
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 4, 919–939
DOI: 10.1515/amcs-2016-0065

TILING ARBITRARILY NESTED LOOPS BY MEANS OF THE TRANSITIVE
CLOSURE OF DEPENDENCE GRAPHS

WŁODZIMIERZ BIELECKI a, MAREK PAŁKOWSKI a,*

aFaculty of Computer Science
West Pomeranian University of Technology, Żołnierska 49, 71-210 Szczecin, Poland

e-mail: {wbielecki,mpalkowski}@wi.zut.edu.pl

A novel approach to generation of tiled code for arbitrarily nested loops is presented. It is derived via a combination of
the polyhedral and iteration space slicing frameworks. Instead of program transformations represented by a set of affine
functions, one for each statement, it uses the transitive closure of a loop nest dependence graph to carry out corrections
of original rectangular tiles so that all dependences of the original loop nest are preserved under the lexicographic order
of target tiles. Parallel tiled code can be generated on the basis of valid serial tiled code by means of applying affine
transformations or transitive closure using on input an inter-tile dependence graph whose vertices are represented by target
tiles while edges connect dependent target tiles. We demonstrate how a relation describing such a graph can be formed. The
main merit of the presented approach in comparison with the well-known ones is that it does not require full permutability
of loops to generate both serial and parallel tiled codes; this increases the scope of loop nests to be tiled.

Keywords: tiling, transitive closure, source-to-source compiler, polyhedral model, iteration space slicing.

1. Introduction

In this paper, we consider loop nest tiling techniques
aimed at automatic generation of tiled code by means
of optimizing compilers. Tiling (Irigoin and Triolet,
1988; Wolf and Lam, 1991; Ramanujam and Sadayappan,
1992; Xue, 1996; Bondhugula et al., 2008a; Griebl,
2004; Lim et al., 1999) is a very important iteration
reordering transformation for both improving data locality
and coarsening the granularity of parallelism.

Tiling for improving locality groups loop statement
instances into smaller blocks (tiles) allowing reuse when
the block fits in local memory. It partitions a loop nest
iteration space into smaller blocks (tiles) so as to help
ensure the data used in a loop nest stays in the cache
until it is reused. In a parallel tiled code, tiles are
considered indivisible macro statements. This coarsens
the granularity of parallel applications, which often leads
to improving the performance of an application running in
parallel computers.

Loop tiling is beneficial for parallel computers with
hierarchical memory: computers with both shared and
distributed memory (Xue, 2012; Tang and Xue, 2000) as

*Corresponding author

well as accelerators, for example, graphic cards (Grosser
et al., 2013). In this paper, we demonstrate how
the introduced tiling approach enhances code locality
and allows parallelism extraction for multiprocessor
computers with shared memory.

Tiling can be used for the optimization of any
numerical application provided that its code includes loop
nests. This is particularly true for numerically intensive
codes (Kowarschik and Weiß, 2003). Such codes occur
in almost all science and engineering disciplines, e.g.,
computational fluid dynamics, computational physics,
mechanical engineering. Almost all numerical algorithms
can be tiled: linear algebra, image processing,
combinatorial optimization, computational geometry,
stencil algorithms, system identification, genetic and
combinatorial algorithms (Jeffers and Reinders, 2015;
Leader, 2004; Greenbaum and Chartier, 2012; Błaszczyk
et al., 2007; Campbell, 2001; Maciążek et al., 2015;
Zdunek, 2014).

To our best knowledge, well-known automatic tiling
techniques are based on linear or affine transformations of
program loops (Irigoin and Triolet, 1988; Wolf and Lam,
1991; Ramanujam and Sadayappan, 1992; Bondhugula et
al., 2008a; Griebl, 2004; Lim et al., 1999; Xue, 1997;

{{wbielecki,mpalkowski}}@wi.zut.edu.pl

920 W. Bielecki and M. Pałkowski

Andonov et al., 2001; Bastoul and Feautrier, 2003). To
generate tiled code, first affine transformations, allowing
for producing a band of fully permutable loops, are
automatically formed, and then this band is transformed
into tiled code.

Although state-of-the-art approaches are able to tile
a number of loop nests, there are cases where they fail
to generate any tiled code (Mullapudi and Bondhugula,
2014; Wonnacott et al., 2015). The reason is applying
conservative (sufficient but not necessary) conditions to
guarantee the validity of tiled code. Automatic approaches
for tiling have to guarantee that the tiling transformation
respects all dependences in the original program. For this
purpose, validity constraints are used.

The well-known validity constraint proposed by
Irigoin and Triolet (1988) only allows for tiling bands
of loops on which dependences have non-negative
components, i.e., tiling can be applied only for bands of
fully permutable loops. The validity condition presented
by Xue (2012) checks for the lexicographic non-negativity
of inter-tile dependences.

Applying these conservative conditions to guarantee
tiled code validity may miss valid tiling transformations,
which prevents tiling for some important loop nests
(Mullapudi and Bondhugula, 2014; Wonnacott et al.,
2015).

In this paper, we discuss a way to improve current
automatic tiling techniques. We demonstrate that applying
the transitive closure of dependence graphs for tiling
allows generating target tiles such that there is no cycle
in the corresponding inter-tile dependence graph. It is
well-known that, for such a case, a valid schedule of target
tiles exists, i.e., a valid serial or parallel tiled code can
be generated (Mullapudi and Bondhugula, 2014). Thus,
we suggest a more general scheme of automatic tiling,
allowing increasing the scope of loop nests to be tiled.
Such tiling can be applied to bands of original loops not
being fully permutable.

In our previous paper (Bielecki and Palkowski,
2015), we presented a novel approach to automatic
generation of tiled code for perfectly nested loops
in which all assignment statements are contained in
the innermost loop. It is based on the transitive
closure of a loop nest dependence graph and produces
tiled code even when there does not exist any affine
transformation allowing producing a band of fully
permutable loops. According to that approach, we first
form fixed rectangular original tiles and next examine
whether all loop nest dependences are respected under the
lexicographic order of tile enumeration. If so, this means
that all original tiles are valid, and hence code generation
is straightforward. Otherwise, we correct the original tiles
so that all target tiles are valid, i.e., the lexicographic
enumeration order of target tiles respects all dependences
available in the original loop nest. The final step is code

generation representing target (corrected) tiles.
In real programs, many important loops are

imperfectly nested (that is, one or more assignment
statements are contained in some but not all of the loops
of the loop nest) (Ahmed et al., 2000). According to a
study by Sass and Mutka (1994), a majority of loops in
scientific code are imperfectly nested.

In this paper, we present an extended approach which
can be applied to tile both perfectly and arbitrarily nested
loops. This allows us to considerably increase the scope of
the approach applicability, because in practice, most loop
nests are arbitrarily nested.

