
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 3, 521–531
DOI: 10.1515/amcs-2016-0036

CONTROLLABILITY CRITERIA FOR TIME–DELAY FRACTIONAL SYSTEMS
WITH A RETARDED STATE

BEATA SIKORA a

aInstitute of Mathematics
Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

e-mail: beata.sikora@polsl.pl

The paper is concerned with time-delay linear fractional systems with multiple delays in the state. A formula for the solution
of the discussed systems is presented and derived using the Laplace transform. Definitions of relative controllability with
and without constraints for linear fractional systems with delays in the state are formulated. Relative controllability, both
with and without constraints imposed on control values, is discussed. Various types of necessary and sufficient conditions
for relative controllability and relative U -controllability are established and proved. Numerical examples illustrate the
obtained theoretical results.
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1. Introduction

Fractional-order derivatives are a generalization of
classical integer-order ones. Mathematical modeling of
systems and processes with the use of fractional-order
derivatives leads to fractional differential equations.
Fractional differential equations occur in mathematical
models of, among other things, mechanical, biological,
chemical and medical phenomena. It has become apparent
that fractional-order models reflect the behavior of many
real-life processes more accurately than integer-order
ones. For more details concerning fractional calculus
and its practical applications refer to the monographs of
Oldham and Spanier (1974), Miller and Ross (1993),
Samko et al. (1993), Podlubny (1999), Kilbas et al.
(2006), Sabatier et al. (2007) or Monje et al. (2010).

Numerous mathematical models describe dynamical
systems with delays in control, or both the state and
control. Therefore, studying the properties of systems
with delays is especially important.

The controllability of dynamical systems plays
a crucial role in their analysis. In recent years,
various controllability problems for different types of
fractional-order dynamical systems have been considered
in many publications and monographs. The controllability
of deterministic fractional dynamical systems without
delays was studied, among others, by Klamka (2010;

2011), Klamka et al. (2014) or Babiarz et al. (2016) for
discrete-time fractional systems, Kaczorek (2011) as well
as Kaczorek and Rogowski (2015) for positive fractional
linear systems, both discrete- and continuous-time, and
Chen et al. (2006), Chikriy and Matichin (2008),
Sakthivel et al. (2011), Wang and Zhou (2012),
Balachandran and Kokila (2012; 2013) or Balachandran
et al. (2012b) for continuous time fractional systems.

The controllability of fractional systems with delays
in control was analyzed by Trzasko (2008), Kaczorek
(2011), Balachandran et al., (2012c; 2012a), Wei (2012)
as well as Kaczorek and Rogowski (2015). The
controllability of fractional systems with delays in the
state was discussed by Zhang et al. (2013) and Busłowicz
(2014). However, there are only few works concerning
the controllability of time-delay fractional systems with
retarded state. It should also be noted that the
majority of papers on controllability of fractional systems
address controllability issues for unconstrained controls.
Constrained controllability of integer order systems with
delays was discussed, among others, by Sikora (2003;
2005), Klamka (2008; 2009), or Sikora and Klamka
(2012). Works on controllability of linear fractional
systems with bounded inputs include those by Kaczorek
(2014a; 2014b) for fractional positive discrete-time
linear systems and fractional positive continuous-time
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linear systems, respectively, Sikora (2016) for fractional
continuous-time linear systems, as well as Pawłuszewicz
and Mozyrska (2013) for h-difference linear systems with
two fractional orders. It should be stressed that, in
practice, control (an input function) is not completely
unlimited, but is usually constrained in various ways.

The aim of the paper is to give new controllability
criteria (necessary and sufficient conditions) for
continuous-time linear fractional systems with delays
in the state. The controllability criteria both for
unconstrained and constrained controls are formulated
and proved. Theoretical results presented in the paper
can be applied, among other things, to chemical solution
control systems. For example, the cascade connection of
two fully filled mixers can be described by a system of
fractional equations with one delay in the state.

The paper is organized as follows. In Section 2
we recall some preliminary definitions and formulas.
In Section 3 we present the mathematical model of
linear fractional dynamical systems with multiple delays
in the state. We formulate and prove the existence
theorem for the solution of the discussed systems.
Section 4 contains the main results of the paper.
First, we formulate definitions for relative controllability
and relative U -controllability of systems. Next, the
main results of the paper are presented, i.e., the
criteria (necessary and sufficient conditions) for relative
controllability of the examined time-delay fractional
systems with a retarded state. The proofs of the
theorems are given. In Section 5 the theoretical results
are illustrated by numerical examples. Finally, some
concluding remarks are included in Section 6.

2. Preliminaries

Mathematical models containing fractional differential
equations turn out to better describe some phenomena
previously modeled by integer-order differential
equations. Different fractional derivatives have been
defined in fractional calculus. In this paper we use the
Caputo fractional derivative. This is due to the fact
that in the Caputo approach the initial conditions for
fractional differential equations take on the same form as
for integer-order differential equations (Podlubny, 1999).
The definition is the following.

Definition 1. The Caputo fractional derivative of the
order α (n < α < n + 1, n ∈ N) for a given function
f : R+ → R is the function

CDαf(t) =
1

Γ(n− α+ 1)

∫ t

0

f (n+1)(τ)

(t− τ)α−n
dτ,

where Γ is the gamma function.
It is obvious that as α → n the Caputo derivative

tends to the n-th order conventional derivative of the
function f , e.g., limα→n

CDαf(t) = f (n)(t).

As has been mentioned, the Caputo fractional
derivative allows traditional initial conditions to be
considered in the formulation of a mathematical model of
a dynamical system.

In the theory of fractional calculus, an important role
is that of the Mittag-Leffler function. Below we recall the
definition (Podlubny, 1999).

Definition 2. The Mittag-Leffler function is a special
function defined by the following series:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

for z ∈ C and α, β > 0.

For real positive α and β, the series in Definition 2
converges for all values of the argument z.

