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The aim of this paper is to introduce a strategy to find a minimal set of test nodes for diagnostics of complex analog
systems with single parametric faults using the support vector machine (SVM) classifier as a fault locator. The results
of diagnostics of a video amplifier and a low-pass filter using tabu search along with genetic algorithms (GAs) as node
selectors in conjunction with the SVM fault classifier are presented. General principles of the diagnostic procedure are first
introduced, and then the proposed approach is discussed in detail. Diagnostic results confirm the usefulness of the method
and its computational requirements. Conclusions on its wider applicability are provided as well.
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1. Introduction

The continuously increasing number of elements in
analog systems makes their testability and diagnostics
difficult. In the case of systems working in high
frequencies or performing the data acquisition, it is
necessary to conduct separate diagnostics for analog and
digital parts. The diagnostics of the latter has well
established testing procedures, while analog or mixed
systems are more difficult to analyze in a uniform manner.
The testability of all types of circuits is crucial to decrease
the costs of production in modern electronics (Milor,
1998; Huertas, 1993). Fault diagnostics in analog systems
is also complicated because tolerances of elements must
be taken into account.

When a new analog circuit is introduced, diagnostic
and testing methods must be designed for it. Early
detection of design faults allows decreasing production
costs (Milor, 1998; Bushell and Agrawal, 2002). In the
case of digital circuits, the commonly known IEEE1149.1
norm is applied. The testability of mixed systems has
been described by Bushell and Agrawal (2002) (the IEEE
1149.4 norm). No such unified approach exists for analog
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systems at the moment.
The aim of the diagnostic process is to assess whether

the system under test (SUT) is functioning according to
the design specifications, based on the analysis of some
observable functions f(x, t) recorded at accessible or
partially accessible nodes. Here x denotes the vector
of parameters (usually real numbers), while t is time.
The analysis is performed based on the information
(characteristic points) taken from f(x, t) and consists
in determining how much they differ from the nominal
values of symptoms.

An accessible node is a node available for the
measurement/control equipment. They are usually
identified as external nodes, such as input signal nodes
(power supply included), output signal nodes and selected
internal nodes of the analyzed system. Two different
testing approaches can be distinguished (Milor, 1998):

• specification-driven test (SDT), which is used to
assess whether the system meets the specification,

• fault-driven test (FDT), which is used to find the
faulty element responsible for the system’s faulty
behavior.

The main goal of diagnostics is fault detection and

adrian_bilski@sggw.pl


656 A. Bilski and J. Wojciechowski

Fig. 1. Architecture of a diagnostic expert system (Korbicz et
al., 1994).

location. Reaching both of them depends on the quality
of the methods applied, physical SUT characteristics and
the number of accessible or partially accessible nodes. For
example, the faulty element being part of the feedback
loop might not be easily detectable.

Proper selection of characteristic points (symptoms,
extracted from the SUT response signals) creates the
possibility of detecting and locating the fault. Through
parametric simulation it is possible to acquire information
about the behavior of a complex analog system by
changing the values of its parameters and observing
responses. Such methods are similar to the value
limit control method checking whether the selected
characteristic point V belongs to the set of values ensuring
the proper operation of the system,

Vmin ≤ V (t) ≤ Vmax. (1)

Though some efforts to formulate the scheme for the
diagnostics of complex analog systems have been made,
for example, by decomposing such objects into a number
of connected simpler circuits, they do not provide any
effective and generic methodology.

Accurate diagnostics of complex analog systems
requires optimization of the set of accessible nodes and
the selection of excitation signals. The probability of
effective fault identification significantly decreases with
an increase in the size of the diagnosed system. This
justifies searching for more effective methods in this field.

For the purpose of this paper, we use a diagnostic
expert system (Fig. 1), exploiting one of two binary
classifiers (the support vector machine and the k
nearest neighbors, kNN) as fault detectors and two
discrete optimization schemes (tabu search and a genetic
algorithm) as node selectors. The SVM is able to learn
from data, extracting knowledge about the particular
faults. It also provides good results in measurement
uncertainty conditions. The kNN algorithm is used as an
alternative classification method for comparison purposes.

The following paper introduces a methodology
for selecting the minimum number of nodes in a

complex analog system, providing sufficient accuracy of
diagnostics (better than for the input-output analysis). The
diagnosed objects are limited to linear systems with the
number of parameters large enough to make them difficult
to analyze based on just the input-output characteristics.

In the input-output analysis the knowledge about the
source of the fault is collected only from the output node
while using the input node for excitation. This is justified,
since modern analog circuits are mostly integrated in a
single chip, which limits the set of possible accessible
nodes.