The contributions of this paper over previous work
are as follows:

• an algorithm demonstrating how the iteration space
slicing framework can be combined with the
polyhedral model to improve the effectiveness (the
scope of applicability) of tiling transformations for
arbitrarily nested loops;

• clarification that this improvement is due to the fact
that the presented algorithm can be directly applied
to bands of original loops not being fully permutable,
i.e., it does not require finding affine transformations
to transform the original loop nest to a loop nest with
a band(s) of fully permutable loops;

• demonstration of how the generated tiled code can be
parallelized;

• development and presentation of the publicly
available source-to-source TRACO compiler
implementing the introduced algorithm;

• evaluation of the effectiveness of the introduced
algorithm and the speed-up of tiled codes produced
by means of the presented algorithm.

The rest of the paper is organized as follows.
Section 2 contains background. Section 3 describes the
concept of loop nest tiling and presents a formal algorithm
to produce tiled code based on the transitive closure of a
loop nest dependence graph. Section 4 clarifies how the
generated tiled code can be parallelized. Section 5 shows
how the introduced approach can be applied to a real-life
code. Section 6 discusses the results of experiments.
Section 7 presents related work. Section 8 concludes and
introduces future work.

2. Background

In this paper, we deal with affine loop nests where,
for given loop indices, lower and upper bounds as well
as array subscripts and conditionals are affine functions
of surrounding loop indices and possibly of structure
parameters (defining loop index bounds), and the loop
steps are known constants.

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 921

A dependence analysis is required to carry out a valid
loop transformation. Two statement instances I and J are
dependent if both access the same memory location and if
at least one access is a write. I and J are called the source
and target of a dependence, respectively, provided that I
is lexicographically less than J (I ≺ J , i.e., I is executed
before J).

The algorithm presented in this paper requires an
exact representation of dependences and consequently an
exact dependence analysis which detects a dependence
if and only if it actually exists. To describe and
implement the algorithm, we have chosen the dependence
analysis proposed by Pugh and Wonnacott (1993), where
dependences are represented by dependence relations.

A dependence relation is a tuple relation of the form
[input list]→[output list]: formula, where input list and
output list are the lists of variables and/or expressions used
to describe input and output tuples, and formula describes
the constraints imposed upon input and output lists and
is a Presburger formula built of constraints represented
by algebraic expressions, using logical and existential
operators (Pugh and Wonnacott, 1993).

A dependence relation is a mathematical
representation of a data dependence graph whose
vertices correspond to loop statement instances while
edges connect dependent instances. The input and output
tuples of a relation represent dependence sources and
destinations, respectively; the relation constraints point
out instances which are dependent.

In the presented algorithm, standard operations on
relations and sets are used, such as intersection (∩), union
(∪), difference (−), domain (dom R), range (ran R),
relation application (S′ = R(S) : e′ ∈ S′ iff exists e
s.t. e → e′ ∈ R, e ∈ S). In detail, the description of these
operations is presented by Kelly et al. (1995) as well as
Pugh and Wonnacott (1993).

The positive transitive closure of a given relation R,
R+, is defined as follows (Kelly et al., 1995):

R+ = {e → e′ : e → e′ ∈ R

∨ ∃e′′ s.t. e → e′′ ∈ R ∧ e′′ → e′ ∈ R+}. (1)

It describes which vertices e′ in a dependence graph
(represented by relation R) are connected directly or
transitively with vertex e.

The transitive closure, R∗, is defined as

R∗ = R+ ∪ I, (2)

where I is the identity relation. It describes the same
connections in a dependence graph (represented by R)
that R+ does plus connections of each vertex with itself.

Techniques aimed at calculating the transitive closure
of a dependence graph, which in general is parametric,
are presented by Kelly et al. (1996), Bielecki et al.

(2010) and Verdoolaege et al. (2011), and they are
beyond the scope of this paper. We would like to note
that the existing algorithms return either exact transitive
closure or its over-approximation. The former means that
transitive closure represents only existing dependences
in the original loop nest, while the latter implies that
the representation of transitive closure includes both all
existing and false (non-existing) dependences. Both
representations can be used in the presented algorithm but,
if we use an over-approximation of transitive closure, tiled
code will be less optimal: it will allow less code locality
and/or parallelization.

The paper by Bielecki et al. (2014) presents the
time of transitive closure calculation for NPBs (NAS,
2015). It depends on the number of dependence relations
extracted for a loop nest and can vary from milliseconds
to several minutes (in very rare cases when the number of
dependence relations is equal to hundreds or thousands).

The algorithm presented in this paper requires
applying the union, composition, and application
operations on dependence relations and the difference
operation on sets. Applying these operations is possible
when the size of tuples (the number of elements
representing a tuple) of different relations (sets) is the
same. This condition is always true for relations
describing dependences in perfectly nested loops, but for
imperfectly nested loops it can be violated. To allow
applying the operations mentioned above on relations and
sets, we have to preprocess them. Preprocessing makes
the sizes of input and output tuples of each dependence
relation the same by inserting the value −1 into the
rightmost positions of the corresponding tuples as well
as inserts identifiers of loop nest statements into the
last positions of input and output tuples. Loop nest
statement identifiers are necessary for code generation.
The preprocessing procedure for relations is presented
below. The preprocessing of a set differs from that of a
relation by preprocessing only one

Procedure 1. Dependence relation preprocessing.

Input: Set S of dependence relations Ri,j , where values
of i, j ∈ [1, q], represent the statement identifiers
numbered in textual order (the order in which
statements appear in the source text), q is the number
of statements in a loop nest of depth d. Each
Ri,j denotes the union of all the relations describing
dependences between instances of statements i and j.

Output: Set S of preprocessed dependence relations.

Method:

foreach relation Ri,j ∈ S do

922 W. Bielecki and M. Pałkowski

1. Transform relation Ri,j so that its input and output
tuple has exactly d elements by inserting the value
‘−1’ into the rightmost positions of that tuple whose
number of elements is less than d, e.g., replace the
tuple [e1 e2 . . . ed−k], where k is some integer, for
the tuple [e1 e2 . . . ed−k −1 · · · − 1

︸ ︷︷ ︸

k times

].

2. Extend the input and output tuples of Ri,j with
identifiers of statements i and j, respectively, that
is to say, transform Ri,j :={[e] → [e′]} into
Ri,j := {[e, i] → [e′, j]}.

Tiled code can be generated manually or
automatically. The approach introduced in this paper is to
generate tiled code automatically via its implementation
in optimizing compilers. Below, we recall how tiled
code can be generated automatically by means of affine
transformations. For this purpose, let us consider the
following example.

Example 1. Consider the code

for(i=0; i<=3; i++)
for(j=0; j<=3; j++)
a[i][j]=a[i][j+1]+a[i+1][j]
+a[i+1][j-1];

In this paper, we use the syntax of the Barvinok tool
(Verdoolaege, 2012) to present results of calculations on
relations and sets.