Based on the definition of the Mittag-Leffler
function, for α > 0 and an arbitrary n-th order square
matrix A, we can give the formula for a pseudo-transition
matrix Φ0(t) of the linear fractional system CDαx(t) =
A(t)x(t) (Monje et al., 2010):

Φ0(t) = Eα,1(At
α) =

∞∑
k=0

Aktαk

Γ(kα+ 1)
,

and then we set

Φ(t) = tα−1Eα,α(At
α) = tα−1

∞∑
k=0

Aktαk

Γ((k + 1)α)
.

For α = 1 we obtain the classical transition matrix
of ordinary differential equations,

Φ0(t) =

∞∑
k=0

Aktk

Γ(k + 1)
=

∞∑
k=0

(At)k

k!
= eAt.

Therefore the pseudo-transition matrix Φ0(t) is also
called the matrix α-exponential function and is denoted
by Φ0(t) = eAt

α (Kilbas et al., 2006). It is convergent in
the space of the n-th order matrices with real elements.

For the purposes of further calculations there are
some formulas for the Laplace and the inverse Laplace
transforms. For α ∈ (0, 1), the following formulas hold:

L[CDαf(t)] = sαL[f(t)]− sα−1f(0)

(see, e.g., Zhang et al., 2013) and

L−1[sα−1(sαI −A)−1] = Φ0(t),

L−1[(sαI −A)−1] = Φ(t)

(see, e.g., Monje et al., 2010).
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3. Mathematical model

We consider time-delay linear fractional dynamical
systems with multiple, constant delays in the state
described by a fractional differential equation with a
retarded argument of the following form:

CDαx(t) =

M∑
i=0

Ai x(t− hi) +B u(t) (1)

for t ≥ 0 and 0 < α < 1, where

• x(t) ∈ R
n is the state vector,

• u ∈ L2
loc([0,∞),Rm) is the control,

• Ai are (n × n)-dimensional matrices with real
elements for i = 0, 1, . . . ,M ,

• B is an (n × m)-dimensional matrix with real
elements,

• hi : [0, T ] → R for i = 1, 2 . . . ,M are constant
delays in the state such that the following inequalities
hold:

0 = h0 < h1 < . . . < hi < . . . < hM−1 < hM .

Let z0 = (x(0), x0) ∈ R
n × L2([−hM , 0),Rn) be

the initial conditions, where x(0) ∈ (R)n is the state
vector at time t = 0 and x0 is a function given on
[−hM , 0]. The Hilbert space Rn×L2([−hM , 0),Rn) with
the scalar product defined as

〈(x(t), xt), (y(t), yt)〉

=

n∑
i=1

xi(t)yi(t) +

∫ 0

−hM

〈xt(τ), yt(τ)〉Rn dτ

is denoted by M2([−hM , 0],Rn).
The pair z0 = (x(0), x0) ∈ M2([−hM , 0),Rn),

where x(0) is the state vector at time t = 0 and x0 =
x0(τ) for τ ∈ [−hM , 0) is the segment of the trajectory of
the length hM defined on [t − hM , t), is called the initial
complete state of the fractional system (1) for t ≥ 0.

Any control u ∈ L2
loc([0,∞),Rm) is called an ad-

missible control for the fractional system (1).

Theorem 1. For given initial conditions z0 = (x(0), x0)
and an admissible control u, for every t ≥ 0 there ex-
ists a unique solution x(t) = x(t, z0, u) of the fractional
equation (1) of the form

x(t) = Φ0(t)x(0) +

∫ t

0

Φ(t− τ)

M∑
i=1

Aix(τ − hi) dτ

+

∫ t

0

Φ(t− τ)Bu(τ) dτ,

(2)

where

Φ0(t) =

∞∑
k=0

Ak
0t

αk

Γ(kα+ 1)
,

Φ(t) = tα−1
∞∑
k=0

Ak
0t

αk

Γ((k + 1)α)
.

Proof. Applying the Laplace transform to both the sides
of the fractional differential equation (1), for t ≥ 0 we
have

sαL[x(t)] − sα−1x(0)

= A0L[x(t)] + L
[ M∑

i=1

Aix(t− hi) +Bu(t)
]
.

Hence

(sαI −A0)L[x(t)]

= sα−1x(0) + L
[ M∑

i=1

Aix(t− hi) +Bu(t)
]
,

and thus

L[x(t)] = (sαI −A0)
−1sα−1x(0)

+ (sαI −A0)
−1L

[ M∑
i=1

Aix(t− hi) +Bu(t)
]

= L[Φ0(t)x(0)]

+ L[Φ(t)]L[
M∑
i=1

Aix(t− hi) +Bu(t)
]
.

Now we apply the convolution theorem for the Laplace
transform and obtain

L[x(t)] = L[Φ0(t)x(0)]

+ L
[ ∫ t

0

Φ(t− τ)
( M∑

i=1

Aix(τ − hi)

+Bu(τ)
)
dτ

]
.

Using the inverse Laplace transform on both the sides of
the above equation, we have

x(t) = Φ0(t)x(0) +

∫ t

0

Φ(t− τ)

×
( M∑

i=1

Aix(τ − hi) +Bu(τ)
)
dτ

= Φ0(t)x(0) +

∫ t

0

Φ(t− τ)

M∑
i=1

Aix(τ − hi) dτ

+

∫ t

0

Φ(t− τ)Bu(τ) dτ.

�
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4. Main results

In this section we formulate and prove some theorems that
establish the criteria (necessary and sufficient conditions)
of relative controllability and relative U -controllability for
the time-delay fractional system (1).

Before we formulate some controllability criteria
for the time-delay fractional system (1), in this
section we define relative controllability and relative
U -controllability for the system (1) on the time interval
[0, T ].

Definition 3. The time-delay fractional system (1) is
called relatively controllable on [0, T ] from the initial
complete state z0 = (x(0), x0) into a set S ⊂ R

n

if, for every x̃ ∈ S, there exists an admissible control
ũ ∈ L2([0, T ],Rm) such that

x(T, z0, ũ) = x̃.

