)

. (15)

Example results of this approach applied to two
different multi-splines are presented in Fig. 5. These
instances differ only in the number of tangent slopes of the
underlying extended graph Gex (nts = 2 vs. nts = 4);
in both the cases, Gex has nr = 6 rows and nc = 8
columns. The figure is organized as a 2 × 3 array, with
each row showing two adaptation/refinement steps of the
corresponding multi-spline: the upper one for nts = 2 and
the lower one for nts = 4. Each adaptation step is based
on the current approximation of the optimal trajectory,
shown as a broad line in Fig. 5. The case for nts = 2
was selected just for two reasons: to obtain a figure with
visible multi-spline segments5 and, more importantly, to
demonstrate the effect when the value of nts is too low.

4.4. Basic version of the algorithm. As discussed
in Section 4.2, a multi-spline can be seen both as a
discrete space of C1-continuous functions and a special
graph. This graph is directed, acyclic (DAG) and has
a layered structure. In this new solution space the
original continuous trajectory optimization problem may
be expressed as an optimal path search problem and
solved using dynamic programming.

At the beginning of the search/optimization process
there is no cost matrix. The cost of each path in the graph
is obtained from simulation using the principle of opti-
mality (Bellman and Dreyfus, 1962). This principle can
be expressed for an example path A-Nr,c,s (see Fig. 6) in
the following way:

˜J
Nr,c,s

A = min
cj,sk

(

˜J
Nr−1,cj ,sk

A + J
Nr,c,s

Nr−1,cj ,sk

)

, (16)

5Multi-splines used in real computations would be completely un-
readable because of too many segments.
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nc = 8, nts = 2; initial mesh → after 1st mesh refinement → after 2nd mesh refinement

nc = 8, nts = 4; initial mesh → after 1st mesh refinement → after 2nd mesh refinement

Fig. 5. Two steps of multi-spline (solution space) adaptation for different node (knot) degrees. Note that the convergence in the case of
nts = 2 is much worse (“torsional rigid” multi-spline)—each spline segment can start and finish only with two tangent slopes;
typically, we should use 5 ≤ nts ≤ 9 (see Section 5).

where cj = (0, . . . , nc − 1), sk = (0, . . . , nts − 1), JNe

Ns

is the cost corresponding to the path Ns-Ne (Ns—start
node, Ne—end node), ˜J represents the optimal value of
J and Nr,c,s is the node of Gex with “graph coordinates”
(row , column, tangent_slope) = (r, c, s).

A ..
.

Nr,c,s

Nr-1,c ,sj k

..
.

Nr-1,c ,s0 0

... ...

...

..
.

J r-1,c ,sj k
A

~N J
r-1,c ,sj k

r,c,s
N

N

cj sk

Fig. 6. Principle of optimality in dynamic programming: opti-
mal path (trajectory) from point A to point Nr,c,s (Gex

node); graphical representation of Eqn. (16) (with the
notation J to

from and ˜J representing the optimal J).

Figure 6 is a visualization of Eqn. (16). It presents
the computation state in which the optimal costs of
reaching all nodes in row r − 1 are known (they were
calculated in previous stages of this multi-stage process).
The optimal cost of path A-Nr,c,s is calculated by

performing simulations for all spline segments that join
node Nr,c,s, which is located in row r, with nodes from
the previous (i.e., (r − 1)-th) row. This simulation based
multi-stage process can be visualized as a propagation of
a “simulation-wave” presented in Fig.7. The computation
begins from the start node (point A in layer 1), taking
into account the corresponding initial conditions, and is
continued (layer by layer) for the nodes in subsequent
rows. Completing the simulations for the last layer
(i.e., reaching the end node B), we get the optimal
path (trajectory) and the corresponding value of the
performance measure.

The special (layered) structure of the search space
(i.e., multi-spline) and the dynamic programming based
search algorithm allow us to organize the computation
as a sequence of parallel simulations for multi-spline
segments from the same layer (see Fig. 7). The sequential
component of the computation—presented in the figure as
a synchronization barrier—is a result of the layer-on-layer
dependence (to start simulation for a segment, we
have to know the corresponding initial conditions; see
Eqn. (16)). This approach is presented as Algorithm 1.
The pseudo code assumes the target execution platform
to be an OpenCL-capable device (or a set of such
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Fig. 7. Sequence of parallel simulations (a simulation wave) for
multi-spline segments from the same layer; the synchro-
nization barrier is needed due to layer-on-layer depen-
dence (to perform simulation for a single segment, we
need to know the initial conditions).