The paper is organized as follows. Section 2
presents the diagnostic principles. A description of the
data processing method and the minimal node selection
algorithms are in Section 3. Section 4 introduces
the analyzed SUT examples, i.e., a 26-element video
amplifier and a 52-element low-pass filter. In Section 5
experimental results are presented, while Section 6
contains the evaluation of the implemented artificial
intelligence (AI) methods and their perspectives in the
presented domain.

2. Diagnostic principles

Access to internal nodes of integrated circuits is limited.
For both the FDT and SDT, two different techniques
are possible to apply: simulation before test (SBT) and
simulation after test (SAT) (Chakrabarti et al., 1999).
The first one concerns the type of simulation where
calculations are conducted using the system’s model,
before the actual object is analyzed. The second one
focuses on computations during measurements from the
actual system. One of significant differences between
them is the extensiveness of calculations that need to be
conducted after the measurement data are collected from
the actual system. This feature determines whether the
diagnostic method can be used in real-time mode.

A different method of fault searching in analog
systems is the built-in self test (BIST). Originally
designed for complex digital chips, now it serves
diagnostic purposes for many devices with a relatively
small amount of digital components. With the advent of
advanced line process geometries, the BIST functionality
has been included in analog data converters. This
autonomous testing procedure can simplify the chip
manufacturing process by providing greater visibility into
the diagnosed device and enhancing its reliability while
reducing the production time. The basic idea behind this
method is to add the subsystem to the integrated circuit or
the printed circuit board to make it test itself. At the end of
the BIST sequence, the pass/fail result report is acquired.

Early implementations of the BIST for the analog
part of integrated systems required elements typically
used for digital systems testing. This included a test
pattern generator (TPG), an output response analyzer
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(ORA) and a test controller (TC). The TPG stimulates
the SUT, while the response analyzer gathers test patterns
compressing it to a single signature. The test controller is
the diagnostic process coordinator, providing an external
interface. The TPG usually contained linear feedback
shift registers (LFSRs), which generated pseudorandom
digital patterns resembling white noise, when passed
through a digital-to-analog converter (DAC) (Ohletz,
1991; Pan and Cheng, 2000). This waveform was
considered by some to be a universal tool for analog
systems testing. Currently ramp signals are utilized for
testing purposes of analog parts, becoming a significant
tool for proper diagnostics and in some cases better than
sine wave test signals (Chatterjee et al., 1996).

One of the main problems in diagnostics is testability
(Huertas, 1993), which relies on optimal test point
selection (Prasad and Babu, 2000; Starzyk et al., 2004;
Golonek and Rutkowski, 2007), including stimulus
parameters and features of the output signals (Grzechca
et al., 2007; Grasso et al., 2007).

For test point optimization, the entropy measure
(Starzyk et al., 2004) and the genetic algorithm (Golonek
and Rutkowski, 2007) have been used. The optimization
of the input signal is also performed: in the time (Golonek
et al., 2008) and the frequency domain (Sen and Saeks,
1979; Grzechca et al., 2007). Grasso et al. (2007) used the
simulated annealing algorithm in optimizing multitonal
signal selection.

Many AI algorithms have been applied as fault
classifiers (Aminian and Modular, 2007; Jantos et
al., 2009), delivering better classification results than
traditional methods (Hochwald and Bastian, 1979). In
the works of Aminian and Modular (2007) as well as
Kuczyński and Ossowski (2009), the wavelet transform
in the preprocessing stage was introduced, improving
fault classification in electronic systems. The artificial
neural network (ANN) was utilized for single parametric
fault classification (Jantos et al., 2009). A different
approach to fault detection was introduced by Czaja and
Zielonko (2004), who transformed measurements into a
multidimensional space. In the work of Tadeusiewicz
and Hałgas (2006), an algorithm for multiple catastrophic
fault was proposed, requiring accurate measurements at
test points. The taxonomy of AI methods used for the
purposes of analog systems diagnostics is presented in
Fig. 2.

Though generic methods for effective diagnostics
of complex analog systems do not exist, some
attempts at creating them have been made (Bilski,
2007; Tadeusiewicz and Korzybski, 2000; Rutkowski
and Grzechca, 2009). An effective approach is the
decomposition method (Starzyk and Dai, 1992; Salama
et al., 1984), based on creating test Kirchhoff current
equations at the circuit decomposition nodes. Significant
computation times limited the size of possible circuits,

and such methods are now considered to be obsolete with
the advent of modern heuristic approaches.

