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This study provides a proof that the limit of a distance-based inconsistency reduction process is a matrix induced by the
vector of geometric means of rows when a distance-based inconsistent pairwise comparisons matrix is transformed into a
consistent PC matrix by stepwise inconsistency reduction in triads. The distance-based inconsistency indicator was defined
by Koczkodaj (1993) for pairwise comparisons. Its convergence was analyzed in 1996 (regretfully, with an incomplete
proof) and finally completed in 2010. However, there was no interpretation provided for the limit of convergence despite
its considerable importance. This study also demonstrates that the vector of geometric means and the right principal
eigenvector are linearly independent for the pairwise comparisons matrix size greater than three, although both vectors are
identical (when normalized) for a consistent PC matrix of any size.
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1. Introduction

In modern science, we often compare entities in pairs
without even realizing it. For example, when someone
asserts My car is 11 years old, we compare the car age to
one year (the unit of time). This is a pair: one entity (year)
is a unit and another entity is a magnitude of life duration.
When we have no unit (e.g., for software quality), we
can construct a pairwise comparisons (PCs) matrix to
express our assessments based on relative comparisons of
its attributes (such as safety or reliability).

The first documented use of PCs is attributed to Llull
(1299) in the 13th century. It may surprise some readers
that the Nobelist Kenneth Arrow used pair or pairs 25
times in his work dated 1950. Needless to say, that paper
contains his famous impossibility theorem (Arrow, 1950).
The importance of pairwise comparisons for computer
science has been recently evidenced in one of the flagship
ACM publications (Faliszewski et al., 2010). Finally,
there are a considerable number of customizations, but the
authors specifically refuse to discuss them here since this
study is on the theory of pairwise comparisons and does
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not endorse any customization.

Needless to say, inaccurate pairwise comparisons
lead to an inconsistency of a PC matrix and, in
consequence, to an inadequate hierarchy of the compared
alternatives. Hence, it is crucial to reduce the
inconsistency of the initial PC matrix introducing,
however, as little changes as possible.

In this study, we prove that the limit of the
inconsistency reduction algorithm, introduced by
Koczkodaj (1993) and mathematically analyzed by
Koczkodaj and Szarek (2010), is the (normalized) vector
of geometric means of rows. We stress the foundation
nature of our research and its independence of any
customization of pairwise comparisons. To the best of
our knowledge, this has never been done. In our study, it
is stressed that the vectors of geometric means of rows
of the input and output PC matrices are invariant for the
“automatic” inconsistency reduction by the orthogonal
projections. This finding is of considerable importance
and greatly simplifies the process of ranking entities.

The outline of the article is as follows. Section
includes the basic concepts of PC theory. Section [3]
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focuses on the notion of inconsistency.  Section [
compares geometric means with the right principal
eigenvector method. The inconsistency reduction process
is presented in Section[3l The conclusions are stated in the
last section.

Finally, we stress that vector normalization is not
really of great importance for convergence or its limit.
However, the vector of weights needs to be normalized
when we compare different methods since they may differ
by a constant (called the scaling of the eigenvector).
Usually, “normalized” is dropped in our presentation
unless it may lead to an ambiguity problem. Linear
dependence of vectors can be used instead of the “scaling”
of a vector.

2. Basic concepts of pairwise comparisons

In this study, we assume that the pairwise comparisons
matrix (PC matrix here) is a square matrix M = [m;;],
n X n, such that m;; > 0 forevery i,j = 1,...,n, where
m;; expresses a relative preference of an entity F; over
E;. An entity could be any object, attribute of it or a
stimulus.

A PC matrix M is called reciprocal if m;; = 1/m;

for every 4,5 = 1,...,n (in such a case, m;; = 1 for
everyi=1,...,n):
1 mp - mi,
1
M1 1 Mon
M =
1 1 1
Min man

A PC matrix M is called consistent (or transitive) if
Mk * MEj = My (1)

foreveryi,j,k=1,2,...,n.

Three PC matrix elements (m;;, mix, mjx) for i <
j < k form a triad. We will denote by T, the set of all
triads in M.

Note that each vector (v1,...,v,) with positive
coordinates generates a consistent PC matrix [v;/v;].
Reversely, from a consistent PC matrix [m;;] we can
obtain the so-called vector of weights v by dividing any
column by its norm. For example,

(mu, . .,mnl).