Algorithm 1. Parallel optimal path search.
1: {For all multi-spline segments starting at point A and

ending at row 1}
2: @PARALLEL (simfirst_kernel(datap))
3: {For all multi-spline segments starting in row r and

ending in row r+1}
4: for all r in [1..R-2) do
5: @PARALLEL (siminternal_kernel(r , datap))
6: end for
7: {For all multi-spline segments starting at row R-2 and

ending at point B}
8: @PARALLEL (simlast_kernel(R − 2 , datap ))
9: return (opt_trajectory, performance_measure)

devices). Functions simfirst_kernel , siminternal_kernel
and simlast_kernel are OpenCL kernels, datap represents
memory buffers needed for data transfers between
the computing devices, and annotation @PARALLEL
denotes6 SPMD (single program multiple data) parts of
the computation.

Depending on the size of differences in simulation
times and the number of processing elements of the target
platform (many-core system), the computation for a single
multi-spline layer can be organized in one of the following
ways:

• as a single-phase process (with simulation
and aggregation interleaved): one processing
element performs (sequentially) simulations for all
multi-spline segments which end in the same node
Nr,c,s updating, if necessary, the best solution found
so far;

• as a two-phase process (with simulation and

6In pseudo-code only as there is no OpenCL correspondent.

aggregation separated): in the first phase, all
simulations are performed (in parallel), in the
second, the best solution for each node Nr,c,s is
calculated taking into account solutions for the
segments that end in Nr,c,s (this can be done in
parallel as well).

The second approach can be more effective if the
simulation times for segments in a given layer are similar
(and the number of processing elements is big enough).
In other cases, the first, simpler, approach is often more
suitable.

If Algorithm 1 is combined with the multi-spline
adaptation/refinement (discussed in Section 4.3) it forms
an iterative improvement algorithm called adaptive multi-
spline refinement. The stop condition for this algorithm
can be defined in various ways. The first and simplest
approach—used in the experimental verification of the
algorithm—is to set a fixed number of iterations. This
number can be calculated using Eqns. (11) and (12) having
assumed the target ranges of y’s and tangent slopes.
Another possible approach would be to use a form of a
derivative based criterion.

4.4.1. Algorithm complexity analysis. The time
complexity of the presented algorithm is determined by
the number of its iterations, the simulation duration for
a single segment, and the number of such segments (in
the multi-spline). If we assume the average duration of
this simulation to be t̄

(seg)
sim , then the total duration of all

simulations performed ni times7 sequentially (Ts) for a
multi-spline built from ncn

2
ts [(nr − 3)nc + 2] segments

(see Section 4.2) is proportional to

Ts ∝ ni t̄
(seg)
sim nc n

2
ts [(nr − 3)nc + 2] , nr > 3, (17)

or, using the big-O notation,

Ts = O
(

ni t̄
(seg)
sim nr n

2
c n

2
ts

)

. (18)

In the single-phase version of Algorithm 1, the
simulations for all nodes in a given row can be performed
in parallel, thus

Tp = O

(

ni t̄
(seg)
sim nr nc nts

⌈

nc nts

p

⌉)

. (19)

The algorithm space complexity is equal to Θ(nrncnts).

4.5. Possible extensions of the basic algorithm. In
some onboard/embedded computer systems the proposed
search space and/or algorithm may need to be slightly
modified to meet certain constraints—for instance,

7ni is the number of iterations/refinements in the adaptive multi-
spline refinement algorithm.
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regarding the time and/or space complexity, or the
accuracy of the final solution. Worth consideration are
the following:

• reduction in the number of connections between
nodes from subsequent rows (cf., e.g., Dębski,
2014b)—this can decrease (significantly) both time
and space complexities (fewer segments means fewer
simulations to perform and less memory to store
segments’ data). Note: the effectivenesses of
this modification is problem-dependent—in some
cases we cannot reduce the search space in this
way without the danger of losing good solution
candidates;

• augmentation of the presented algorithm by a local
search—in some cases this can improve the final
result significantly since the search space of the local
algorithm can be continuous, which means that there
is no accuracy limit related to the mesh granularity.
Note: the local search/optimization can be based
on an indirect or direct method (cf., e.g., Dębski,
2014a),

• use of C2-continuous splines in the final step of
the iterative improvement algorithm—3-rd or 5-th
order splines can be used. Note: the use of 3-rd
order splines (with three boundary conditions for the
start point and one for the end point) can make the
algorithm unstable.