The SVM classifier has been used in diagnostics of
electronic circuits (Tadeusiewicz and Korzybski, 2000;
Rutkowski and Grzechca, 2009; Guo et al., 2014; Sun
et al., 2013; Bilski, 2011; Sałat and Osowski, 2011).
Although this tool is versatile to work with data of various
complexities, the process of optimal kernel selection
and its parameters must be conducted for each system
separately (Bilski, 2011). It also provides sufficient
classification results in noisy conditions. The objects
presented by Rutkowski and Grzechca (2009), Guo et
al. (2014) or Sun et al. (2013) are characterized by a
small number of parameters (from 7 to 16 elements). The
SVM presented there is used for classification purposes
in fault detection. Such circuits are of significantly lesser
complexity than the system analyzed in this work. The
benchmark complex circuit used for testing diagnostics
algorithm is the cascade of Sallen–Key sections.

In the time domain analysis, fault classification is
based on selected symptoms of the system’s response
(Golonek et al., 2008). A fault dictionary is then
built (Hochwald and Bastian, 1979). To increase
classification efficiency, a variety of different soft
computing algorithms are used (Grzechca et al., 2006;
Bilski and Wojciechowski, 2007; Wang and Yang, 2005).
To detect ambiguity groups, a Monte Carlo analysis
has been used (Huang et al., 2010), though it is not
computationally efficient. Fuzzy logic and rough sets
were used in diagnostic systems to increase the number
of inputs equal to the number of diagnosed parameters
(Bilski and Wojciechowski, 2012). The disadvantage of
this algorithm is the absence of a module for extracting
knowledge from the given datasets. Fuzzy logic does
not allow automated knowledge extraction—it has to be
provided by an expert or an external machine learning
method. The main problem with rough sets is the
dependence of results on the discretization method.

Rough sets are also rule-based and they are adequate
in finding dependencies in data. In the second case the
decision about the system’s state is based on the voting
process. To transform characteristic points and make them
more easily distinguishable, a statistical method can be
used (i.e., PCA) (cf. Nguyen and Golinval, 2010).

Most diagnostic procedures focus on single
fault detection, assuming that only one parameter
is simultaneously beyond the tolerance range (Fang
et al., 2006; Spina, and Upadhyaya, 1997). It is
the most probable situation, although multiple fault
occurrence is possible in actual scenarios. A method for
multiple catastrophic fault detection has been proposed
(Tadeusiewicz et al., 2011). Such methods do not exist
for parametric faults.
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Fig. 2. Classification of intelligent methods used in diagnostics.

Table 1. Dataset of examples.
P1 T1 P2 T2 Element code Element parameter value Fault code

1.46 e−001 3.23 e−006 −1.46 e−001 3.73 e−006 3.00 e+0 2.50e+001 0
2.22 e−002 3.23 e−006 −2.24 e−002 3.73 e−006 1.00 e+0 7.00e+002 1
3.92 e−002 4.22 e−006 −3.90 e−002 4.72 e−006 1.00 e+0 5.00e+002 1
5.44 e−002 4.22 e−006 −5.19 e−002 4.70 e−006 4.00 e+0 1.00e+002 1

3. Methodology applied

3.1. Creation of fault datasets. Dataset creation is a
standardized data-driven procedure. The problems that
need to be solved here are the size of the dataset and
differentiation on learning and training datasets.

The latter can be solved by partitioning datasets into
two sets of equal size or by cross validation. Here the first
option is utilized, providing the same amount of data to
learn from and to test the algorithm.

Data classification based on AI algorithms assigns
measurable information to a certain fault identifier. To
achieve this, knowledge about the relation between the
characteristic points and fault categories is required. The
learning set contains examples describing the system’s
behavior in various faulty situations. To verify the
quality of knowledge extracted by the machine learning
method, a validating set is required. All sets are created
after the simulation of the SUT model. The additional
validating set is often used during parameter optimization
of heuristic fault classifiers (such as the SVM). The testing
dataset has the form similar to the training and validating
ones, but contains examples other than in the remaining
sets.

Each dataset is a table in which every row (example)
contains values of symptoms, supplemented by a discrete
identifier referring to the actual value of the selected
system parameter. To differentiate the degree and
direction of the parameter deviation from its nominal
value, unique codes are assigned to the particular
elements’ values. Multiple simulations are performed
to create required examples. After changing the value
of the selected parameter, the response of the SUT is

recorded. The procedure is repeated for every parameter
separately (the remaining ones are at nominal values).
The parameters are subsequently assigned multiple values
(the so-called parametric sweep). The fault-free state is
also simulated and added to the data set. Table 1 shows
a part of the training dataset created for the 52-element
low-pass filter (Fig. 10). Here (P1,T1) and (P2,T2) are the
coordinates of the first two extreme values of the input
signal. The element code is the number of the circuit
element whose value is currently changed. It is used to
assess whether or not the diagnosed system is faulty.

In the presented experiment, each SUT element is
described by eight examples (being sets of characteristic
points acquired by parametric simulation during which
only one parameter is susceptible to a change). Some
elements have low sensitivity and may require a greater
deviation from the nominal value than others to make the
change visible in the output signal.