We will refer to Eqn. (T)) as a “consistency condition.”
While every consistent PC matrix is reciprocal, the
converse is false in general. If the consistency condition
does not hold, the PC matrix is inconsistent (or
intransitive). In several studies (e.g., Kendall and Smith,

1940), the inconsistency in pairwise comparisons, based
on triads or “cycles of three elements” (as specified in the
consistency condition), was defined and examined.

There are two types of pairwise comparisons:
multiplicative (with entries as ratios) and additive (with
entries as differences). A multiplicative PC matrix can be
converted into an additive PC matrix by the logarithmic
mapping and an additive PC matrix can be converted into
a multiplicative PC matrix by the exponential mapping, as
it is presented in Section [l

3. Inconsistency in pairwise comparisons

The fundamental challenge of the pairwise comparisons
method is inconsistency. It frequently occurs when we
are dealing with predominantly subjective assessments,
as objective measurements do not usually require using
pairwise comparisons. For objective data, the exact values
of ratios can be computed and inserted into a PC matrix
(if needed). We approximate a given inconsistent n X n
PC matrix M by a consistent PC matrix M’ of the same
size as PC matrix M. It is reasonable to expect that
the approximating PC matrix M’ is somehow minimally
different from the given PC matrix M. Evidently, it is
an optimization problem. By “minimally”, we usually
assume the minimal distance between M and M’. This
is worth noting that the PC matrix M’ = [v;/v;] is
consistent for all (even random) values v;. This is yet
another compelling reason for considering approximation
as an optimization process. Evidently, random values v;
are not satisfactory, so we need to find optimal values as it
is always possible for a given metric or distance.

The approximation problem is reduced to
minimizing the distance between M and M’. For
the Euclidean norm, the normalized vector v of geometric
means generates, according to Jensen (1984), a consistent
PC matrix M’ by [v; /v;].

Needless to say, inconsistent assessments lead to
inaccuracy, but for each inconsistent PC matrix there is
a consistent approximation which can be computed by
different methods. One of them is obtained by means of a
vector v of geometric means of rows. The approximating
matrix [v;/v;] is consistent. The distance-based inconsis-
tency indicator for a single triad (hence a PC matrix of
size n = 3) was proposed by Koczkodaj (1993) as the
minimum distance to the nearest consistent triad:

z‘i:min(‘1—i -2 )
rz Y

)

and expanded for the entire PC matrix of size n > 3 as

1—”3—;)).

ii(A) = max (min (‘1 Y
(z,y,2)ETA Tz

)

In its simplest form, it is
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ii(A) = max (1 — min (i, ﬁ)),
(z,y,2)€Ta Tz Y

which is equivalent to

(1_e*|ln(%)

1i(A) = max )
(z,y,2)ETA

It is important to notice here that the distance-based
inconsistency allows us to localize the most inconsistent
triad in a PC matrix. This fact is of considerable
importance for the inconsistency reduction process,
since % is a measurable characteristic of inconsistency
reduction.

For a given PC matrix A, let us denote by EV (A) the
normalized principle right eigenvector of A, by AM(A)
the vector of arithmetic means of rows and by GM (A)
the vector of geometric means. A vector of geometric
means of rows of a given PC matrix A is transformed into
a vector of arithmetic means by the logarithmic mapping.
The arithmetic mean has several properties that make it
useful for a measure of central tendency. Colloquially,
measures of central tendency are often called averages.
For values w, . .., w,, we have a mean w, for which

(wg —w)+ -+ (w, —w) =0.

We may assume that the values below it are balanced by
the values above the mean since w; — w is the distance
from a given number to the mean. The mean is the
only value for which the residuals (deviations from the
estimate) sum up to zero. When we are restricted to
using a single value for representing a set of known values
wi, ..., Wy, the arithmetic mean is the choice since it
minimizes the sum of squared deviations from the typical
value—the sum of (w; — w)?2. In other words, the sample
mean is also the best predictor in the sense of having the
lowest root mean squared error. Means were analyzed
by Aczel (1948) as well as Aczel and Saaty (1983). It
is difficult to state when exactly the logarithmic mapping
was used for PC matrices as an alternative method for
scaling priorities in hierarchical structures. Usually, this
is attributed to Jensen (1984).