The following three relations describe all the
dependences in the working loop nest:

R1:={[i,j]->[i,j+1]:0<=i<=3 and
0<=j<=2};

R2:={[i,j]->[i+1,j]:0<=i<=2 and
0<=j<=3};

R3:={[i,j]->[i+1,j-1]: 0<=i<=2 and
1<=j<=3}.

This loop nest can be tiled by means of affine
transformations. The classical way is to skew the loop nest
iteration space and then generate tiled code. Applying the
affine transformation presented with the matrix

[

1 0
1 1

]

to Example 1, we get a fully permutable loop nest, which
next can be tiled to get the loop nest below, where the tiles
are of size 2×2 (the code is produced by means of the
optimizing compiler PLUTO (Bondhugula et al., 2008a)):

for(t1=0;t1<=1;t1++)
for(t2=t1;t2<=t1+2;t2++)
for(t3=max(2*t1,2*t2-3);

��

��

Fig. 1. Tiles generated by means of the affine transformation.

t3<=2*t1+1;t3++)
for(t4=max(2*t2,t3);

t4<=min(2*t2+1,t3+3); t4++)
a[t3][-t3+t4]= a[t3][-t3+t4+1]

+a[t3+1][-t3+t4]
+a[t3+1][-t3+t4-1];

Figure 1 illustrates tiles represented with the code
above in a graphical way. �

3. Tiling algorithm

In this section, we first present the section objective
and basic concepts, then we discuss a tiling idea based
on transitive closure, illustrate this idea by means of a
working example, and finally introduce a formal tiling
algorithm.

3.1. Section objective and basic concepts. The goal
of this section is to demonstrate how the loop nest of depth
d below:

for(i1=lb1; i1<=ub1; i1++){
S1a(i1);
for(i2=lb2; i2<=ub2; i2++){

S2a(i1,i2);
.........................
for(id=lbd; id<=ubd; id++){

Sda(i1,i2, ..., id);
}

........................
S2b(i1,i2);

}
S1b(i1);

}

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 923

where each statement S can be compound, i.e., it may
consist of two or more loops, can be transformed to a
valid tiled loop nest applying the transitive closure of a
dependence graph. For the arbitrarily nested loop nest,
a statement can be of type a or type b. Statement Sia,
which is surrounded by i loops and located before loops
i + 1, i + 2, . . . , q is of type a, while statement Sib,
which is surrounded by i loops and located after loops
i+ 1, i+ 2, . . . , q is of type b.

A tiled loop nest is valid if all original loop
nest dependences are preserved under the lexicographic
execution order of both tiles and statement instances
within each tile, i.e., for any two dependent statement
instances in the original loop nest, in the tiled loop nest,
these statement instances are also dependent in the same
order.

Let, for loop nest statement i, set TILEi(IIi) include
loop nest statement instances belonging to the original
rectangular tile whose identifier is represented with
parametric vector IIi. The mathematical representation of
this set is the following: TILEi(IIi) = {[Ii] | Bi*IIi +LBi

≤ Ii ≤ min(Bi*(IIi +1i) + LBi -1i, UBi) AND IIi ≥ 0},
where Bi is the diagonal matrix whose diagonal elements
are constants b1, b2, . . . , bdi defining the rectangular tile
size in the iteration space of statement Si surrounded by
di loops; LBi and UBi are the vectors whose elements
are lower lb1, . . . , lbdi and upper ub1, . . . , ubdi bounds of
indices i1, i2, . . . , idi of the original loops, respectively.

We introduce the following definition.

Definition 1. If there exists a direct or transitive
dependence whose target belongs to set TILEi(IIi) and its
source belongs to a tile with an identifier lexicographically
greater than IIi, then the target of this dependence is
invalid within set TILEi(IIi).

Further on, for brevity we will refer to an invalid
dependence target as an invalid target.

Definition 2. A tile including one or more invalid targets
is invalid.

To identify invalid original tiles, we suggest to
form, for each loop nest statement Si, i = 1, 2, . . . , q,
where q is the number of loop statements, set
TILE_GTi(IIi), including all the statement instances
that are contained in the tiles whose identifiers are
lexicographically greater than that of set TILEi(IIi), i.e.,
IIi. Given set TILE_GTi(IIi), we can calculate the
set R+(TILE_GTi(IIi)) which includes all dependence
targets whose sources belong to set TILE_GTi(IIi). The
intersection of the sets TILEi(IIi) andR+(TILE_GTi(IIi))
defines the set including all invalid targets within set
TILEi(IIi). If this set is empty for each i = 1, 2, . . . , q,
then all original tiles are valid.

To transform invalid tiles into valid ones, we
will use set TILE_LTi(IIi), including all the statement

instances that are within the tiles whose identifiers are
lexicographically less than that of set TILEi(IIi). To
calculate sets TILE_GTi(IIi) and TILE_LTi(IIi), we
need to determine all the tile identifiers which are
lexicographically greater and less, respectively, than
identifier IIi. For this purpose, we take into account that
for the original loop nest, a statement can be of type a
or type b (see the loop nest above). A statement of type a,
Sia, textually precedes statements: (i) Sjb, 1 ≤ j ≤ q; (ii)
Sja, j > i. A statement of type b, Sib, textually precedes
statements Sjb, j > i.

To allow lexicographic comparison of identifiers of
tiles associated with different statements, we need to
preprocess vector IIi, including indices ii1, ii2, . . . , iidi
of the loops surrounding statementSi, to get vector IIiprep
according to the procedure below. Let us note that the
value floor ((ubi− lbi−1)/bi) represents the upper bound
for index iii.

Procedure 2. Preprocessing procedure of tile identifier
vectors.

Input: A loop nest; vectors IIi, i = 1, 2, . . . , q,
where q is the number of loop nest statements,
representing identifiers of tiles formed for each loop
nest statement instance Si, i = 1, 2, . . . , q; loop nest
depth, d; the number of loops surrounding statement
Si, di, i = 1, 2, . . . , q.

Output: Preprocessed vectors IIiprep, i = 1, 2, . . . , q.

Method:

foreach vector IIi, i = 1, 2, . . . , q do

1. Insert ‘0’ into the last d − di positions of IIi if a
corresponding statement Si is of type a, Sia, and the
value equal to the value floor((ubi − lbi − 1)/bi) if
a corresponding statement Si is of type b, Sib, where
floor(x) is the function returning the largest integer
no greater than x.

2. Before each element iij , j = 1, 2, . . . , d, of the
vector, obtained in Step 1, insert an additional
element with the value equal to nj − 1, where nj

is the number of loops, defined by index ij and
appearing before statement Si.

3. Insert into the position 2d+ 1 of the vector, received
in Step 2, the value equal to the loop nest statement
number according to the textual order of statements
in the loop nest.