3.2. Fault classification tools. The SVM classifier
is an equivalent of a single perceptron (Widodo and
Bo-Suk, 2007), thus some researchers regard it as a type of
ANN. Its purpose is to effectively separate examples in the
space of kernel functions. Their parameters are optimized
to maximize the generalization of knowledge. The main
difference between SVMs and other ANNs is the lack
of local minima in the target function. The training of
a linear SVM classifier for the diagnostic task can be
formulated in the following way (Osowski, 2006).

Given a learning set X (represented by n examples:
(x1, . . . ,xn)) and the corresponding labels yi ∈
{−1,+1}, i = 1, 2, . . . , n, a vector x can be associated



Automatic parametric fault detection in complex analog systems. . . 659

with one of two categories. The classification function is
described in the following way:{

if wTxi + b > 0, then yi = +1,

if wTxi + b < 0, then yi = −1,
(2)

wT · x+ b = g(x), (3)

where (3) defines a hyperplane separating two different
categories; w is a vector whose length determines
the distance between the hyperplane and the nearest
incorrectly classified example, while b is a scalar
determining the hyperplane’s position (Fig. 3).

To optimize the SVM classifier, the analysis of
different kernel functions is necessary. Most of them are
described by nonnegative real values (like the width of
RBFs or the degree of the polynomial), which affect the
diagnostic process. The most popular SVM kernels with
their proper parameters can be found in Table 2.

In the case of kNN classification, each testing
example is compared with the whole training set using
the selected metric. A particular class is assigned to the
analyzed example as a result of majority voting of its
nearest k neighbors, so that the closer ones contribute
more to the average than the distant ones.

The parameter k determines how many neighbors
take part in the voting process. Each neighbor is weighted
to differentiate the more meaningful ones from the rest.
Here a weight of 1/d is used, where d is the distance
between the analyzed example and its particular neighbor.
This algorithm can be perceived as an extension of the
classical dictionary method.

Here kNN classification performance can also be
improved through proper metric selection. From multiple
potential metrics proper for calculating differences
between objects in the m-dimensional space, i.e.,

Fig. 3. Separation of two classes using the SVM (Osowski,
2006).

Table 2. Types of kernels.
Kernel type Parameter Equation

RBF Width of RBFs exp(−γ||x− xi||2)
polynomial Degree K(x, xi) = (xTx+ γ)p

sigmoid Scale and offset tanh(βix
Txi + β0)

linear None K(x, xi) = xTx+ γ

Table 3. Types of distance metrics.
Metric type Equation

Manhattan (cityblock) d =
n∑

j=1

|asj − btj |

Euclidean d =

√
n∑

j=1

|asj − btj |2

Chebyshev d = max
j

{|asj − btj |}

cosine d = 1− asb
′
t√

(asa
′
s)(btb

′
t)

Table 4. Example index matrix created for the kNN classifica-
tion algorithm.

Example NN1 NN2 NN3 NN4

1 4 2 5 1
2 5 1 3 12
3 1 3 12 10
4 5 1 3 12
5 9 11 10 3
6 4 6 2 5

Manhattan/cityblock, Euclidean, cosine and Chebyshev,
the first two were selected. The distance values between
given examples calculated using these metrics best fit the
fault scheme. Table 3 presents different distance metrics,
where as and bt are two vectors of examples between
which the distance is calculated.

During the process of classification, the kNN
algorithm produces the index and distance matrix; cf.
Tables 4 and 5, respectively. The index matrix contains
examples from the training set (neighbors’ positions)
closest to the analyzed one. The size of the matrix
depends on the number of arbitrarily defined k neighbors.
To avoid the case when the resulting categories are
supported in the voting process by an identical number
of examples (leading to a draw), only uneven values of k
were considered. Table 5 presents an example of different
distance values calculated for the same neighbors using
all the four metrics.
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Table 5. Example of different distances calculated for the same
neighbors using various metrics.

k Euclidean Manhattan Cosine Chebyshev

1 0.01745 0.021334 0.13639 0.07377
2 0.00715 0.288083 0.21012 0.02770
3 0.15504 0.036855 0.24869 0.00449
4 0.48315 0.355986 0.68764 0.08667
5 0.16411 0.176288 0.16135 0.05021

3.3. Node selection. If the diagnostic mechanism is
automatic and the analyzed object is not too complex, all
system nodes may be considered in the experiment. To
decrease the computational cost, a reduction in the node
set size is performed by rejecting analytically irrelevant
nodes. So far this has required an expert’s knowledge
and was not performed automatically. The idea proposed
in this paper is to minimize the impact of the human
expert on the diagnostic process, including the selection
of the analysis domain, excitation signal parameters or test
nodes.