If necessary, these modifications can be combined.

5. Experimental verification

To demonstrate the effectiveness of the adaptive multi-
spline refinement algorithm, two series of experiments
were carried out. The first was related to a
simple test problem—formulated in the polar coordinate
system—with a known exact solution. The second,
on the other hand, was related to a more complex
problem formulated in the Cartesian coordinate system.
In all experiments, a MacBook Pro8 with OS X 10.10.3
and OpenCL 1.2, having three OpenCL-capable devices
(processor Intel Core i7-3740QM @ 2.7 GHz and two
graphics cards—integrated Intel HD Graphic 4000 and
discrete (dedicated) nVidia GeForce GT 650m9) were
used.

Example 1. (Simple test problem, polar coordi-
nates) Consider a closed-trajectory simulation based
optimization problem formulated in the polar coordinate
system (O, r, θ) as shown in Fig. 8. We assume the

8With 16 GB of DDR3 1600 MHz RAM.
9Two compute units, each having 192 processing elements (CUDA

cores), warp size 32, 1 GB of GDDR5 memory, 48 KB of local memory,
64 KB of constant memory.
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Fig. 8. Domain of the problem considered in Example 1 and
several corresponding admissible trajectories.

problem domain (i.e., search space) D1 to be

D1 =
{

s
˜AB
H (θ) :

(

C1 � s
˜AB
H : [0, π] → [0, 5]

)}

(20)
and the boundary conditions as (see Fig. 8)

s
˜AB
H (0) = s

˜AB
H (π) = 0, (21)

where s
˜AB
H is a cubic Hermite spline with endpoints

A and B. The optimization goal is to find, among
the admissible trajectories (see Eqn. (20)), the one that
minimizes the performance measure, whose formula is
unknown to the optimization routine.10 Since in this
problem the performance measure does not depend on a
true wind field, it can be assumed that vvvt(r, θ) = 000. The
details of the simulation model (performance measure) are
presented in Appendix A.

Algorithm convergence analysis: The impact of ntsntsnts.
The number of tangent slopes nts significantly increases
both the time and space complexity of the presented
algorithm (see Eqn. (19)). At the same time, its impact
on the rate of convergence of the algorithm is unclear, and
because of that is investigated in this paragraph.

All computational experiments were performed for
kα = ky = 0.3333 and Δα/2 = π/5 (see Eqns. (11),
(12)). Having assumed the above values, the number of
multi-spline refinements ni needed to obtain the target
inter-node distance δq was then calculated from the
following formula:

ni =

⌈

1

ln kq
ln

δq(nc − 1)

Δq

⌉

, (22)

valid both for q = y and q = α. For ni = 3 and nc =
64 the corresponding values of δy and δα were equal to
0.002939 and 0.003323, respectively.

Figure 9 presents two closed curves which are
respectively the first and the fourth approximations of the
optimal trajectory for the multi-spline defined by nr = 9,
nc = 64 and nts = 8.

10The values of the performance measure are obtained from simula-
tion.
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Fig. 9. Iterative improvement through multi-spline refinement
in Example 1. Trajectories r0(θ) and r3(θ) are, respec-
tively, the 1st (i.e., before the 1st multi-spline refine-
ment) and 4th (i.e., after 3 refinements) approximations
of the optimal trajectory. Multi-spline with nr = 9,
nc = 64 and nts = 8. Note: the 4th approximation
and the exact solution (i.e., the optimal trajectory) are
indistinguishable (see Fig. 10 and Appendix A).

The corresponding values of the performance
measure for each iteration are shown in Fig. 10. Two facts
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Fig. 10. Values of the performance measure (J̃B
A ) for subse-

quent refinements of five different multi-splines (de-
fined respectively by nts = 4, 8, . . . , 20). In all in-
stances, nr = 9 and nc = 64.

are worth noting here:

• the first multi-spline refinement is the key step of
the iterative improvement algorithm—in some cases
(e.g., in time-consuming simulations) the search
process can actually be stopped at this stage;

• the impact of the number of tangent slopes (nts)
on the rate of convergence of the search process is
negligible; therefore, the value of this parameter can
be safely selected from the range 3 < nts < 9.
Note: this observation can justify regarding nts as
a constant factor in expressions defining the time and
space complexity of the algorithm.