It is worth noting that each vector IIiprep, i =
1, 2, . . . , q, is of length 2d + 1. The application of
the procedure above to the loop nest of the following
structure:

924 W. Bielecki and M. Pałkowski

for(i1=0; i1<4; ++i1) {
S11a(i1);
for(i2=0; i2<4; ++i2) {

S21a(i1, i2);
}
S11b(i1);
for(i2=0; i2<4; ++i2) {

S22a(i1, i2);
}
S12b(i1);

}

provided that original tiles are of size 2× 2, results in the
following preprocessed vectors:

II11aprep = (0, ii1, 0, 0, 1)T ,
II21aprep = (0, ii1, 0, ii2, 2)T ,
II11bprep = (0, ii1, 0, 1, 3)T ,
II22aprep = (0, ii1, 1, ii2, 4)T ,
II12bprep = (0, ii1, 1, 1, 5)T ,

where “1” as the third elements of vectors II22aprep
and II12bprep denotes the second appearance of the loop
defined with index i2; “1” as the fourth elements of
vectors II11bprep and II12bprep is equal to the value
floor((4 − 0− 1)/2).

In general, we form sets TILE_LTi(IIi) and
TILE_GTi(IIi) as the union of all the tiles whose
identifiers are lexicographically less and greater than IIi,
respectively, as follows:

TILE_LTi(IIi) = {[Ij] | exists IIj ′ s.t. Ij in
TILEi(IIj ′, Bj) AND IIjprep ′≺ IIiprep},

TILE_GTi(IIi) = {[Ij] | exists IIj ′ s.t. Ij in
TILEi(IIj ′, Bj) AND IIjprep ′� IIiprep},

where Ii in TILEi (IIi′, Bi) means that vector Ii belongs
to set TILEi (IIi′, Bi) whose identifier is IIi′ and the
corresponding tile is of the size defined by the diagonal
matrix Bi.

3.2. Tiling idea. The concept of the introduced
approach is as follows. First, the loop nest iteration space
is partitioned into smaller rectangular subspaces, i.e., tiles.
If there are no dependences for this loop nest or all
elements of dependence distance vectors are non-negative,
we may immediately generate code scanning tiles in
lexicographic order, and this code will be valid because
all dependences of the original loop nest will be respected,
i.e., each statement instance associated with a dependence
source will be executed before the statement instance
associated with the destination of this dependence.

However, when there exist dependence distance
vectors whose elements are negative, scanning introduced
rectangular tiles in the lexicographic order is invalid
because dependences available in the original loop nest
will not be respected.

Techniques based on affine transformations attempt
to change the original loop nest iteration space so that
the enumeration of rectangular tiles in the new iteration
space is valid. But it is well known that this is not always
possible.

Our idea to form valid target tiles is different from
that based on affine transformations. We suggest to
apply the transitive closure of the dependence graph,
representing all the dependences available in the loop nest,
first to check whether the original tiles are valid. Such a
case is true when each original tile does not include any
dependence destination whose corresponding dependence
source belongs to a tile(s) whose identifier(s) is (are)
greater than that of the tile including the dependence
destination. This guarantees that a dependence destination
will never be executed before the execution of the
corresponding dependence destination. For such a case,
tiled code can be generated directly without any changes
of original rectangular tiles.

To verify whether this case is true, we apply
the transitive closure of the dependence graph to the
iteration sub-space including the tiles whose identifiers
are greater than that representing a given tile. This
will result in producing the sub-space of dependence
destinations whose sources belong to the sub-space
including the original tiles with the identifiers greater than
that representing the given tile.

Next we calculate the intersection of that subspace
with the subspace including the statement instances of
the given tile. If the result is an empty set, this means
that all original tiles are valid. Otherwise, we have to
correct original tiles so that they do not include any invalid
dependence destinations, i.e., remove those destinations
whose sources belong to the tiles whose sources belong
to the sub-space including tiles with the identifiers greater
than that representing the given tile.

For this purpose, we remove from the set
representing statement instances of the given tile all the
destinations being comprised in the set calculated by
applying the transitive closure of the dependence graph
to the iteration sub-space, including the tiles whose
identifiers are greater than that representing the given tile.

Finally, each invalid dependence target, which has
been removed from some tile, say T , is added to exactly
one tile whose identifier is lexicographically greater than
that of T .

In this paper, we prove that all tiles produced in the
way described above are valid and can be enumerated in
lexicographic order.

To implement the presented concept and generate
valid tiled code, we can apply the following four steps:

(i) form original fixed rectangular tiles for each loop
nest statement;

(ii) check whether all dependences available in

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 925

the original loop nest are respected under
the lexicographical order of the original tile
enumeration, if so, the original tiles are valid,
generate code representing original tiles, the end;

(iii) transform the invalid original tiles into valid target
ones (tile correction);

(iv) generate tiled code enumerating valid target targets
and iterations within each tile in lexicographical
order.

Below, we explain how the concept above can be
implemented mathematically to correct original invalid
tiles in order to obtain valid target tiles represented with
sets TILE_VLDi, i = 1, 2, . . . , q, where q is the number of
loop nest statements. Further on, for brevity, we will skip
vector IIi, defining the tile identifier, in the set name.

For each i = 1, 2, . . . , q, we will form set
TILE_VLDi as the union of two sets, TILE_ITRi and
TVLD_LTi. Set TILE_ITRi includes only those iterations
of set TILEi that are not invalid targets within TILEi (set
TILEi from which all invalid targets are removed).

Set TVLD_LTi (targets valid to be put into set
TILE_ITRi and contained within set TILE_LTi) contains
all the dependence targets such that each of them (i) has
the corresponding source within set TILE_ITRi, (ii) is
valid to be put into set TILE_ITRi, and (iii) is invalid for
some tile with an identifier less than that of TILEi.

To explain how set TILE_ITRi can be calculated, we
first recall that the application of relation R to set S is
defined as follows:

R(S) = {[e′] : there exists e s.t. e → e′ ∈ R, e ∈ S},
i.e., R(S) results in the range of relation R with domain S.

Now, we take into consideration that the application
of relation R+, representing the positive transitive closure
of a loop dependence graph, to set TILE_GTi, introduced
in the previous subsection (R+(TILE_GTi)), results in
a set comprising all the targets of dependences whose
sources are within the tiles with the identifiers greater than
that of TILEi; i.e., this set includes all invalid targets for
set TILEi and they have to be excluded from it, i.e., set
TILE_ITRi is formed as follows:

TILE_ITRi= TILEi − R+(TILE_GTi).

To form set TVLD_LTi, we note that the application
of relation R+ to set TILE_ITRi (R+(TILE_ITRi)) results
in a set including all the targets of the dependences whose
sources belong to set TILE_ITRi.