While making a decision about the nodes included
in the analysis, discrete optimization algorithms were
applied for node selection. Although multiple approaches
are possible here, two heuristic representatives, i.e., tabu
search and the GA, were selected. The first one is simple
but powerful, while the second is used as the “last chance
method" when all the others fail. It was exploited as a
reference for the tabu search.

Both methods work assuming that all nodes in the
analyzed system can be accessible (excitations put to
them and responses read from). A successful solution
presents nodes that should be excited and measured to get
better results than the input-output analysis, working in
the shortest possible time. Such information can then be
used by the designer to make the diagnostics easier and
cheaper. This method is important from the designer’s
point of view, as it demonstrates which nodes should be
made accessible in the pins of the integrated circuit. This
is the cheapest way to ensure high testability of the actual
circuit.

The target function of the proposed algorithms is

f =
fe(T )

v
ha

h
+ (1− v)

ta
tmax

, (4)

where ha is the number of accessible nodes considered
in the analysis, h denotes the total number of all nodes
in the circuit, ta is the optimization time reached by a
particular solution, while tmax is the maximum permitted
time of the training and testing operation for the full set
of symptoms. The weight v belongs to the range of 0–1.
It is decided based on this value whether the emphasis of
the optimization process is put on the minimization of the
number of nodes or the time of conducted calculations.

Because it is assumed that the minimization of the number
of accessible nodes is more important, which leads to
simpler and faster object analysis, the weight value is set
to v = 0.8.

The classification efficiency for the training set fe(T )
is the percentage of correctly categorized examples (p0)
from all analyzed by the method (n),

fe(T ) =
p0
n
. (5)

The optimization mechanism introduced in this
paper can be summarized up as follows:

• a node configuration is randomly selected;

• for this configuration, training and testing datasets
are created;

• diagnostic quality is obtained by learning and testing
the fault classifier;

• a new solution is created, for which the whole
procedure is repeated.

The given process requires approximate methods as
it is very time consuming. For a solution created from
12 nodes, 212 = 2048 different combinations have to
be considered. In this case the use of an evolutionary
algorithm as a node selector can be very costly, as it
produces multiple solutions at the same time while the
training/testing of the fault classifier has to be conducted
for each one. Thus the evolutionary algorithm fits
better a parallel implementation. The diagnostic process
is subsequently elongated by the fact that the SVM
kernel parameter is optimized for each node configuration.
Table 6 contains optimal values of the evaluation function
for optimal node selection.

The algorithm operates on sets of examples that were
already created for each node before the optimization

Table 6. Target function values for optimal node selection.
Algorithm Target (GA) Target (tabu)

26-element systems analysis
SVM (RBF) 8.87e−4 0.155

SVM (ERBF) 8.87e−4 0.156
SVM (poly) 7.6e−4 0.124

kNN (cityblock) 7.6e−4 0.124
kNN (Euclidean) 7.6e−4 0.124

52-element systems analysis
SVM (RBF) 3.931e−4 2.65

SVM (ERBF) 3.931e−4 2.65
SVM (poly) 3.528e−4 2.38

kNN (cityblock) 3.357e−4 2.38
kNN (Euclidean) 3.357e−4 2.38
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started. Such an approach significantly speeds up the
algorithm. To limit the number of generated solutions,
nodes located near the power supply can be eliminated.
Because experiments presented here are based on the
AC analysis, it can be assumed that the system’s faulty
behavior cannot be caused by a faulty power supply, as
these types of faults are impossible to detect.

The tabu search algorithm is iterative and it works
as in Algorithm 1 (Gendreau, 2003). Solution vectors are
binary with the length equal to the number of nodes in the
SUT: value 1 is assigned to the node selected for testing.
The successive solutions are created from the latter ones
by choosing a different tabu element, thus including or
excluding a single node from the previously generated
solution (the Hamming distance is 1). The new element
remains tabu for a number of iterations depending on half
the number of nodes in the analyzed system. The memory
horizon is defined by the short term list. The new solution
is a different node configuration. The stopping criterion
for tabu search was reaching 100 iterations with no
improvement of the evaluation function. This condition is
introduced to limit the duration of a algorithm execution.
Based on Fig. 4 it can be shown that the better solution
than the one achieved by the input-output only solution
can be achieved within the first 50 iterations. It is also the
main difference between this algorithm and the full sweep
method, which checks all combinations of nodes and in
theory provides the best classification results.