Definition 4. The time-delay fractional system (1) is
called relatively U -controllable on [0, T ] from the initial
complete state z0 = (x(0), x0) into a set S ⊂ R

n

if, for every x̂ ∈ S, there exists an admissible control
û ∈ L2([0, T ], U), U ⊂ R

m, such that

x(T, z0, û) = x̂.

If S = {0}, then the system is called relatively null
controllable or relatively null U -controllable. If S = R

n,
the system is called relatively controllable or relatively
U -controllable, respectively.

The theorem below formulates the necessary and
sufficient conditions for relative controllability of the
retarded system (1).

Theorem 2. The fractional system (1) is relatively con-
trollable on the time interval [0, T ] if and only if the
(n× n)-dimensional Gramian matrix

W (0, T ) =

∫ T

0

Φ(T − τ)BB′Φ′(T − τ) dτ

is nonsingular, where ′ denotes the matrix transpose and
Φ′(t) = Eα,α(A

′
0t

α).

Proof. We prove the sufficient condition first. Suppose
that W (0, T ) is nonsingular. It follows that there exists the
inverse matrix W−1(0, T ). For any initial complete state
z0 ∈ R

n × L2([−hM , 0),Rn) we can take the following
control function:

ũ(t) = B′Φ′(T − t)W−1(0, T )
[
x̃− Φ0(t)x(0)

−
∫ T

0

Φ(T − s)

M∑
i=1

Aix(s− hi) ds
]

for x̃ ∈ R
n. From Theorem 1 it follows that

x(T ) = x(T, z0, ũ) = Φ0(T )x(0)

+

∫ T

0

Φ(T − τ)

M∑
i=1

Aix(τ − hi) dτ

+

∫ T

0

Φ(T − τ)Bũ(τ) dτ.

After substitution we obtain

x(T, z0, ũ)

= Φ0(T )x(0) +

∫ T

0

Φ(T − τ)

M∑
i=1

Aix(τ − hi) dτ

+

∫ T

0

Φ(T − τ)BB′Φ′(T − t)W−1(0, T )

×
[
x̃− Φ0(T )x(0)−

∫ T

0

Φ(T − s)

×
M∑
i=1

Aix(s− hi) ds
]
dτ = x̃.

By Definition 3, the system (1) is relatively
controllable on [0, T ].

We prove the necessary condition by contradiction.
Suppose that the system (1) is relatively controllable, but
the Gramian matrix W (0, T ) is singular. Then there exists
a vector x̃ 	= 0 such that

x̃′W (0, T )x̃ = 0

=

∫ T

0

x̃′Φ(T − τ)BB′Φ′(T − τ)x̃ dτ.

Thus, for t ∈ [0, T ], we have

x̃′Φ(T − t)B = 0. (3)

Since the system is controllable, it can be driven from the
initial state z0 to an arbitrary state x(T ) ∈ R

n. Hence
there exists a control u0(t) that drives the initial state z0
to zero. This means that

x(T ) = x(T, z0, u0)

= Φ0(T )x(0) +

∫ T

0

Φ(T − τ)

M∑
i=1

Aix(τ − hi) dτ

+

∫ T

0

Φ(T − τ)Bu0(τ) dτ = 0.

Moreover, there exists a control ũ(t) that drives the initial
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state z0 to the state x̃, so

x̃ = x(T, z0, ũ)

= Φ0(T )x(0) +

∫ T

0

Φ(T − τ)

M∑
i=1

Aix(τ − hi) dτ

+

∫ T

0

Φ(T − τ)Bũ(τ) dτ.

Combining the above two solutions, we have

x̃−
∫ T

0

Φ(T − τ)B[ũ(τ) − u0(τ)] dτ = 0.

Multiplying both the sides of the equality by x̃′, and
using (3), it follows that x̃′x̃ = 0. Thus x̃ = 0, which
contradicts the assumption. Therefore the Gramian matrix
W (0, T ) is nonsingular. �

Now we rewrite the solution (2) in the form
containing the so-called free solution of the system (1).
Let Φf (t) be defined as

Φf (t) =
t−α

Γ(1− α)
I +

M∑
i=1

∫ t−hi

0

Φ(τ)Ai dτ (4)

for t > 0, and assume that Φf (0) = I and Φf (t) = 0 for
t < 0. Then

x(t, z0, 0) = Φ0(t)x(0)

+

M∑
i=1

∫ 0

−hi

Φf (t− τ − hi)Aix0(τ) dτ

is the free solution that depends only on the initial
complete state z0 = (x(0), x0). Therefore the solution (2)
takes the form

x(t) = x(t, z0, 0) +

∫ t

0

Φf (t− τ)Bu(τ) dτ.

Applying the methods presented by Manitius (1974)
for integer-order systems with one delay in the state, we
state the following theorem that formulates a new criterion
for relative controllability of the system (1).

Theorem 3. The fractional system (1) is relatively con-
trollable on the time interval [0, T ] if and only if the rela-
tion

a′Φf (T − t)B = 0

for a ∈ R
n and t ∈ [0, T ] implies a = 0.

Proof. Consider the linear mapping

F : L2([0, T ],Rm) → R
n

given by

F (u) =

∫ T

0

Φf (T − τ)Bu(τ) dτ.

Then F is a continuous linear operator from the Hilbert
space L2([0, T ],Rm) to the Hilbert space R

n. Let imF
denote the range (image) of F . Since the range of linear
mapping is a subset of its codomain, we have

imF ⊂ R
n,

and the orthogonal complement of the linear subspace
imF satisfies the relation

(imF )⊥ = kerF ,

where F is the adjoint of F and kerF denotes the null
space (kernel) of F .

Since the controllability condition becomes

(imF )⊥ = {0},
we obtain

kerF = 0.

However, for any a ∈ R
n and u ∈ L2([0, T ],Rm),

the scalar products in the given spaces are equal, that is,
〈
a, F (u)

〉
Rn =

〈
F (a), u

〉
L2([0,T ],Rm)

.