4. Geometric means and the eigenvector

For a PC matrix A with positive coordinates, we define the
PC matrix B = p1(A) such that b;; = In(a;;). Reversely,
for a PC matrix B, we define the PC matrix A =
©(B) such that a;; = exp(b;;). By In(z1,...,z,) and

exp(x1,...,T,) we denote vectors (In(z1),...,In(zy))
and (exp(x1),...,exp(xy,)), respectively. This implies
that

In(GM(A)) = AM (u(4)) @

and
exp(AM (B)) = GM(¢(B)). 3)

If A is consistent, then elements of B = 11(A) satisfy
bir + brj = byj

for every ¢,7,k = 1,2,...,n. We call such a PC matrix
additively consistent.

Note that the set APC' := {p(A) : AisaPC matrix}
= {B : b +bj; = 0} is a 3(n* — n)-dimensional
vector space. For B, B’ € APC, we can easily define

the Euclidean distance

p(B,B') = i > (byy = bjy)2

i=1 j=i+1

The set AC'M of all additively consistent n x n PC
matrices is a linear subspace of APC.

Throughout the paper, by a distance of two PC
matrices A and A’ we will understand

d(A, A) = p(u(A), u(A"). )

Let us consider an additive triad (z, vy, z) (given or
received by logarithmic mapping). It is consistent if
y = x + z, which is equivalent to the inner product
of v = (xz,y,z) by the vector e = (1,—1,1), giving
0. This indicates that v and e are perpendicular vectors.
In other words, if a triad is inconsistent, an orthogonal
projection onto the subspace perpendicular to the vector
e = (1,—1,1) in the space R*® makes it consistent. Such
projections can be expressed by

where u; o us is the inner product of vectors u; and wuy in
RB
We have
eoe =3,

voe=x—Y+ %,

and hence v = Pv, where

I
Wi W= Wi
Wl W el

W W= W=

Thus, the final formulas take the form

~ 1
bix = §(2bik +bij — byy), (5)
- 1
bi; = g(bzk +2b;; + by;), (6)
~ 1
bkj = g(—bik + bij + Qbkj). 7
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Remark 1. A given additively inconsistent triad
(bik, bij, bi; ) can be transformed into a consistent triad by
replacing only one element in the following three ways:

(bik, bik + bij, bij ),
(bij — bij, bij, brj),
(biks bij, bij — bik).

Taking the average of the above three triads, we get a triad

expressed by Q)-().

For a  multiplicatively  inconsistent triad
(@ik, aij, ak;), its transformation to the consistent
triad (@i, Gi;, Ak;) 1S given by

2/3 1/3 —1/3

Qi = Qi Q5 Qg s (8)
-~ 1/3 2/3 1/3
@ij = Qg Q5 Qpj s )
- —1/3 1/3 2/3
Alj = Q" "5 A" (10)

The above formulas were used by Koczkodaj
et al. (2015) for a Monte Carlo experimentation with
the convergence of inconsistency by the sequence of
inconsistency reductions of the most inconsistent triad.
The n-th step of the algorithm used by Holsztynski and
Koczkodaj (1996) transforms the most inconsistent triad
(bik, bij, bx;) = (x,y, z) of a given PC matrix B,, into
U= (l;ik,l;ij,l;kj) = (&, 9, 2) according to the formulas
(BD)—([@. Obviously, we also replace (by;,bji,bjxr) with
—v, leaving the rest of the entries unchanged. Let B,
denote the PC matrix after the transformation. The
coordinates of AM (B,,) may change only for the i-th, the
7-th and the k-th position. However, a simple calculation
shows that

T+y=x+y (11)
—T+i=—-x+2 (12)
—y—Z=—y— =z (13)
This proves that
AM (B,,) = AM(Bp41). (14)
Consequently,
GM(An) = GM (A1), (15)

where A, = p(By,).

Theorem 1. For a given additive PC matrix

0 bia -+ bin
by 0 co oy,

B = ) ) . .
by, —by, - 0

and its orthogonal projection B’ onto the space of addi-
tively consistent matrices, we have

AM(B) = AM(B').

Proof. Theorem 4 by Holsztynski and Koczkodaj (1996)
states that the sequence of PC matrices B,, is convergent
to the orthogonal projection of B; = B onto the linear
space of additively consistent matrices. Equations (I4)
mean that AM is invariant at each step of the algorithm,
so AM of B’, which is the limit of B,,, also must be the
same. ]

As a consequence, we obtain what follows.