Algorithm 1. Tabu search procedure.
1: Solution=best=random solution
2: Tabu list:= 0
3: While not (stop condition) do
4: Begin
5: Evaluate best
6: Solution=select(neighbors(solution),tabu list)
7: Tabu list=update tabu(solution,tabu list)
8: Evaluate Solution
9: If (evaluate(best); evaluate(solution))

10: Best=solution
11: End

Node selection using the genetic algorithm (GA) was
adopted according to the scheme proposed by Holland
(see Algorithm 2). The initial population P0 is selected
randomly. Each member of the population is a binary
vector of the same form as in tabu search. The population
consists of 60 solutions (vectors), which is enough
to maintain its diversity. During the evaluation of a
population (the assessment of which solution provides
the best classification results), a particular solution is
selected for reproduction based on fault classification
performance, provided by the SVM classifier (5).
Genotypes of the selected solutions (vectors of ones
and zeros, which hold the information which nodes

Fig. 4. Tabu search evaluation function.

are considered in a particular simulation) undergo
evolutionary operations, with the probability of crossover
(pc) equal to 0.7 and mutation (pm) equal to 0.01. These
are the values that provide the highest variety in the
reproduction process of populations, with the crossover
operation more significant in these tasks.

Algorithm 2. Basic GA procedure.
1: t := 0
2: Initialization of P0

3: Evaluation of P0

4: While not (stop condition) do
5: Begin
6: Tt := reproduction of Pt

7: Ot := crossover and mutation of Tt

8: Evaluation of Ot

9: Pt + 1 := Ot

10: t := t+ 1
11: End

Figure 6 demonstrates changes in the probabilities of
the crossover (the dashed line) and mutation during the
process of their optimization in relation to classification
efficiency. The intersection of these lines constitutes the
optimal values of pc and pm. The method of solution
selection used in this study is proportional reproduction
described by

pr(x) =
φ(x)∑

y∈pt

φ(y)
, (6)

where x is a single solution vector while φ(x) is the value
of its evaluation function. The cross over method used in
these studies is single-point (see Fig. 5).

The GA stopping criterion was generation of
the 100th population without the improvement of the
evaluation function.
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Fig. 5. One-point crossover.

As shown in Fig. 7 this is a sufficient number of
populations to achieve a better solution than the one
provided by the input-output analysis. The GA quickly
converges within the first 30 generated populations.
Results of the algorithm depend on its parameters,
although it is of a stochastic nature (the selection of
the first solution and its derivatives). The most notable
effect is that by the mutation probability on the evaluation
divergence of a particular population. A significant
value of pm causes substantial divergence in subsequent
populations, while its low value causes the populations to
be more uniform. The crossover probability influences
the scope of the solution search of the algorithm. For
low pc values, the algorithm will not generate all possible
solutions, even for a large number of iterations.

3.4. Diagnostic method. This paper focuses on single
parametric fault detection. The information about the
SUT behavior is acquired from the signals provided by
the parametric simulation (Fig. 8) of faulty and nominal
systems. Examples for the testing dataset were selected
randomly from the initial set of measurements. Element
tolerances were considered in the experiment, randomly
changing in the range of +/ − 5 around the nominal
value. It is assumed that the system works correctly
if the parameter values do not exceed their tolerances.
The values of the outputs acquired when the analyzed
element parameters reach their tolerance values are also
included in the datasets. Two types of fault detection
are considered; binary, i.e., go/no-go (system operates

Fig. 6. Illustration of the mutual dependence between the
crossover and mutation probabilities regarding the clas-
sification accuracy.

Fig. 7. Dependence between the size of the population and the
value of the GA evaluation function.

properly/improperly), and more precise, i.e., parameter
identification (the value of a parameter is smaller, larger,
much smaller, much larger than the nominal value, and so
on).

Time and frequency analyses was made, during
which a set of symptoms were acquired for the classifier
training. Characteristic points are extracted from the
part of the output signal that is transient, because of its
susceptibility to a change during the parametric sweep.
It can also provide more information on the system’s
behavior than the steady state analysis. The following
parameters were used as characteristic points:

• Time domain analysis—the value of the first two
maximal and minimal values in the output signal
and the time instants required to reach these values
(Fig. 8). Zero-crossing coordinates were also
considered.

Fig. 8. Example shows how the output signal of a 52-element
low-pass filter changes with the increase of the value of
R2 in the range of 100–900 ohms. The characteristic
points are also indicated.
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• Frequency domain analysis—the 3 db frequency was
measured.

The sine input signal was used as excitation. The
proposed symptoms allow acquiring the most important
information from the output signal. After changing the
value of the selected parameter, the output of the SUT was
recorded and the characteristic points extracted. These
data were used for determination of the internal state of
the SUT. The procedure was repeated for every element
separately (the remaining elements were at nominal
values).

The diagnostic method is divided into two parts.
The first one, identical for any simulated system, is
responsible for generating the data set and performing
SVM training. There is no training phase for the kNN
classifier. The created set provides learning data for the
second part of the method during which classifiers are
tested for their generalization abilities. The SVM toolbox
used in this research was authored by Steve Gunn. Its
kernel parameters were set according to Bilski (2013).
In order to conduct the optimization of the SVM kernel
parameter value, a quasi-discrete method was utilized.
The range of kernel parameter values was divided into
100 intervals, and from each, one value was selected. The
value providing the best classification results was returned
as the optimization outcome.