Therefore, we have

〈
a,

∫ T

0

Φf (T − τ)Bu(τ) dτ
〉
Rn

=

∫ T

0

[
a′Φf (T − τ)B

]
u(τ) dτ.

Thus F (a) = a′Φf (T − t)B for t ∈ [0, T ]. It follows that
kerF is a set of a ∈ R

n such that a′Φf (T − t)B = 0
almost everywhere in [0, T ]. But we have obtained above
that kerF consists of zero only (kerF = 0), which proves
the theorem. �

In order to formulate the next criterion, for t ∈
[0,∞), we define recursively the following matrices:

Qk(t) =

M∑
i=0

AiQk−1(t− hi), k = 1, 2, . . . , (5)

Q0(t) =

{
B for t = 0,
0 for t 	= 0

and the set

Q̂n(T ) = {Q0(t), Q1(t), . . . , Qn−1(t), t ∈ [0, T ]}
for t = hi, 2hi, 3hi, . . . , i = 0, 1, 2, . . .M.

Let rank Q̂n(T ) mean the rank of the block matrix
composed of all matrices from the set Q̂n(T ).

The theorem below is the necessary and sufficient
condition for relative controllability of the system (1) that
is based on the matrices A0, . . . , AM and B. This, easy
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to use, algebraic criterion is similar to the commonly
known Kalman rank condition. The criterion is a
generalization of the controllability condition formulated
for integer-order systems with delays. Details can be
found in the work of Klamka (1991).

Theorem 4. The fractional system (1) is relatively con-
trollable on the time interval [0, T ] if and only if

rank Q̂n(T ) = n.

Remark 1. It is worth noticing that for T ≤ h1 we obtain

Q̂n(T ) = {B,A0B,A2
0B, . . . , An−1

0 B},

and the condition rank Q̂n(T ) = n is reduced to
well-known controllability criteria for fractional systems
without delays (see, e.g., Monje et al., 2010)

rank [B A0B A2
0B . . . An−1

0 B] = n.

Now we impose constraints on control values. Let
U ⊂ R

m be a nonempty set and S ⊂ R
n have the form

S = {x ∈ R
n : Lx = c}, (6)

where L is a (p× n)-matrix and c ∈ R
p is a given vector.

If L = In (identity matrix) and c = 0, we obtain S = {0}.
In much the some way as for integer-order dynamical

systems (Klamka, 1991), we can formulate a definition of
the attainable set for the dynamical system (1).

Definition 5. The set

K([0, t], z0) =

{
x ∈ R

n : x(t) = x(t, z0, 0)

+

∫ t

0

Φf (t− τ)Bu(τ) dτ

}

is called an attainable set from the initial complete state
z0 = (x(0), x0) for the time-delay fractional system (1).
K([0, t], z0) is also called the set of reachable states.

The next theorem gives a new criterion for relative
U -controllability of the fractional system (1) when U is a
convex and compact subset of Rm containing the origin.

Theorem 5. Let U ⊂ R
m be a convex and compact set

containing the origin in its interior and let the system (1)
be of commensurate order. If

rank Q̂n(T ) = n,

| arg(λi)| > απ/2, 1 ≤ i ≤ n, where λi are the
eigenvalues of matrix A, and the characteristic equation
det(sαI −A) = 0 has no purely imaginary roots, then
the fractional system (1) is relatively null U -controllable
on [0, T ].

Proof. Suppose U ⊂ R
m is a convex and compact set

containing the origin in its interior. If rank Q̂n(T ) = n,
then the fractional system (1) is relatively controllable on
[0, T ] based on Theorem 4. Moreover, if the system is
of a commensurate order and the eigenvalues of matrix
A satisfy the condition | arg(λi)| > απ/2, 1 ≤ i ≤ n,
and the characteristic equation det(sαI − A) = 0 has
no purely imaginary roots, then the fractional system
with delays in the state (1) is asymptotically stable (Deng
et al., 2007; Busłowicz, 2012). We shall show that it can
be driven to the origin in a finite time.

Let Ω = {z0 ∈ R
n × L2([−hM , 0),Rn) :

∃u∈U x(T, z0, u) = 0, T ∈ (0,∞)} denote the domain
of relative null U -controllability for the system (1) in time
T > 0. We can see that 0 ∈ Ω (0 means here the pair
(0, 0) ∈ R

n×L2([−hM , 0),Rn) because with zero initial
conditions, owing to the stability assumption, x = 0 is the
solution of Eqn. (1) for the admissible control u = 0.

Since the attainable set K([0, T ], z0) of the fractional
system (1) is a convex and closed subset of the space R

n,
0 ∈ R

n lies in the interior of the attainable set from the
zero initial complete state of the fractional system (1) with
constraints, i.e., 0 ∈ intK([0, T ], z0) for every T > 0.

We will show that 0 ∈ intΩ. Let us assume that
0 /∈ intΩ. Then there exists a sequence of initial complete
states {zn0}n∈N convergent to zero, and for every zn0,
zn0 /∈ intΩ, that is, zn0 	= 0. Hence

0 	= x(T, zn0, u)

= Φ0(T )x(0)

+

∫ T

0

Φ(T − τ)

M∑
i=1

Aix(τ − hi) dτ

+

∫ T

0

Φ(T − τ)Bu(τ) dτ

for every T > 0 and u ∈ U.

Let us establish a sequence of final states
{xn(T, zn0, u)}n∈N corresponding to the initial complete
states sequence {zn0}n∈N, with u = 0. The elements
of this sequence are nonzero elements of the attainable
set K([0, T ], z0) that approach zero as n → ∞. This
implies 0 /∈ intK([0, T ], z0) for every T > 0. But this
contradicts the assumption that 0 ∈ intK([0, T ], z0) for
every T > 0 and any initial complete state z0. Therefore
0 ∈ intΩ.