The intersection of the sets R+(TILE_ITRi) and
TILE_LTi (R+(TILE_ITRi) ∩ TILE_LTi) yields a set, say
TILE_ITR_LTi, including the elements that (i) are the
targets of the dependences whose sources are contained in
set TILE_ITRi and (ii) belong to the tiles whose identifiers
are lexicographically less than that of set TILEi.

Set TILE_ITR_LTi comprises invalid targets to be
put into set TILE_ITRi if their corresponding dependence
sources belong not only to set TILE_ITRi but also to the
tiles whose identifiers are greater than that of TILEi, i.e.,
these sources are within set TILE_GTi.

To form set TVLD_LTi comprising only valid targets
to be put into set TILE_ITRi, i.e., not including the
targets of the dependences whose sources belong to
set TILE_GTi, we take into consideration that the set
R+(TILE_GTi) comprises all such invalid targets; hence
set TVLD_LTi is calculated as follows:

TVLD_LTi = TILE_ITR_LTi − R+(TILE_GTi).

We form set TILE_VLD_EXTi to be used for
producing tiled code by means of inserting (i) into the
first positions of the tuple of set TILE_VLDi indices ii1,
ii2, . . . , iiq, (ii) into the constraints of set TILE_VLDi

the constraints of set, II_SETi, defining tile identifiers:
II_SETi = {[IIi]| IIi≥ 0 AND Bi∗IIi+LBi≤ UBi}.

Any code generator allowing scanning elements of
the union of sets TILE_VLD_EXTi, i = 1, 2, . . . , q,
in lexicographic order can be applied to generate tiled
code, for example, CLooG (Bastoul, 2004) or the codegen
function of the Omega project (Kelly et al., 1995).

3.3. Illustrating the tiling idea by means of a work-
ing example. To illustrate how the transitive closure of
a dependence graph can be applied to produce valid tiled
loop nests, let us consider the following working example.

Example 2.

for(i=0; i<=3; i++){
b[i][0] = c[i][0]; //S1
for(j=0; j<=3; j++)
a[i][j] = a[i+1][j-1]+b[i+1][j]

+b[i][0]+a[i][j+1]; //S2
d[i][3] = a[i+1][3]+a[i][3]; //S3

}

�
We used the ISL library (Verdoolaege, 2011) to carry

out all calculations necessary to generate tiled code. In
this paper, we use the Barvinok tool syntax (Verdoolaege,
2012) to present results of calculations on relations and
sets. The following preprocessed relations describe all
the dependences in the working loop nest (extracted by
means of Petit (Kelly et al., 1995), the Omega project
dependence analyzer):

R1:={[i,-1,1] -> [i,j,2] : 0 <= i <= 3
&& 0 <= j <= 3},

R2:={[i,j,2] -> [i+1,j-1,2] :
0 <= i <= 2 && 1 <= j <= 3},

R3:={[i,0,2] -> [i+1,1] : 0 <= i <= 2},

926 W. Bielecki and M. Pałkowski

R4:={[i,j,2] -> [i,j+1,2] : 0 <= i <= 3
&& 0 <= j <= 2},

R5:={[i,3,2] -> [i,-1,3] :
0 <= i <= 3},

R6:={[i,-1,3] -> [i+1,3,2] :
0 <= i <= 2}.

Let us recall that the last element of each tuple
of a preprocessed dependence relation states for the
identifier of a loop nest statement. Figure 2(a) shows
the dependence graph for the working loop nest, where
vertices represent loop statement instances; there exists
an edge between two vertices if one defines the source
of a dependence and the other defines the target of this
dependence.

Figure 2(b) presents the original rectangular tiles.
The numbers in the squared boxes show the order
of tile execution. For statements S1 and S3, tiles
are one-dimensional, while for statement S2 they are
two-dimensional. Scanning those tiles and loop statement
instances within each tile in lexicographic order is
invalid because of the violation of the valid execution of
dependent statement instances (to preserve a dependence,
we should first execute the source of this dependence, then
its destination). For example, the instance of statement
S1 on iteration 1 (the destination of the dependence
S2(0, 0) → S1(1)) will be executed before the execution
of the instance of statement S2 on iteration (0, 0)
(the source of this dependence). To cope with such a
problem, we correct the content of the original tiles in the
manner demonstrated in Fig. 2(e). Now scanning tiles
TILE_VLDi and loop statement instances within each tile
in lexicographic order is valid because all original loop
nest dependences are preserved.

In order to carry out tile corrections in a formal
way, we can proceed as follows. Let indices ii and jj
define the identifier of an original preprocessed parametric
rectangular tile, TILEi, i = 1, 2, 3 (which is parametric
with respect to indices ii, jj) represented below:

TILE1

= [ii] → {[i,−1, 1] : i ≥ 2ii and i ≥ 0 and i ≤ 3

and i ≤ 1 + 2ii and ii ≥ 0},

TILE2

= [ii, jj] → {[i, j, 2] : i ≥ 2ii and i ≥ 0 and i ≤ 3 and

i ≤ 1 + 2ii and j ≥ 2jj

and j ≥ 0 and j ≤ 3 and

j ≤ 1 + 2jj and ii ≥ 0 and jj ≥ 0},

TILE3

= [ii] → {[i,−1, 3] : i ≥ 2ii and i ≥ 0 and

i ≤ 3 and i ≤ 1 + 2ii and ii ≥ 0},

where the notation [x, y, z, . . .] → {[. . .] : constraints}
means that [x, y, z, . . .] are parametric variables in the
constraints of a set.

For each statement Si, i = 1, 2, 3, we form two
additional parametric sets, TILE_LTi and TILE_GTi.

Figure 2(c) illustrates sets TILE_LT2 and TILE_GT2

for TILE2(ii = 0, jj = 0). To calculate these sets, we
first preprocess tile identifiers according to the procedure
presented in Section 3.1. For the working example,
the preprocessed vectors, defining tile identifiers, are as
follows:

II1prep = (0, ii, 0, 0, 1)T ,

II2prep = (0, ii, 0, jj, 2)T ,

II3prep = (0, ii, 0, 1, 3)T .

Sets TILE_LT2 and TILE_GT2 calculated according
to the formulas presented in Section 3.1 are of the
following forms:

TILE_LT2

= [ii, jj] → {{[i, j, 2] : jj = 1 and ii ≤ 1 and i ≥
2ii and i ≥ and i ≤ 1 + 2ii and j ≤ 1 and j ≥
0; [i,−1, 3] : ii = 1 and i ≤ 1 and i ≥ 0; [i,−1, 7] :
ii ≤ 1 and i ≥ 0 and i ≤ 1 + 2ii},

TILE_GT2

= [ii, jj] → {[i, j, 2] : jj = 0 and ii ≤ 1 and ii ≥
0 and i ≥ 2ii and i ≤ 1 + 2ii and j ≤ 3 and j ≥
2; [i,−1, 3] : (ii ≤ 1 and i ≥ 2ii and i ≥ 0 and i ≤
1+2ii) or (ii = 0 and i ≤ 3 and i ≥ 2); [i,−1, 1] : ii =
0 and i ≤ 3 and i ≥ 2}.