4. Description of analyzed SUTs

The studies presented in this paper were conducted on
a 26-element video amplifier (Fig. 9) and a 52-element
low-pass filter (Fig. 10), both being modeled using the
electronic schematics creation tool, Orcad PSpice 9.1.
These linear objects were selected based on the increasing
number of parameters they contain. The accessible nodes
are visible in Figs. 9 and 10. The circuit of Fig. 9
includes 9 capacitors, 6 inductances, 9 resistors and 2
PNP bipolar junction transistors, with the amplification
coefficient k = 3. They are hybrid-pi models. The
circuit works in the range of 1 to 6 MHz and is excited
by a sinusoidal voltage source of amplitude 10 mV. The
feedback loop decreases the amplification, nonlinearities
and distortions. This system has 13 accessible nodes.

The system in Fig. 10 is a 52-element fourth-order
elliptic active low-pass filter with 19 nodes. It consists of
8 operational amplifiers modeled by a controlled source
(VCCS) and the input and output resistances. The faults
modeled in these amplifiers provide information about
which VCCS is corrupted. The system was excited by a
10 mA current source of a 10 kHz frequency. Both circuits
were modeled in PSpice.

5. Experimental results

The details of the experiment presented for both
diagnosed systems are in Table 7. Both training and
testing datasets represent knowledge collected from a
single node. The optimal configuration of nodes is in
Tables 8 and 9. This solution contains nodes that should
be excited and measured to get better results than just the
input-output analysis in the shortest time possible. The
process of acquiring a solution by using node selectors
(tabu search or the GA) was divided into two stages. In
the first one, the node optimization process was conducted
with omission of the output node. In the second stage, the
output node was considered in the experiment. The aim of
that was to examine how the ability of detecting a fault in
the complex system increases with the inclusion of inner
nodes in the analysis. Subsequently, fault classification
efficiency was analyzed and compared with the previously
conducted input-output only analysis (Tables 10–12). The
best diagnostics results can be achieved by using the SVM
with RBF kernel functions.

In the node selection process, some nodes can be
replaced by others without any loss in the quality of fault
detection. In the video amplifier system, node 7 can
be replaced with node 8. The same can be said about
nodes 8 and 11. The inclusion of nodes 9 or 10 does
not increase diagnostic efficiency. The most crucial nodes
for diagnostics are 2, 3 and 4. They are located in the
part of the circuit where the input signal is strengthened
by operational amplifiers. These nodes have a high
degree; from them the change in the significant number of
parameters can be observed. Node 12 plays an important
role in the diagnostic process only when the parameter
value of the element that is part of the feedback loop is
disturbed.

In the case of the 52-element low-pass filter, nodes 2
and 3, 4 and 5, 6 and 7, 9 and 10, 13 and 14, 15 and 16, 18
and 19 can be excited interchangeably, because it is less
significant for the diagnostic process. The inclusion of
the output node in the solutions presented in Tables 2 and
3 increases the classification efficiency of the parametric
fault in the low-pass filter system to 79% .

The best kNN classification results were acquired
while using the Euclidean and Manhattan norms as means
of calculating the distance between the examples. The
categories were assigned to examples by an uneven
number of neighbors to make the classification easier.
The optimal number of neighbors k was 5. The best
classification efficiency achieved for the kNN algorithm
was 70%. Because there is no training phase in the
kNN algorithm, its performance is low. The classification
quality achieved by SVM Gaussian kernels is much higher
than in the case of kNN. Fault classification with the
polynomial kernel requires polynomials of a higher degree
(at least 33). This indicates a high level of complexity
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Fig. 9. 26-element video amplifier system with 13 accessible nodes modeled in Spice.

Fig. 10. 52-element low-pass active filter with 19 accessible nodes modeled in Spice.
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Table 7. Details of the experiment presented for diagnosed systems.

Size of the tested system Size of the learning set Size of the testing set
26-element video amplifier 176 88
52-element low-pass filter 416 208

Table 8. Best node selection for a 26-element video amplifier, provided by the GA and tabu search simulation.

Node number/node selector 1 2 3 4 5 6 7 8 9 10 11 12 13

GA 1 1 0 1 0 0 0 1 1 0 0 0 0
tabu 1 0 1 1 0 0 1 0 1 0 0 1 0

Table 9. Best node selection for a 52-element low-pass filter, provided by the GA and tabu search simulation.

Node number/node selector 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

GA 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0
tabu 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0

Table 10. Classification efficiency for the input-output only analysis, provided by the SVM and kNN fault classifiers.