Since the set Ω contains 0 in its interior, it also
contains a neighborhood of 0 = (0, 0) ∈ R

n ×
L2([−hM , 0],Rn). Let z0 = (x(0), x0) 	= (0, 0) be an
initial complete state of the fractional system (1). Using
the null control u(t) = 0, the solution x(T, z0, 0) satisfies
the conditions

lim
t→∞x(t, z0, 0) = 0 and x(T, z0, 0) ∈ N(0)
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for some finite T ∈ (0,∞), where N(0) is a sufficiently
small neighborhood of 0 ∈ R

n. Then, the instantaneous
state x(T, z0, 0) can be driven to 0 ∈ R

n in a finite
time, so that the fractional system (1) is relatively null
U -controllable. �

In order to formulate the next criteria of relative
U -controllability of the fractional system (1), we
introduce a scalar function J : Rn×R×R

p → R, related
to the attainable set K([0, T ], z0) of the system (1) and
defined as follows:

J(z0, T, a) = a′Lx(t, z0, 0)

+

∫ T

0

sup

{
a′LΦf (T − τ)Bu(τ),

u ∈ L2([0, T ], U)

}
dτ − a′c,

(7)

where a ∈ R
p is any vector and a′ is its transpose.

The function J is called a supporting function of the
attainable set. Applications of the supporting function
for integer-order systems can be found in the works of
Klamka (1991), Sikora (2003) as well as Sikora and
Klamka (2012).

Theorem 6. Let U be a compact set and E ⊂ R
p be any

set containing the origin as an interior point. Then the
fractional dynamical system (1) with delays in the state
is relatively U -controllable from the complete state z0 ∈
R

n × L2([−hM , 0],Rn) into the set S of the form (6) if
and only if, for some T ∈ [0,∞),

J(z0, T, a) ≥ 0 for every a ∈ E,

where J(z0, T, a) is defined by (7).

Proof. By Definition 5, the attainable set K([0, T ], z0)
for (1) is

K([0, T ], z0) =

{
x ∈ R

n : x(t) = x(t, z0, 0)

+

∫ t

0

Φf (t− τ)Bu(τ) dτ

}
.

This set is convex and compact. The convexity
follows from the work of Chukwu (1979). The
compactness follows from the fact that the set
L2([0, T ], U) of admissible controls is weakly compact
in L2([0, T ],Rm) (cf. Lee and Marcus, 1967), and the
pseudo-transition matrix Φ0(t) is convergent in the matrix
space, which implies the convergence of Φf (t). Indeed,
every sequence of points x1(T ), x2(T ), . . . , xk(T ), . . .
in K([0, T ], z0) has a subsequence convergent to some
x̄(T ) ∈ K([0, T ], z0). There exists a subsequence of
controls uki ∈ L2([0, T ], U) weakly convergent to some

control ū such that

lim
ki→∞

∫ T

0

Φf (t− τ)Buki(τ) dτ

=

∫ T

0

Φf (T − τ)Bū(τ) dτ.

Let x̄(t) be the solution corresponding to ū(t). Then in
[0, T ] we have

x̄(t) = x(t, z0, 0) +

∫ T

0

Φf (t− τ)Bū(τ) dτ

= lim
ki→∞

xki (t)

and
lim

ki→∞
xki(T ) = x̄(T ) ∈ K([0, T ], z0),

which proves the compactness.
It follows that the set K̄([0, T ], z0) of the form

K̄([0, T ], z0) = {y ∈ R
p : y = Lx, x ∈ K([0, T ], z0)}

is also convex and compact. An initial complete state z0
can be driven to the set S in time T > 0 if and only if
the vector c and the set K̄([0, T ], z0) cannot be strictly
separated by a hyperplane, that is, if

a′c ≤ sup{a′x̄ : x̄ ∈ K̄([0, T ], z0)}
for all vectors a ∈ R

p.
Since x̄ ∈ K̄([0, T ], z0), we have x̄ = Lx for any

x ∈ K([0, T ], z0)}, that is,

x̄ = L
(
x(t, z0, 0) +

∫ t

0

Φf (t− τ)Bu(τ) dτ
)
.

Therefore the above inequality can be equivalently
written in the following form:

a′Lx(t, z0, 0) +
∫ T

0

sup

{
a′LΦf(T − τ)Bu(τ),

u ∈ L2([0, T ], U)

}
dτ − a′c ≥ 0.

Interchanging integration and the supremum
operation, we conclude that c ∈ K̄U ([0, T ], z0) if and
only if J(z0, T, a) ≥ 0 for all a ∈ R

p. Moreover, we can
show that

kJ(z0, T, a) = J(z0, T, ka) for every k ≥ 0.

Therefore, for vectors a ∈ E, the proof is complete. �

Corollary 1. Let U ⊂ R
m be a compact set and E ⊂

R
n be any set containing the origin as an interior point.

Then the fractional dynamical system (1) is relatively null
U -controllable z0 ∈ R

n × L2([−hM , 0],Rn) if and only
if for some T ∈ [0,∞)

J(z0, T, a) ≥ 0 for every a ∈ E.
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Proof. The corollary is an immediate consequence of
Theorem 4 for S = {0}, i.e., for L = In and c = 0. E is
then a subset of Rn. �

Theorem 7. If U is a compact set containing the ori-
gin, then the fractional system (1) is relatively null U -
controllable if and only if the equality

∫ +∞

0

sup{a′Φf (T − τ)Bu(τ):

u ∈ L2
loc([0,∞), U)} dτ = +∞ (8)

holds for every nonzero vector a ∈ R
n and T > 0.

Proof. Let us prove the necessary condition by
contradiction. Assume that the retarded fractional system
(1) is relatively null U -controllable and the condition (8)
is not satisfied. Then there exists a constant k, 0 < k <
+∞, and a nonzero vector ã ∈ R

n such that, for all
T ≥ 0,

∫ T

0

sup{ã′Φf (T − τ)Bu(τ) :

u ∈ L2([0, T ], U)} dτ < k.