Table 1. Average execution times t̄sim (in milliseconds) and
standard deviations σ, from eleven runs of the sequen-
tial version of the algorithm, for different optimiza-
tion levels l set in the Apple LLVM 6.1 compiler. The
fourth column contains the size s (in bytes) of the cor-
responding executables. The multi-spline with nr = 9,
nc = 64, nts = 32; three multi-spline refinements.

l t̄sim σ s t0/ti s0/si

0 190461 2151 119192 - -
1 62928 926 115044 3.03 1.04
2 57624 444 114100 3.31 1.04
3 56843 953 113972 3.35 1.05
s 56505 473 109996 3.37 1.08

fast 1460 144 113972 13.05 1.05

Table 2. As Table 1 but for the parallel version of the algorithm,
different OpenCL devices, and different OpenCL opti-
mization levels.

l
i7-3740QM HD4000 GT650m

s
t̄sim σ t̄sim σ t̄sim σ

0 3727 99 2073 34 3641 68 113276
1 3418 73 2063 30 3983 598 109548
2 3413 71 2074 20 3811 213 109948
3 3374 74 2069 31 3815 427 110076
s 13157 15 2075 26 3689 192 109996

Performance analysis: The impact of compiler opti-
mization. Modern compilers (such as Clang/LLVM 6.1
used in the experiments) have optimization abilities which
can significantly improve program performance. They
often perform optimization at many stages (e.g., compile
time, link time). The available optimization options
usually allow the programmer to choose whether they
prefer a smaller target file size, a faster code or faster
build times. In the case of on-board computer systems (or
embedded systems) a combination of the first two (i.e.,
fast and small) is usually the preferred option.

The impact of compiler optimization on the
execution times of both sequential and parallel (OpenCL
based) versions of the algorithm is summarized in Tables 1
and 2, respectively. Subsequent rows in the tables
present results for all optimization levels (l) available in
the Apple LLVM 6.1 compiler. The first row in both
tables (i.e., for l = 0) shows the mean value (t̄sim ) and
the standard deviation (σ) of the execution times of the
code compiled with no optimization;11 additionally, the
sizes s of the corresponding executables are also given.
There are two special optimization levels available in the
Apple LLVM 6.1 compiler: s (or −Os option) and fast
(−Ofast). For the first one (i.e., s-level), the compiler
performs all optimizations that do not typically increase

11It corresponds to the −O0 command-line option.
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the target file size (and, in many cases, reduce it). For the
second, the compiler performs all possible optimizations,
including ‘relaxing IEEE compliance’ (-ffast-math flag)
and loop vectorization. The results show that

• non-OpenCL code optimizations can improve the
execution time significantly (more than three
times12);

• OpenCL code optimizations (see Table 2) have only
a negligible effect on execution times; in addition,
in some cases the optimization may produce very
unexpected results (see row s for i7-3740QM in
Table 2);

• the recommended optimization levels are s both
for an OpenCL and non-OpenCL code (for a
non-OpenCL code, whenever possible, −Ofast
should be used instead).

OpenCL platforms performance comparison.
Contemporary mobile/embedded computers are usually
heterogeneous, i.e., they are equipped with more than
one type of processor—typically these are (multi-core)
CPUs and (many-core) GPUs, but sometimes also others
(e.g., FPGAs). OpenCL makes it possible to use these
heterogeneous micro HPC platforms effectively since
the same code can be executed on any OpenCL-capable
processor. Effective processor allocation plans can be
calculated before or during program execution (run-time)
taking into account the capabilities of each of the available
devices and the characteristics of a computation task.

The performance comparison (in the context of
Example 1) of three OpenCL platforms is shown in
Table 3 and Fig. 11. The results for nc < 16 were omitted
because the multi-spline they define is too coarse-grained.
It is worth noting, however, that for such cases the
sequential version was the fastest.