Figure 2(d) illustrates sets TILE_ITRi and TVLD_LTi

for various values of indices ii and jj calculated
according to the formulas presented in Section 3.2.

Figure 2(e) illustrates sets TILE_VLDi for different
values of indices ii and jj representing valid target tiles.

Figure 1 of Appendix presents tiled code for
Example 2 when the upper bounds of i and j equal n
and tiles are of size 32×32. The speed-up of this code
is discussed in Section 6. Let us note that the optimizing
compiler PLUTO, implementing affine transformations,
cannot tile Example 2.

Applying the way discussed above to Example 1, we
get target tiles presented in Fig. 3. It is worth noting
that for Example 1, the tiled codes produced by means of
the affine transformation and the way based on transitive
closure are different. Comparing the tiles presented in
Figs. 1 and 3, we may conclude that (i) applying the affine
transformation results in 6 tiles while applying transitive

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 927

i(s3)

i(s2)

i(s1)
0 1 2 3

0 1 2 3

3

2

1

a)

i(s3)

i(s2)

i(s1)0 1 2 3

0 1 2 3

0 1 2 3

TILE1(ii=0) TILE1(ii=1)

TILE3(ii=0) TILE3(ii=1)

TILE2(ii=0,jj=0)

TILE2(ii=0,jj=1)

TILE2(ii=1,jj=0)

TILE2(ii=1,jj=1)

b)

i(s3)

i(s2)

i(s1)

0 1 2 3

0 1 2 3

0 1 2 3

c)

TILE_LT2(ii=0,jj=0)

TILE2(ii=0,jj=0)

TILE_GT2(ii=0,jj=0)

i(s2)

i(s1)

0 1 2 3

0 1 2 3

0 1 2 3

3

2

1

TILE_ITR1(ii=0) TVLD_LT2

(ii=0,jj=0)
TILE_ITR1(ii=1)

TVLD_LT2(ii=1,jj=0)

TILE_ITR2(ii=0,jj=0)
TILE_ITR2(ii=1,jj=0)

TVLD_LT2(ii=0,jj=1)

TILE_ITR2(ii=0,jj=1)

TVLD_LT2(ii=1,jj=1)

TILE_ITR2(ii=1,jj=1)

TVLD_LT3(ii=0) TVLD_LT3(ii=1)

TILE_ITR3(ii=0) TILE_ITR3(ii=1)

d)

i(s3)

i(s2)

i(s1)0 1 2 3

0 1 2 3

0 1 2 3

3

2

1

e)

TILE_VLD1(ii=0) TILE_VLD1(ii=1)

TILE_VLD2(ii=0,jj=0)

TILE_VLD2(ii=0,jj=1)

TILE_VLD2(ii=1,jj=0)

TILE_VLD2(ii=1,jj=1)

TILE_VLD3(ii=0) TILE_VLD3(ii=1)

1

2

3

4

5

6

7

8

3

2

1

3

2

1

0 1 2 3

i(s3)

j

j

j

j

j

Fig. 2. Illustrations for the working loop nest: dependences (a), original tiles (b), sets TILE_LT2 and TILE_GT2 (c), sets TILE_ITRi

and TVLD_LTi (d), target tiles (e).

928 W. Bielecki and M. Pałkowski

0 1 2 3

1

2

3

i

j

TILE_ITR
for ii=0, jj=0

TILE_VLD
for ii=0, jj=0

TILE_ITR
for ii=1, jj=0

TILE_VLD
for ii=1, jj=0

TVLD_LT
for ii=1, jj=1

TVLD_LT
for ii=0, jj=1

TILE_VLD
for ii=1, jj=1

TILE_ITR
for ii=1, jj=1

TILE_VLD
for ii=0, jj=1

TILE_ITR
for ii=0, jj=1

Fig. 3. Illustration of sets TILE_ITR, TVLD_LT, and TILE_VLD
for Example 1.

closure generates 4 tiles, (ii) the structure and content of
tiles are different, in Fig. 1 tiles include 1, 3, or 4 iterations
while in Fig. 3 tiles comprise 3 or 5 iterations.

3.4. Formal algorithm and its correctness. Below,
we present the formal algorithm, implementing the idea
presented above and allowing the tiling transformation of
arbitrarily nested loops of depth d. It includes four steps.
The first one is preprocessing; it prepares input data and
forms sets introduced in Section 3.1. The second step
checks whether the original tiles are valid, if so, then the
fourth step (code generation) is carried out. Otherwise,
Step 3 transforms invalid original tiles into valid target
ones.

To show the correctness of Algorithm 1, we have to
prove that for each i = 1, 2, . . . , q, (i) set TILE_VLDi

does not include any invalid dependence target, (ii)
each invalid dependence target, removed from TILEi, is
added to exactly one set TILE_VLDi whose identifier is
lexicographically greater than that of TILEi.

Proof. For each i = 1, 2, . . . , q, set TILE_VLDi is the
union of the two sets: TILE_ITRi and TVLD_LTi. Set
TILE_ITRi does not include any invalid dependence target
because all invalid dependence targets are contained in
the set R+(TILE_GTi) and they are removed from set
TILEi by applying the set difference operator: TILE_ITRi

= TILEi − R+(TILE_GTi).
Set TVLD_LTi also does not include any invalid

dependence target because all invalid dependence targets
are contained in the set R+(TILE_GTi) and they are
removed from the set TILE_ITR_LTi = R+(TILE_ITRi)

∩ TILE_LTi including the elements that i) are the targets
of the dependences whose sources are contained in set
TILE_ITRi and ii) belong to the tiles whose identifiers are
lexicographically less than that of set TILEi.

Because both sets TILE_ITRi and TVLD_LTi do not
contain any invalid dependence target, set TILE_VLDi

also does not include any invalid dependence target.
Each invalid dependence target, say t, belonging

to the set TILEi with identifier ID, and having two or
more associated dependence sources contained in the sets
TILEj , j �= i with identifiers ID1, ID2, . . . ,IDn, ID ≺ ID1

≺ ID2 ≺ . . .≺ IDn, will be included into only one set,
TILE_VLDn, with identifier IDn.