For S = {0} the supporting function takes the form

J(z0, T, a)

= a′x(t, z0, 0)

+

∫ T

0

sup{a′Φf (T − τ)Bu(τ) :u ∈ L2([0, T ], U)} dτ.

We put
x(t, z̃0, 0) = −2kã

for some initial conditions z̃0.
For ã 	= 0, also x(t, z̃0, 0) 	= 0 and we have

J(z̃0, T, ã)

= ã′x(t, z̃0, 0)

+

∫ T

0

sup{ã′Φf (T − τ)Bu(τ) : u ∈ L2([0, T ], U)} dτ
= −2k

+

∫ T

0

sup{ã′Φf (T − τ)Bu(τ) : u ∈ L2([0, T ], U)} dτ
< −k.

Hence, for all T ≥ 0, we obtain J(z̃0, T, ã) < 0,
which implies that the retarded system (1) is not relatively
nullU -controllable from the initial complete conditions z̃0
(see Corollary 1). This contradicts the assumption that (1)
is relative null U -controllable. In this way, the necessary
condition is proved.

The sufficient condition will be also proved by
contradiction. Assume that (8) holds and the retarded

fractional system (1) is not relatively null U -controllable.
Thus these are initial conditions ẑ0 from which the system
cannot be driven into zero. Therefore, for some T > 0,
there exists â 	= 0 such that the following inequality is
satisfied:

â′x(t, ẑ0, 0)

+

∫ T

0

sup{â′Φf (T − τ)Bu(τ) :

u ∈ L2([0, T ], U)} dτ < 0.

Applying the Schwarz inequality (see Rolewicz,
1987) we have

∫ T

0

sup{â′Φf (T − τ)Bu(τ) : u ∈ L2([0, T ], U)} dτ
≤ ||â′|| ||x(t, ẑ0, 0)||,

which contradicts the assumption that (8) is true. This
completes the proof. �

The next theorem follows from Theorem 7 and
provides the controllability criterion for nonnegative
constraints.

Corollary 2. If U = R
m
+ ∪ {0}, then the fractional sys-

tem (1) is relatively null U -controllable if and only if the
equality

∫ +∞

0

sup{a′Φf (T − τ)Bu(τ) :

u ∈ L2
loc([0,∞), U)}dτ = +∞

holds for every nonzero vector a ∈ R
n and T > 0.

Proof. The corollary follows immediately from
Theorem 7, since the first orthant in the m-dimensional
Euclidean space Rm includes a compact subset containing
0 ∈ R

m. �
Nonnegative or positive controls are especially

important in practical applications. Some controllability
criteria for continuous-time linear fractional systems with
positive controls are presented by Kaczorek (2014a;
2014b). However they concern positive systems.
Here we consider arbitrary systems, which means that
other parameters of the systems do not have to be
positive. Continuous-time positive linear systems are also
discussed by Zhao et al. (2013; 2014) in the case of one
time-delay and without delays, respectively.

5. Examples

The numerical examples below illustrate the theoretical
results presented in the paper.
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Example 1. Consider a linear fractional system described
by the following fractional differential equation:

CD
1
2x(t) = A0x(t) +A1x(t− 1)

+A2x(t− 2) +Bu(t), (9)

for t ∈ [0, 3] with the initial conditions z(0) = {x(0), z0},
where

A0 =

[
0 2
0 0

]
, A1 =

[
0 0
0 −2

]
,

A2 =

[
0 1
−1 −3

]
, B =

[
1
−1

]
.

We have n = 2,M = 3, h0 = 0, h1 = 1, h2 = 3.
In order to verify whether the system (9) is relatively
controllable on [0, 3], we apply Theorem 2. We will show
that the matrix W (0, 3) is nonsingular. This means that
the matrix has to be full rank, i.e., rankW (0, 3) = 2. Thus
we have to show that

rank
∫ 3

0

Φ(3− τ)BB′Φ′(3 − τ) dτ = 2.

Using the Cayley–Hamilton method (see Monje
et al., 2010) we calculate

Φ(t) = t−
1
2

1∑
k=0

Ak
0 t

k
2

Γ(12k + 1)

= t−
1
2

[
1 0
0 1

]
t0√
π
+ t−

1
2

[
0 2
0 0

]
t
1
2

1

=

[
1√
π
t−

1
2 2

0 1√
π
t−

1
2

]

and

Φ′(t) =
1∑

k=0

(A′
0)

k t
k
2

Γ(12k + 1)

=

[
1 0
0 1

]
t0√
π
+

[
0 0
2 0

]
t
1
2

1

=

[
1√
π

0

2t
1
2

1√
π

]
.

It follows that

W (0, 3) =

∫ 3

0

[
1√
π
(3− τ)−

1
2 2

0 1√
π
(3− τ)−

1
2

]

×
[

1 −1
−1 1

] [ 1√
π

0

2(3− τ)
1
2

1√
π

]
dτ,

since

BB′ =
[

1 −1
−1 1

]
.

Multiplying the matrices under the integral and
integrating each element of the result matrix, we obtain

W (0, 3) =

[
2
√
3

π − 12
√
π

π + 4
√
3 2

π

(√
3− 3

√
π
)

2
π

(√
3− 3

√
π
)

2
√
3

π

]
.

We see that rankW (0, 3) = 2, which implies the
relative controllability of the fractional system (9) on
[0, 3]. �
Example 2. Let a fractional system with two delays in
the state be described by the equation

CD
1
2x(t) = A0x(t)+A1x(t− 1)+A2x(t− 2)+Bu(t),

(10)
on any interval [0, T ], for

A0 =

[
0 1
−1 −2

]
, A1 =

[
0 0
0 −2

]
,

A2 =

[
0 0
3 0

]
, B =

[
0
−1

]
.

We apply Theorem 6 to verify relative controllability
of the system (10) on the interval [0, T ]. Since n = 2, we
have to show that rank Q̂2(T ) = 2 for each T > 0.