The performance comparison shows that

• the three platforms differ significantly so there is
definitely room for optimization before or during
code execution;

• the CPU (i7-3740QM) is capable of efficient
execution of the OpenCL code for n ≤ 32;

• the integrated graphics card (HD4000) is the best in
the whole range of nc;

• because of the high overhead of the host-GPU
data transfer, the dedicated graphics card (GT650m)
should not be used for nc ≤ 128.

�
12In the case of −Ofast even 13 times, but using this optimization

level is not always possible because of the reduction in the floating point
computations accuracy.

Table 3. OpenCL platforms comparison (Example 1): average
execution times t̄sim (in milliseconds) and standard de-
viations σ from seven runs of the parallel version of
the algorithm for different nc. The multi-spline with
nr = 9, nts = 8; no multi-spline refinements.

nc
i7-3740QM HD4000 GT650m
t̄sim σ t̄sim σ t̄sim σ

16 50 1 56 1 489 2
32 92 1 83 3 625 4
64 249 2 149 12 752 1

128 867 6 236 16 1015 2
256 3392 82 590 17 1463 5
512 13061 18 1877 15 3241 154

16 32 64 128 256 512
nc
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Fig. 11. OpenCL platforms comparison (Example 1): speed-
ups for different nc (tseq measured with the −Os flag).
Multi-spline parameters as in Table 3.

Example 2. (More complex problem, Cartesian coordi-
nates) Consider a sailboat going upwind from point A to
point B with the true wind given by the following vector
field (note that the field could be much more complex):

vvvt(x, y)

= v0

[

(

cos
( x

L

)

+
y

H

)

x̂xx+
( x

L
− sin

( y

L

))

ŷyy
]

, (23)

shown in Fig. 12. We assume the problem domain (i.e.,
search space) D2 to be

D2 =
{

s
˜AB
H (x) :

(

C1 � s
˜AB
H : [0, L] → [−H,H ]

)}

(24)
and the boundary conditions as

s
˜AB
H (0) = s

˜AB
H (H) = 0, (25)

where s
˜AB
H is (as before) a cubic Hermite spline with

endpoints A and B. The optimization goal is to minimize
the performance measure which again is unknown (black-
boxed) to the optimization routine. In the simulation
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Fig. 12. Domain of the problem considered in Example 2 and
the corresponding true wind vector field (defined by
Eqn. (23)).

we assume that: v0 = −20, L = xB − xA = 500
and H = 0.5 (ymax − ymin) = 400 (the details of the
simulation model and performance measure are presented
in Appendix B).

Algorithm convergence analysis: The impact of ntsntsnts.
The computational experiments were performed for the
same set of parameters as in Example 1, i.e., kα = ky =
0.3333 and Δα/2 = π/5 (see Eqns. (11), (12)). For
ni = 3 and nc = 32 the corresponding values of δy and
δα (see Eqn. (22)) were equal to 0.477754 and 0.003323,
respectively.

Figure 13 shows two curves which are, respectively,
the first and the fourth approximations of the optimal
trajectory. The corresponding values of the performance
measure for each iteration are shown in Fig. 14.
Finally, Table 4 is the optimal route given in the time
domain sampled once a second (i.e., course(kT ), k =
0, 1, 2, . . . , T = 1 s). The observations from Example 1
are still valid—both regarding the key role of the first
multi-spline refinement and the negligible impact of the
number of tangent slopes (nts) on the rate of convergence
of the search process. These observations can help us to
significantly reduce both the time and space complexity,
which is often critical in many on-board/embedded
computer systems.

Performance analysis: The impact of compiler op-
timizations. The execution times of both sequential
(non-OpenCL) and parallel (OpenCL based) versions of
the algorithm in the context of Example 2 for different
optimization levels are summarized in Tables 5 and
6, respectively. Results are similar to those from
Example 1—again we see the significant impact of
optimizations on the non-OpenCL code and negligible

y (x)3

y (x)0

x

y

A(0,0) B(500,0)

400

-400

Fig. 13. Iterative improvement through multi-spline refinement
in Example 2. Trajectories y0(x) and y3(x) are, re-
spectively, the 1st (i.e., before the 1st multi-spline re-
finement) and 4th (i.e., after 3 refinements) approxima-
tions of the optimal trajectory; nr = 16, nc = 32 and
nts = 8.
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Fig. 14. Values of the performance measure (J̃B
A ) for subse-

quent refinements of five different multi-splines (de-
fined respectively by nts = 4, 8, . . . , 20). In all in-
stances, nr = 16 and nc = 32.