Theorem 2. We have
GM(A)=GM((A),

where A = ¢(B) is the original PC matrix and A" =
p(B’) is the limit consistent matrix.

Proof. The statement follows immediately from the
previous theorem, since

GM(A) = GM(p(B)) = exp(AM(B))
= exp(AM (B')) = GM (¢(B"))
— GM(A).
[ ]

The following two examples illustrate how the above
works in practice.

Example 1. Consider an example of a PC matrix:

1 2 5
1

-1

5 3
11
|
5 3

After an orthogonal transformation, we get

1 1.882072 5.313293
0.531329 1 2.823108
0.188207  0.35422 1

The first PC matrix is inconsistent since 2 - 3 # 5.
The vector of geometric means is identical in both cases
and it equals

2.15443469

1.14471424

0.40548013

¢
Example 2. Consider an additive PC matrix:

0 a b ¢
—a 0 d e
b —-d 0 f
—c —e —f 0
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The linear space of all such matrices is isomorphic
with RS. The following system of equations must hold for
the above additive PC matrix to be additively consistent:

Ui:a+d=0,
Uy:d+ f=e,
Us:a+e=c,
Uy:b+ f=c

Each equation describes a subspace U; of the
dimension 5. Subspace W of the consistent matrices
is the intersection of dimension 3. A PC matrix can
be made consistent with the greedy algorithm utilized
by Holsztynski and Koczkodaj (1996). It transforms
the most inconsistent triad into a consistent one by the
orthogonal projection on U;. The proof of convergence
for this stepwise inconsistency reduction was proposed by
Holsztynski and Koczkodaj (1996), but it was incomplete.
It was finally done by Koczkodaj and Szarek (2010).
Another possible solution is the orthogonal projection on
W . As a result, we obtain the matrix

0 A B C
-A 0 D FE
-B -D 0 F|’
-C —-E —-F 0

where

2a+b+c—d—e
a+2b+c+d—f
_lja+b+2c+e+f
T4 |-a+b+2d+e—f
—a+c+d+2e+f
—b+c—d+e+2f

MU Qm e

¢

Equations (), @) and Theorem [ imply that it is
sufficient to compute GM (M) for any reciprocal PC
matrix M to obtain the vector of weights of the closest
consistent PC matrix. In general, GM (M) is not equal
to EV (M), which is the right principal eigenvector
corresponding to the principal eigenvalue of M (even if
both are normalized).

Remark 2. Assume that

1 a b
Mzélc
11

7 ¢ 1

is a reciprocal matrix. Then

GM (M) = EV(M).

Proof. Set
Vab
vi=GM(M)=|3/3
1
Jbe
Then, for

A=1+2 ac 4 3 37
\/ b V ac
we have Mv = \v, and this completes the proof.

|
The conclusion of the above remark cannot be
generalized to PC matrices of higher degrees.

Example 3. For the PC matrix

M =

e
= = =
N = W

1
1
2
1
1
3
v

—

we calculate the vector
elements

of geometric means of row

V6

af1

. . 2

vi=GM(M)= ¥

af1

6
There is no A such that Mv = M\v, and it follows
that GM (M) # EV(M). Vector GM (M) generates
the consistent PC matrix which is the closest to M.
Consequently, EV (M) does not. ¢

5. Inconsistency reduction process

For a given inconsistent PC matrix A, a consistent PC
matrix can be computed by one transformation [v;/v;],
where v; = GM;(A) and GM;(A) denotes the geometric
mean of the i-th row of PC matrix A. There is probably
no better way of providing explanations why the one step
approximation is not as good as many of them than the
following:

Arriving at one goal is the starting point to
another.
John Dewey, 1859-1952
(American philosopher)

The triad-by-triad reduction for the case of n = 3 is
needed in practice since examination of individual triads
facilitates their improvement by not only “mechanistic
computations”, but by additional data acquisition, too. For
n = 3, only one orthogonal transformation is needed for
achieving the consistency. For n > 3, the number of
orthogonal transformations may be indefinite. However,
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the convergence is very quick, as evidenced by Koczkodaj
et al. (2015). Usually, fewer than 10 steps are needed for
most applications to reduce the inconsistency below the
threshold of 1/3 assumed for applications.