Let us find all matrices Qk(t) belonging to the set
Q̂2(T ), defined by the formula (5). We have

Q0(0) = B =

[
0
−1

]
,

Q0(t) = 0

for t 	= 0. Next, since

Q1(t) =

2∑
i=0

AiQ0(t− hi)

= A0Q0(t) +A1Q0(t− h1) +A2Q0(t− h2),

for t = hi, 2hi, 3hi, . . . and i = 0, 1, 2, we calculate

Q1(0) = A0B =

[
0 1
−1 −2

] [
0
−1

]
=

[ −1
2

]
,

Q1(h1) = A1Q0(0) =

[
0 0
0 −2

] [
0
−1

]
=

[
0
2

]
,

Q1(h2) = A2Q0(0) =

[
0 0
3 0

] [
0
−1

]
=

[
0
−3

]
,

Q1(2h1) = A2Q0(0) = Q1(h2),

since 2h1 = h2. Other matrices Q1(jhi), j = 2, 3, . . . ,
are equal to zero. Therefore

Q̂2(T ) = {Q0(0), Q1(0), Q1(h1), Q1(h2)},
and finally

rank Q̂2(T ) = rank

[
0 −1 0 0
−1 2 2 −3

]
= 2.

Based on Theorem 6, we conclude that the delayed
fractional system (10) is relatively controllable on any
interval [0, T ]. �
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6. Concluding remarks

Relative controllability and relative constrained
controllability of linear fractional systems with delays in
the state were discussed in the paper. Constraints imposed
on the delay values were considered. The formula for a
solution of the discussed systems was derived with the
use of the Laplace transform (Theorem 1). Definitions
of relative controllability for unconstrained as well as for
constrained controls were formulated. The contribution of
the paper consists of several new necessary and sufficient
conditions for relative controllability (Theorems 2–4)
and relative U -controllability (Theorem 5, 6, Corollary
1, Theorem 7, Corollary 2) for time-delay fractional
systems described by Eqn. (1), which were established
and proved in detail. Numerical examples were presented
to illustrate how to verify relative controllability of the
discussed systems with the use of the established criteria.
The presented theoretical results can be extended to
semilinear fractional systems with retarded controls.

Acknowledgment

This research was supported by the Polish National
Science Centre (NCN) grant PBU-5/RAu-1/2015
(decision DEC-2014/13/B/ST7/00755).

References
Babiarz, A., Grzejszczak, T., Łegowski, A. and Niezabitowski,

M. (2016). Controllability of discrete-time switched
fractional order systems, Proceedings of the 12th World
Congress on Intelligent Control and Automation, Guilin,
China, pp. 1754–1757.

Balachandran, K. and Kokila, J. (2012). On the controllability
of fractional dynamical systems, International Jour-
nal and Applied Mathematics and Computer Science
22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.

Balachandran, K. and Kokila, J. (2013). Controllability of
fractional dynamical systems with prescribed controls, IET
Control Theory and Applications 7(9): 1242–1248.

Balachandran, K., Kokila, J. and Trujillo, J. (2012a). Relative
controllability of fractional dynamical systems with
multiple delays in control, Computers and Mathematics
with Appllications 64(10): 3037–3045.

Balachandran, K., Park, J. and Trujillo, J. (2012b).
Controllability of nonlinear fractional dynamical systems,
Nonlinear Analysis 75(4): 1919–1926.

Balachandran, K., Zhou, Y. and Kokila, J. (2012c). Relative
controllability of fractional dynamical systems with delays
in control, Communications in Nonlinear Science and Nu-
merical Simulation 17(9): 3508–3520.

Busłowicz, M. (2012). Stability analysis of continuous-time
linear systems consisting of n subsystems with different
fractional orders, Bulletin of the Polish Academy of Sci-
ences: Technical Sciences 60(2): 270–284.

Busłowicz, M. (2014). Controllability, reachability and
minimum energy control of fractional discrete-time linear
systems with multiple delays in state, Bulletin of the Polish
Academy of Sciences: Technical Sciences 62(2): 233–239.

Chen, Y., Ahn, H. and Xue, D. (2006). Robust controllability
of interval fractional order linear time invariant systems,
Signal Processes 86(10): 2794–2802.

Chikriy, A. and Matichin, I. (2008). Presentation of solutions
of linear systems with fractional derivatives in the sense of
Riemann–Liouville, Caputo and Miller–Ross, Journal of
Automation and Information Science 40(6): 1–11.

Chukwu, E. (1979). Euclidean controllability of linear delay
systems with limited controls, IEEE Transactions on Auto-
matic Control 24(5): 798–800.

Deng, W., Li, C. and Lu, J. (2007). Stability analysis of linear
fractional differential systems with multiple time delays,
Nonlinear Dynamics 48: 409–416.

Kaczorek, T. (2011). Selected Problems of Fractional Systems
Theory, Lecture Notes in Control and Information Science,
Vol. 411, Springer-Verlag, Berlin/Heidelberg.

Kaczorek, T. (2014a). An extension of Klamka’s method
of minimum energy control to fractional positive
discrete-time linear systems with bounded inputs, Bulletin
of the Polish Academy of Sciences: Technical Sciences
62(2): 227–231.

Kaczorek, T. (2014b). Minimum energy control of
fractional positive continuous-time linear systems with
bounded inputs, International Journal of Applied Math-
ematics and Computer Science 24(2): 335–340, DOI:
10.2478/amcs-2014-0025.

Kaczorek, T. and Rogowski, K. (2015). Fractional Linear Sys-
tems and Electrical Circuits, Studies in Systems, Decision
and Control, Vol. 13, Springer International Publishing,
Cham.

Kilbas, A., Srivastava, H. and Trujillo, J. (2006). Theory
and Applications of Fractional Differential Equations,
North-Holland Mathematics Studies, Vol. 204, Elsevier,
Amsterdam.