impact (if we omit two “unexpected” cases in which
run-time errors appeared) in the case of the OpenCL
code. It is worth noting, however, that the −Ofast
option resulted this time in the corresponding speed-up
equal to “only” 4.48 (compare with 13.05 in the previous
example13) and that the OpenCL code compiled with no
optimizations (−O0 flag) could not be executed on the
HD4000 card due to a run-time error (this error does not
appear in the simulator compiled by Apple LLVM 7.0).

13This huge change is a result of differences between simulation mod-
els used in each example (see Appendices A and B).
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Table 4. Fourth approximation of the optimal route (planned
trajectory) from point A to point B (see y3(x) in
Fig. 13) in the time domain sampled once a second
(i.e., with sampling period T = 1 s). Note: as the
optimal route obtained using the proposed approach is
C1-continuous, the value of the sampling period can
be set arbitrarily.

ti course

0 38.1◦

1 38.3◦

...
...

50 44.7◦

...
...

100 130.8◦

...
...

150 110.9◦

...
...

161 107.0◦

Table 5. Average execution times t̄sim (in milliseconds) and
standard deviations σ, from eleven runs of the sequen-
tial version of the algorithm for different optimization
levels l set in the Apple LLVM 6.1 compiler. The
fourth column contains the size s (in bytes) of the cor-
responding executables. The multi-spline with nr =
16, nc = 32, nts = 8; three multi-spline refinements.

l t̄sim σ s t0/ti s0/si

0 114751 864 136523 - -
1 29398 138 124135 3.90 1.10
2 29346 110 127295 3.91 1.07
3 29518 281 127159 3.89 1.07
s 33055 327 123191 3.47 1.11

fast 25597 56 127159 4.48 1.07

Table 6. As Table 5 but for the parallel version of the algorithm,
different OpenCL devices, and different OpenCL opti-
mization levels.

l
i7-3740QM HD4000 GT650m

s
t̄sim σ t̄sim σ t̄sim σ

0 8701 53 – – 29983 99 143143
1 8640 78 7619 22 46224 33 123879
2 8664 58 7624 25 46205 12 123127
3 8697 63 7626 21 46625 20 127879
s 10550 31 7627 29 46303 23 123191

OpenCL platforms performance comparison.
Execution times of the OpenCL based implementation
(run on each of the OpenCL enabled processors) for
different values of nc are shown in Table 7 and Fig. 15.
The results are similar to those from Example 1 for the

CPU and integrated GPU, but significantly worse in
the case of the dedicated GPU. In addition, it was not
possible to execute the test for nc = 128 on the GT650m
card due to a run-time error (this error still appears in the
simulator compiled by Apple LLVM 7.0; it is, probably,
‘out-of-memory’ related). This huge performance loss

Table 7. OpenCL platforms comparison in Example 2: average
execution times t̄sim (in milliseconds) and standard de-
viations σ from seven runs of the parallel version of
the algorithm for different nc. The multi-spline with
nr = 16, nts = 8; no multi-spline refinements.

nc
i7-3740QM HD4000 GT650m
t̄sim σ t̄sim σ t̄sim σ

16 736 19 1363 19 8358 182
32 2514 24 2248 36 14660 13
64 9357 45 4651 17 25926 19

128 36943 1234 7869 22 - -

(when compared with the CPU and HD4000) was due
to the way the transcendental functions are processed
by the GT650m card. The computation performed by
the simulator used in Example 2 is dominated by the
evaluation of transcendental functions (see Appendix B).
This problem can be addressed by replacing (in the
model) all instances of transcendental functions by their
approximations (on some platforms using the native_
versions can be sufficient).
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Fig. 15. OpenCL platforms comparison (Example 2): speed-
ups for different nc (tseq measured with the −Os flag).
Multi-spline parameters as in Table 7.

�

6. Conclusion

Adaptive multi-spline refinement—a new dynamic
programming based parallel algorithm, adapted to
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on-board heterogeneous computers, for simulation based
trajectory optimization—was studied with reference to
two problems taken from “high-performance sailing”.
The algorithm uses a new discrete space of C1-continuous
functions called the multi-spline as its search space
representation.