Indeed, the set TILEi with identifier IDn is contained
in the set TILE_GTi corresponding to the sets TILEi with
identifiers ID1, ID2, . . . , ID(n−1), hence target t is within
the set R+(TILE_GTi) for all those sets TILEi and it will
be removed from all the sets TVLD_LTi with identifiers
ID1, ID2, . . . , ID(n−1). For the set TILEi with identifier
IDn, in the set R+(TILE_GTi) there does not exist any
source of the dependence whose target is t, hence target t
will be added to exactly one set TILE_VLDi with identifier
IDn. �

It is worth noting that Algorithm 1 produces target
tiles (represented by set TILE_VLDi) whose shapes in
general are different from the rectangular shapes of the
original tiles (represented by set TILEi).

4. Tiled code parallelization

The goal of parallelization is to automatically generate
code that executes tiles in parallel while loop nest
statement instances within each tile serially. To
automatically parallelize tiled code generated according
to Algorithm 1, we have to realize the following steps.

First, we should form a relation that represents
all dependences among tiles but ignores dependences
available within each tile. Having such a relation, we
can apply any known automatic parallelization technique
to produce first parallel pseudo-code and next, by means
of a postprocessor, convert such a code into parallel
compilable code.

Automatic parallelization techniques are out of the
scope of this paper. We only refer to techniques that
were implemented in the optimizing compiler TRACO to
generate parallel tiled code. The design of a postprocessor
depends on the parallel computer architecture and a
language, API, or a library to write parallel programs
for the computer. TRACO, implementing Algorithm 1
and parallelization techniques, converts pseudo-code to
OpenMP code (OpenMP Architecture Review Board,
2012), which next can be compiled by any appropriate
compiler to generate parallel executable code. In
this section, we show how a relation describing all
dependences among tiles can be constructed.

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 929

Algorithm 1. Tiling transformation for arbitrarily nested loops.
Input: Arbitrarily nested d loops; constants b1, b2, . . . , bd defining the size of a rectangular input tile.
Output: Tiled code.
Method:

1. Data preparation. For each i, i = 1, 2, . . . , q and di where q is the number of loop statements and di is the number of loops
surrounding statements Si, form the following data:

• vector Ii whose elements are original loop indices i1, i2, . . . , idi;
• vector IIi whose elements ii1, ii2, . . . , iidi define the identifier of a tile for the iteration space of statement Si;
• vectors LBi and UBi whose elements are lower (lb1, . . . , lbdi) and upper (ub1, . . . , ubdi) bounds of indices i1, i2, . . . , idi

of the original loops, respectively;
• vector 1i and 0i whose all di elements are equal to 1 and 0, respectively;
• diagonal matrix Bi whose diagonal elements are constants b1, b2, . . . , bdi defining the rectangular tile size in the iteration

space of statement Si;
• set TILEi(IIi, Bi) = {[Ii] | Bi*IIi +LBi ≤ Ii ≤ min(Bi*(IIi +1i) + LBi -1i, UBi) AND IIi ≥ 0} defining the original

rectangular tiles;
• preprocessed vector IIiprep of vector IIi according to the procedure presented in Section 3.1;
• set TILE_GTi as the union of all the tiles whose identifiers are lexicographically greater than IIiprep as follows

TILE_GTi ={[Ij] | exists IIj ′ s. t. Ij in TILEi(IIj ′, Bj) AND IIjprep′� IIiprep}, where Ij in TILEi(IIj ′ Bi) means that
vector Ij belongs to set TILEi(IIj ′ Bi).

2. Checking original tile validity.

2.1. Carry out a dependence analysis to produce a set of relations describing all the dependences in the original loop nest;
preprocess all dependence relations according to the procedure presented in Section 2.

2.2. Calculate the positive transitive closure, R+, of the union of all the preprocessed relations returned by Step 2.1.

2.3. Calculate the following sets: CHECK_VLDi =TILEi(IIi, Bi) ∩ R+(TILE_GTi(IIi)), i = 1, 2, . . . , q. If each of these
sets is empty, then TILE_VLDi=TILEi(IIi, Bi), i = 1, 2, . . . , q; go to Step 4.

3. Forming valid target tiles, represented with set TILE_VLDi. For each i, i = 1, 2, . . . , q, calculate

3.1. Set TILE_LTi as the union of all the tiles whose identifiers are lexicographically less than IIiprep, as follows:

TILE_LTi ={[Ij] | exists IIj ′ s. t. Ij in TILEi(IIj ′, Bj) AND IIjprep′≺ IIiprep}, where Ij in TILEi(IIj ′, Bi) means that
vector Ij belongs to set TILEi(IIj ′, Bi).

3.2. Set TILE_ITRi not including any invalid dependence target as below:

TILE_ITRi = TILEi − R+(TILE_GTi).

3.3. Set TVLD_LTi including all the iterations that (i) belong to the tiles whose identifiers are lexicographically less than that
of set TILE_ITRi, (ii) are the targets of the dependences whose sources are contained in set TILE_ITRi, and (iii) are not
any target of a dependence whose source belong to set TILE_GTi as follows:

TVLD_LTi = (R+(TILE_ITRi) ∩ TILE_LTi) − R+(TILE_GTi).

3.4. Set TILE_VLDi representing target tiles as the union of sets TILE_ITRi and TVLD_LTi

TILE_VLDi = TILE_ITRi ∪ TVLD_LTi.

4. Code generation.

4.1. For each i = 1, 2, . . . , q, form set TILE_VLD_EXTi by means of inserting (i) into the first positions of the tuple of set
TILE_VLDi indices ii1, ii2, . . . , iidi; (ii) into the constraints of set TILE_VLDi the constraints defining tile identifiers:

IIi ≥ 0 and Bi*IIi+LBi ≤ UBi.

4.2. Generate tiled code by means of applying any code generator scanning elements of the union of sets TILE_VLD_EXTi

in lexicographic order, for example, CLooG (Bastoul, 2004) or the codegen function of the Omega project (Kelly et al.,
1995).

930 W. Bielecki and M. Pałkowski

The idea of constructing such a relation, say R_TILE,
is the following. We take into account that if some target
tile includes the source of a dependence (available in the
original loop nest) whose destination belongs to another
target tile, then there exists a dependence between these
tiles. To form relation R_TILE, we use a relation, say R,
representing all the dependences of the original loop nest.
The first tuple of relation R_TILE defines the identifiers of
the target tiles (represented with set TILE_VLD) including
dependence sources (represented with relation R), while
the second tuple defines the identifiers of the tiles
comprising the corresponding dependence destinations.
The constraints of relation R_TILE have to include (i) the
constraint defining a set including all target tile identifiers
(they are the same as those of the original tiles); (ii)
existential vectors, say I, J , representing a pair of the
identifiers of dependent target tiles; (iii) the constraint
defining that vector J represents the destination of a
dependence whose source is represented with vector I ,
i.e., J = R(I), where R(I) means the operator of the
application of relation R to I .