For an inconsistent PC matrix, we find the most
inconsistent triad (according to Ki:) and, by using the
three expressions for the orthogonal projection, we make
it consistent. The idea of the algorithm is illustrated by
Fig. 1. The starting point z corresponds to the initial PC
matrix. The lines U and V represent the linear subspaces
of PC matrices with an additively consistent triad located
in a fixed place. For example, they might be the sets

U= {A a13 + asg = (L16}

and
V ={A: az3 + ass = a}.

We select the most inconsistent triad (in our case,
71 = (a13,a16,a36)) and project the PC matrix
orthogonally on U (point x;). Obviously, we must
transform this triad, which may result in increasing the
inconsistency in another triad (say To = (as3, a2¢, a36))-
Thus, in the next step, 75 may be the most inconsistent
triad. We continue projecting x1 on V, getting xo. The
projecting continues until the PC matrix is sufficiently
consistent. Figure 1 illustrates the point, obtained by
orthogonal projections, which is sufficiently close to U N

V.

Zo

) U
%
p—
Z
|4

Fig. 1. Orthogonal projections.

Let us recall that only one transformation is needed
to make a PC matrix 3 X 3 consistent since there is

only one triad in such a matrix, hence no other triad
can be influenced by this transformation. For n > 3,
any transformation to all three values in one triad may
propagate to other triads.

Itis not evident for n — co how the propagation may
go. However, the proof of convergence was provided by
Bauschke and Borwein (1996) (unrelated to PC matrices)
and independently by Koczkodaj and Szarek (2010) in the
following theorem.

Theorem 3. (Koczkodaj and Szarek, 2010, Thm. 1) Let
L be a non-empty finite family of the linear subspaces of
RN, Let W = (L be the intersection of members of L.
Let w : N — L be a sequence such that for any V€ L
the equality w(n) = V holds for infinitely many n € N.
Fix x € RN, and define xog = = and

Tn = Pw(n) (mnfl)

forn > 1. Then

lim z, = pw(z),
n— o0

where py denotes the orthogonal projection on'V'.

Consequently, a consistent PC matrix is obtained
from a vector of geometric means of rows of the original
inconsistent PC matrix. =~ When we apply the above
theorem to the finite family £ of (n? —n)/2 linear
spaces of additive PC matrices B with a consistent triad
(Dij, bik, bjk), for 1 < i < j < k < n, the intersection
W = (L is a linear space of all additively consistent
matrices, and hence it is an infinite set.

Therefore, a natural question arises whether the
inconsistency reduction algorithm obtains the closest
solution. According to Theorem 4 of Holsztynski and
Koczkodaj (1996), the answer is positive with respect to
the metric defined in (@).

As indicated by Dong et al. (2008), the complexity
of the presented computations is at most O(n3). From
the theoretical point of view, the complexity of searches
of a PC matrix of size n is O(n?), but for a triad
(2,9, 2) it may be O(n?) if each coordinate is changed
independently. For the consistent case, y = x - 2, hence
the complexity is still O(n?) when it comes to searches
for all triads in a consistent PC matrix.

Example 4. Consider the PC matrix

1 1 2 3 4
1 1 35 25 15
M=1{05 2 1 14 12
1 2 5
i 2 2 1 11
2 5 10
025 2 2 10
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The elements of the most inconsistent triad are underlined.

Evidently, vectors GM (M) and EV (M) are neither
equal nor linearly dependent:

1.888175
1.673477

vy = GM(M) = |0.751696 ,
0.636855
0.661081

and

0.670129
0.609415

vy = EV(M) = |0.267868] ,
0.222817
0.241121

which, after normalization, gives

0.336496
0.298234
nv; = [0.133961
0.113495
0.117812
and
0.333173
0.302988
nvy = [0.133178
0.110779
0.119880

A simple computation shows that the highest
inconsistency indicator is reached for the underlined triad
and it is equal to 0.642857143, so the inconsistency
reduction begins with this triad.

Now, let us have a look at the first five iteration steps
and the limit matrix, which is consistent. In each step, we
indicate the recently changed triad in boxes, underline the
most inconsistent triad to be corrected in the next iteration,
and give its inconsistency index.

Step 1 (maxii = 0.574305):

1 1 2 3 4

1 1 [2483] 25 [2.114

M=1|05 0403 1 14 [0.851
0333 04 0714 1 1.1

0.25 0473 1.175 0.909 1

Step 2 (maxii = 0.297384):

1 1 3 .