The basic version of the algorithm was presented
in detail (pseudo-code, time and space complexity).
Its possible extensions and search space (multi-spline)
auto-adaptation properties were also described. To
demonstrate the effectiveness of the algorithm, two
numerical examples were studied (the first for the polar
and the second for the Cartesian coordinate system).

The experimental results show that contemporary
heterogeneous on-board (or mobile) computers can be
effectively used for solving simulation based trajectory
optimization problems. These computers can be
considered micro HPC platforms—they offer high
performance (the effective use of the OpenCL-capable
GPU accelerated the optimization routine even up to
31 times) while remaining energy and cost efficient
(which is often crucial in many on-board and/or embedded
systems).

The simulation based approach can potentially give
highly accurate results since the mathematical model that
the simulator is based on may be as complex as required.
It should be noted, however, that because the problem
under consideration is formulated as time-invariant (the
true wind is given by a static vector field) the functional
scope of the proposed approach is limited to short-term
trajectory planning (in the longer term, the wind almost
always changes).

Future research work could concentrate on

• verifying the proposed approach with a more
accurate sailboat model (taking into account currents
and waves as the first step);

• comparing (experimentally) the effectiveness of the
proposed approach to alternative ones (e.g., based
on meta-heuristics like evolutionary algorithms,
simulated annealing, particle swarm optimization);

• researching the proposed extensions of the
algorithm;

• improving the algorithm itself (e.g., resource usage
optimization, balancing the “simulation load”, and
more effective mesh-generation);

• studying the algorithm in other variational problems;

• verifying the algorithm in other computing
environments (including the augmented cloud
(Byrski et al., 2012));

• building an optimizing OpenCL kernel scheduler.
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Appendix A

Simulation model for Example 1

The performance measure for segment i:

J [s
(i)
H (θ)] =

1

N

⎧

⎨

⎩

N
∑

j=1

[

rt(θj)− s
(i)
H (θj)

]2

⎫

⎬

⎭

1/2

, (A1)

where

rt (θ) =
1 + 2θ(1 + θ))

1 + 4θ2
θ(π − θ). (A2)

The optimization goal is to minimize J [s
˜AB
H (θ)]; hence, it

is a function approximation in L2-norm.

Appendix B

Simulation model for Example 2

The value of the performance measure for segment i:

J [s
(i)
H (x)] = Δt[s

(i)
H (x)]

= Sim[s
(i)
H (x), config (vvvt, c1, c2, k)].

(B1)

The optimization goal is to minimize J [s
˜AB
H (x)], where J

is the time to reach point B (i.e., it is a minimum-time
problem).

Applying Newton’s second law for direction s
(tangent to the current multi-spline segment) to a sailboat
(treated as a material point) gives the sailboat’s equa-
tion of motion (note that single-dotted and double-dotted
values represent the first and second derivatives with
respect to time),

mv̇s = ms̈ = T −R, (B2)

where
T = m(c1βa − c2)v

2
a (B3)
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Fig. B1. Sailboat (sailing upwind) model used in Example 2.
Here, βt: true wind angle, βa: apparent wind angle, s:
(current) sailing direction, vt: true wind velocity, va:
apparent wind velocity, vs: current sailboat velocity,
Fa: aerodynamic force, L: lift (the aerodynamic
force component perpendicular to the wind direction),
D: drag (the aerodynamic force component in the
direction of the wind), T : thrust, Sa: side force, Sh:
hydrodynamic side force, R: total (i.e., hydrodynamic
plus aerodynamic) resistance. Velocities (a), forces (b).

is thrust (approximation based on the result of Marchaj
(2004)),

R = mkṡ2 (B4)

is the total (i.e., hydrodynamic + aerodynamic) resistance,
and

va =

√

(

ṡ sin
(

βt

))2
+ (vt + ṡ cos

(

βt

)

)2 (B5)

and

βa = βt − acos

(

vt + ṡ cosβt
√

(ṡ sinβt)
2
+ (vt + ṡ cosβt)2

)

(B6)
are the apparent wind velocity and apparent wind angle,
respectively (see Fig. B1). In all experiments it was
assumed that c1 = 0.03, c2 = 0.005 and k = 0.7
(approximation based on the result of Marchaj (2004)).
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