Algorithm Kernel parameter Parameter value Efficiency (percent)

26-element video amplifier
SVM (RBF) width of RBFs 0.000039−0.000096 85

SVM (ERBF) width of RBFs 0.00108−0.00207 85
SVM (poly) degree of polynomial 33−103 60

kNN (cityblock) number of neighbors 5 60
kNN (Euclidean) number of neighbors 5 60

52-element low-pass filter
SVM (RBF) width of RBFs 0.000039−0.000096 71

SVM (ERBF) width of RBFs 0.00108−0.00207 71
SVM (poly) degree of polynomial 33−103 61

kNN (cityblock) number of neighbors 5 60
kNN (Euclidean) number of neighbors 5 60

Table 11. Classification efficiency for a 26-element video amplifier for optimal node configuration, provided by the SVM and kNN
fault classifiers.

Algorithm Kernel parameter Parameter value Efficiency (percent)

output node excluded
SVM (RBF) width of RBFs 0.000039−0.000096 88

SVM (ERBF) width of RBFs 0.00108−0.00207 88
SVM (poly) degree of polynomial 33−61 70

kNN (cityblock) number of neighbors 5 65
kNN (Euclidean) number of neighbors 5 65

output node included
SVM (RBF) width of RBFs 0.000039−0.000096 89

SVM (ERBF) width of RBFs 0.00108−0.00207 89
SVM (poly) degree of polynomial 33−61 71

kNN (cityblock) number of neighbors 5 65
kNN (Euclidean) number of neighbors 5 65

of data transformation from the original feature space so
that linear nonseparability of the classified examples is
retained. The complexity of the hyperplane separating
different categories in the original feature space grows
with example separation difficulty. Therefore, it can
be assumed that the high order of the polynomial used

in complex analog system diagnostic relates to the
complexity of the analyzed system and requires more
specialized functions. Smaller systems were successfully
diagnosed using polynomial kernels of a lower order.
The classification results for the RBF and ERBF kernels
are the same, but require different parameters to make
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Table 12. Classification efficiency for a 52-element low-pass filter for optimal node configuration, provided by the SVM and kNN fault
classifiers.

Algorithm Kernel parameter Parameter value Efficiency (percent)

output node excluded
SVM (RBF) width of RBFs 0.0000394−0.000096 78

SVM (ERBF) width of RBFs 0.00108−0.00207 78
SVM (poly) degree of polynomial 33−42 70

kNN (cityblock) number of neighbors 5 65
kNN (Euclidean) number of neighbors 5 65

output node included
SVM (RBF) width of RBFs 0.000039−0.000096 79

SVM (ERBF) width of RBFs 0.00108−0.00207 79
SVM (poly) degree of polynomial 33−42 71

kNN (cityblock) number of neighbors 5 66
kNN (Euclidean) number of neighbors 5 66

them optimal. For the Gaussian and polynomial kernels,
a significant improvement in fault diagnostics can be
observed when nodes of higher order (such as 3, 7 or 8)
are included in the diagnostics.

Node selection using tabu search achieved similar
results to the GA, but did it much quicker. Being a
less computationally complex algorithm that the two used
in the experiment, tabu seems the proper optimization
algorithm for the task of node selection in complex analog
systems.

6. Conclusions

This work shows a method to increase parametric fault
classification efficiency in complex analog systems using
minimum node selection compared to the input-output
analysis. The minimal number of nodes required to
improve the fault classification efficiency is 40% of all
nodes in the case where the output node is omitted. In the
presented systems, it was 5 out of 13 nodes for a video
amplifier and 9 out of 19 nodes for low-pass filter. It
is a result of time limitations that enforces the assumed
evaluation function. During the simulation including the
output node, the desirable fault classification efficiency
could be achieved within around 23–26% of the total
number of nodes.

The types of nodes to be included in the diagnostic
process are those of a high degree, which allows the
expert system to acquire information from a substantial
number of elements connected to them. The method
presented here can also be used in amplifying circuits with
feedback loops. The increase in the number of nodes
above the threshold considered crucial for achieving
better diagnostic efficiency than the one provided by
the input-output analysis only slightly improves the
classification efficiency. The reason behind it is the fact
that parametric faults are hard to detect.

The classification tool most efficient in complex
analog systems diagnostic procedures is the SVM

classifier equipped with Gaussian kernels. Fault
classification results provided by this AI method
demonstrate low generalization abilities, but that is to
be expected for this type of data. It is a typical
situation in complex analog systems diagnostics with
parametric faults. The kNN algorithm, though easy to
implement, lacks the ability to properly classify faults in
measurement uncertainty conditions and thus it can be
branded unsuitable for the purposes of complex analog
systems diagnostics.
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