1 1 2483 25  2.114
M= 10.376 0.403 1 1.4 [1.132

0.333 04 0714 1 11

0.332 0473 0.884 0.909 1

Step 3 (max i = 0.280888):

1 2.659 3 [2.675

0.889 1 2483 2.5 |3.378
M = 10.376 0.403 1 14 1.132
0333 04 0714 1 1.1
0.374  0.42 0.884 0.909 1

Step 4 (max ii = 0.225233):
1 1125 2659 3 2675

0.889 1 2225 [2.79| 2.378
M= 10376 0.449 1 1.254] 1.132
0.333 0.358 0.797 1 1.1
0.374 0.42  0.884  0.909 1

Step 5 (max i = 0.117406):
1 1.125 2.659 2.675

3
0.889 1 2225

M= 10376 0449 1 1254 1.132
0333 0.39 0.797 1 @
0.374 0.386 0.884  0.99 1

Limit matrix (max i = 0):

1 1.128 2.512 2.965 2.856
0.886 1 2.226 2.628 2.531
M = 10398 0.449 1 1.18 1.137
0.337 0.381 0.847 1 0.963
0.35 0.395 0.879 1.038 1

It is easy to notice that the level of inconsistency
(measured by 7) is reduced in each step and the vector
of geometric means of rows equal to

(1.888175,1.673477,0.751696, 0.636855, 0.661081)

is invariant during the whole procedure. Evidently, it
remains the same for the limit matrix. In general, the
sequence ii(A,,) does not have to be monotonic; however,
its convergence to zero is guaranteed by Theorem 3l The
right eigenvector of the given PC matrix is

0.677259
0.600216
vy = | 0.26958 | |
0.228426
0.237084

and it is not equal to (nor linearly dependent on) GM.
Both vectors are equal or linearly dependent only for a
consistent matrix for n > 3. For n = 3, eigenvector and
geometric means are linearly dependent vectors.

¢

aamcs
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6. Conclusions

This study provided a proof that the limit for the
inconsistency reduction process is the PC matrix induced
by the vector of geometric means of the initial matrix.
It also provided examples showing that the vector of
geometric means and the right principal eigenvector are
not linearly dependent for the size of a PC matrix n > 3
(they are for n = 3).

The sequence of matrices occurring during the
inconsistency reduction process converges to the matrix
induced by the vector of geometric means, but not by
the right principal eigenvector. This is of considerable
importance for practical applications. The inconsistency
reduction approach is well aligned with the “GIGO”
(garbage in, garbage out) computing principle, which
comes to the following: Improving the approximation
accuracy for the inconsistent data makes very little
sense. The inconsistency reduction process must take
place before such approximation is attempted. More
research (e.g., by Monte Carlo simulations) is needed
to investigate algorithms for inconsistency reduction for
various indicators.

The inconsistency reduction process is based on the
reduction of inconsistency in individual triads. It must
be stressed that replacing the initial PC matrix by the
consistent one generated by the geometric means of rows
sometimes may be worse than applying just a few steps
of the algorithm. Making a matrix perfectly consistent
usually requires changing all its elements, while the
reduction process allows detecting the worst assessments
and trying to reduce inconsistency in future comparisons.

Evidently, geometric means can be computed even
with a pocket calculator although Gnumerics and Excel
are better tools for it. Computing the principal eigenvector
is not as easy as computing geometric means. An
eigenvalue perturbation problem exists, and finding the
eigenvectors and eigenvalues of a system that is perturbed
from known eigenvectors and eigenvalues is not an
entirely trivial problem to solve. In addition, the
Bauer-Fike theorem stipulates that the sensitivity of the
eigenvalues is estimated by the condition number. In other
words, computing eigenvalues and eigenvectors with high
accuracy may be challenging, while computing geometric
means with high accuracy is, in practice, a trivial task.

It is worth pointing out that the simplified version
of pairwise comparisons, published by Koczkodaj and
Szybowski (2015), does not have inconsistencies. PC
matrix elements are generated from a set of principal
generators, preserving the consistency condition.
However, without inconsistency analysis, it is difficult to
correct the input if input data are inaccurate.

The pairwise comparisons method has been
implemented, as part of cloud computing support, for
a group decision making process used by the software

development team at Health Sciences North (a regional
hospital in Sudbury, Ontario, Canada, with a service area
comparable to Holland). The SourceForge.net repository
was used to make the software available for downloading
pro publico bono.
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