Klamka, J. (1991). Controllability of Dynamical Systems,
Kluwer Academic Publishers, Dordrecht.

Klamka, J. (2008). Constrained controllability of semilinear
systems with delayed controls, Bulletin of the Polish
Academy of Sciences: Technical Sciences 56(4): 333–337.

Klamka, J. (2009). Constrained controllability of semilinear
systems with delays, Nonlinear Dynamics 56(1): 169–177.

Klamka, J. (2010). Controllability and minimum energy control
problem of fractional discrete-time systems, in D. Balenau
(Ed.), New Trends Nanotechology and Fractional Calculus
Applications, Springer, Dordrecht, pp. 503–509.

Klamka, J. (2011). Local controllability of fractional
discrete-time semilinear systems, Acta Mechanica at Au-
tomatica 5(2): 55–58.

Klamka, J., Czornik, A., Niezabitowski, M. and Babiarz, A.
(2014). Controllability and minimum energy control
of linear fractional discrete-time infinite-dimensional



Controllability criteria for time-delay fractional systems with a retarded state 531

systems, Proceedings of the 11th IEEE International Con-
ference on Control and Automation, Taichung, Taiwan,
pp. 1210–1214.

Lee, E. and Marcus, L. (1967). Foundations of Optimal Control
Theory, John Wiley and Sons, New York, NY.

Manitius, A. (1974). Optimal control of hereditary systems,
in J.W. Weil (Ed.), Control Theory and Topics in Func-
tional Analysis, Vol. 3, International Centre for Theoretical
Physics, Trieste, pp. 43–178.

Miller, K. and Ross, B. (1993). An Introduction to the Fractional
Calculus and Fractional Differential Calculus, John Wiley
and Sons, New York, NY.

Monje, A., Chen, Y., Viagre, B., Xue, D. and Feliu, V. (2010).
Fractional-Order Systems and Control: Fundamentals and
Applications, Springer-Verlag, London.

Oldham, K. and Spanier, J. (1974). The Fractional Calculus,
Academic Press, New York, NY.

Pawłuszewicz, E. and Mozyrska, D. (2013). Constrained
controllability of h-difference linear systems with two
fractional orders, in W. Mitkowski et al. (Ed.), Advances
in the Theory and Applications of Non-integer Order Sys-
tems, Lecture Notes in Electrical Engineering, Vol. 257,
Springer International Publishing, Cham, pp. 67–75.

Podlubny, I. (1999). Fractional Differential Equations,
Academic Press, San Diego, CA.

Rolewicz, S. (1987). Functional Analysis and Control The-
ory: Linear Systems, Mathematics and Its Applications,
Springer, Dordrecht.

Sabatier, J., Agrawal, O. and Tenreiro Machado, J. (Eds.)
(2007). Advances in Fractional Calculus: Theoretical De-
velopments and Applications in Physics and Engineering,
Springer-Verlag, Dordrecht.

Sakthivel, R., Ren, Y. and Mahmudov, N. (2011). On
the approximate controllability of semilinear fractional
differential systems, Computers and Mathematics with Ap-
plications 62(3): 1451–1459.

Samko, S., Kilbas, A. and Marichev, O. (1993). Fractional In-
tegrals and Derivatives: Theory and Applications, Gordan
and Breach Science Publishers, Philadelphia, PA.

Sikora, B. (2003). On the constrained controllability of
dynamical systems with multiple delays in the state, In-
ternational Journal of Applied Mathematics and Computer
Science 13(4): 469–479.

Sikora, B. (2005). On constrained controllability of dynamical
systems with multiple delays in control, Applicationes
Mathematicae 32(1): 87–101.

Sikora, B. (2016). Controllability of time-delay fractional
systems with and without constraints, IET Control Theory
and Applications 10(3): 320–327.

Sikora, B. and Klamka, J. (2012). On constrained stochastic
controllability of dynamical systems with multiple delays
in control, Bulletin of the Polish Academy of Sciences:
Technical Sciences 60(12): 301–305.

Trzasko, B. (2008). Reachability and controllability of
positive fractional discrete-time systems with delay, Jour-
nal of Automation Mobile Robotics and Intelligent Systems
2(3): 43–47.

Wang, J. and Zhou, Y. (2012). Complete controllability of
fractional evolution systems, Communications in Nonlin-
ear Science and Numerical Simulation 17(11): 4346–4355.

Wei, J. (2012). The controllability of fractional control systems
with control delay, Computers and Mathematics with Ap-
plications 64(10): 3153–3159.

Zhang, H., Cao, J. and Jiang, W. (2013). Controllability criteria
for linear fractional differential systems with state delay
and impulses, Journal of Applied Mathematics, Article ID:
146010.

Zhao, X., Liu, X., Yin, S. and Li, H. (2013). Stability of a class of
switched positive linear time-delay systems, International
Journal of Robust and Nonlinear Control 23(5): 578–589.

Zhao, X., Liu, X., Yin, S. and Li, H. (2014). Improved results
on stability of continuous-time switched positive linear
systems, Automatica 50(2): 614–621.

Beata Sikora was born in Poland in 1969. She
received an M.Sc. degree in applied mathematics
from the University of Silesia in 1995 and a Ph.D.
degree in control engineering from the Silesian
University of Technology in 2002. She is a mem-
ber of the Polish Mathematical Society. Her sci-
entific interests are control theory and mathemat-
ical modeling of dynamical systems, in particu-
lar, constrained and unconstrained controllability
of dynamical systems with delays. She is con-

cerned with both integer and fractional-order systems. Moreover, her
current interests include data analysis, especially the analysis of data
coming from monitoring systems, and machine learning methods appli-
cation for natural hazards assessment. She is an author or coauthor of
about 20 scientific papers and 3 university textbooks.

Received: 16 December 2015
Revised: 7 May 2016
Accepted: 10 May 2016


	Introduction
	Preliminaries
	Mathematical model
	Main results
	Examples
	Concluding remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