Below, we present mathematically relation R_TILE
which describes dependences among all target tiles but
ignores dependences available within each tile, i.e., it
describes inter-tile dependences:

R_TILE := {[II] → [JJ]: II, JJ in ∪q
i=1 (IIi)

AND IIi ≥ 0 AND Bi*IIi +LBi ≤ UBi AND exist I,
J s.t. I in ∪q

i=1 (TILE_VLDi(II)) AND J in ∪q
i=1

(TILE_VLDi(JJ)) AND J in R(I)},

where II , JJ are vectors representing the sources
and destination of inter-tile dependences, respectively;
q is the number of loop nest statements; II i is the
vector representing tile identifiers for the i-th loop nest
statement; Bi is the diagonal matrix whose diagonal
elements are constants b1, b2, . . . , bdi defining the original
rectangular tile size in the iteration space of statement
Si; LBi and UBi are vectors whose elements are
lower lb1, . . . , lbdi and upper ub1, . . . , ubdi bounds of
indices i1, i2, . . . , idi of the original loops, respectively;
TILE_VLDi, i = 1, 2, . . . , q are the sets returned by
Algorithm 1 and representing target tiles; R is the relation
describing all the dependences in the original loop nest.

Below, we present the meaning of the particular
parts of the constraints of relation R_TILE: II, JJ in
∪q
i=1 (IIi) means that vectors II, JJ belong to the union

of all the vectors representing tile identifiers of all loop
nest statements; IIi ≥ 0 AND Bi*IIi+LBi ≤ UBi are
the constraints imposed on tile identifiers of loop nest
statements; exist I, J s.t. I in ∪q

i=1 (TILE_VLDi(II))
AND J in ∪q

i=1 (TILE_VLDi(JJ)) means that there
exist vectors I, J representing loop nest statement
instances such that they belong to sets TILE_VLDi(II) and
TILE_VLDi(JJ), respectively, returned by Algorithm 1; J
in R(I) denotes that elements of vector J are the targets of

the dependences whose sources are elements of vector I.
It is worth noting that relation R_TILE represents

only cycle-free inter-tile dependence graphs because
according to Algorithm 1, all target tiles are valid; i.e.,
in those graphs, each tile with identifier I includes the
dependence targets whose sources belong to the tiles
with identifiers which are lexicographically less than I ,
this disables any cycles in the dependence graph whose
vertices are target tiles.

It is well know that, for the cycle-free graph, a legal
schedule for vertices of this graph can be found (Feautrier,
1992a; 1992b). In other words, applying Algorithm 1
makes possible to use any known algorithm, aimed at
extracting a legal schedule, for paralllelization of target
tiles represented by tiled code.

Tiled code generated by means of Algorithm 1
and relation R_TILE can be used as input data for any
known algorithm for automatic loop nest parallelization.
Techniques based on affine transformations and/or the
transitive closure can be used to generate parallel tiled
code. In our implementation, we applied the techniques
presented by Beletska et al. (2011) and Bielecki et al.
(2012) to generate synchronization-free tiled code and
tiled code based on the free schedule, respectively.

5. Applying the approach to real-life code:
General linear recurrence equations

In this section, we present the application of Algorithm 1
to Kernel 6 of the Livermore Loops (http://www.
netlib.org/benchmark/livermore.)

The general linear recurrence equations is a
fundamental numerical computation that can be applied
in many important scientific applications: partial
differential equations, tridiagonal linear systems,
polynomial evaluations, eigenvalue (eigenvector)
problems, and digital signal processing. All these
problems are computationally intensive and require
high-speed computations.

Kernel 6 of the Livermore Loops is presented with
the following loop nest.

for (l=1 ; l<=loop ; l++)
for (i=1 ; i<n ; i++)

for (k=0 ; k<i ; k++)
w[i] += b[k][i] * w[(i-k)-1];

It is known that this loop nest cannot be tiled by means
of affine transformations. The optimizing compiler
PLUTO (Bondhugula et al., 2008b), implementing affine
transformations, does not generate any tiled code for this
loop nest.

Below, we demonstrate how tiled code can be
generated for the two inner loops i and k by means of
Algorithm 1.

http://www.netlib.org/benchmark/livermore.
http://www.netlib.org/benchmark/livermore.

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 931

�

�

Fig. 4. Target tiles for Kernel 6 with all dependences.

�

�

Fig. 5. Target tiles for Kernel 6 without considering reduction de-
pendences.

First, we extract relation R which represents all
dependences available in Kernel 6 and next remove
all transitive dependences by means of applying the
well-known formula R = R − (R+ ◦ R), where R+is
the positive transitive closure of R, “◦” is the relation
composition operator (Kelly et al., 1996).

The following two relations represent all direct
dependences in the two inner loops after removing all
transitive dependences:

R1 := [n] → {[i,−1 + i] → [1 + i, 0] :

i ≥ 1 and i ≤ −2 + n},

R2 := [n] → {[i, k] → [i, k′] : i ≤ −1+ n and k ≥ 0

and k′ ≥ 1 + k and k′ ≤ −1 + i}.
Relation R1 represents data flow dependences while

R2 describes reduction dependences.
Traditional data dependence analysis detects

flow, output and anti-dependences. If we take into
consideration associative and commutative updates, we
can change the order in which those updates are done
to discover parallelism; for example, each thread can
compute a local sum, and then the local sums are summed
up (Pugh and Wonnacott, 1994). For this purpose, we can
either automatically or manually recognize a commutative
and associative update. The dependence between two
such updates is termed a reduction dependence.

If we take into consideration both types of
dependences represented with relations R1 and R2, the
application of Algorithm 1 to Kernel 6 results in target
tiles shown in Fig. 4, provided that the tile size is
2 × 2. There is no parallelism in the corresponding code
because target tiles should be executed serially to respect
all dependences.

We may treat reduction dependences in a special
way. When we wish to generate serial tiled code, we
may ignore all reduction dependences because the order
of array elements summation by means of one thread can
be arbitrary.

Figure 5 shows target tiles generated with
Algorithm 1 when reduction dependences are ignored;
the execution of those tiles in serial order respects all
dependences represented with relation R1. From Fig. 5,
we can see that there are the two types of target tiles:
rectangular and triangular.

Serial tiled code for Kernel 6 when the tile size is
32× 32 is as follows:

for(c0=0;c0<=floord(n- 2, 32);c0 += 1)
for(c1=0;c1<= c0;c1 += 1)
for(c2=32*c0+1;

c2<=min(n1,32*c0+32);c2++){
// conditions for triangular tiles
if(c1==0&&c0==0&&c2>=2)

w[c2]=w[c2]+b[0][c2]*w[c2-0-1];
else if(c1==c0&&c0>=1&&c2>=32*c0+2)

w[c2]=w[c2]+b[0][c2]*w[c2-0-1];
// rectangular tiles
for(c3=max(32*c1,-c0+floord(-c0+

c2-2,31)+1);
c3<=min(32*c1+31,c2-1);c3+=1)
w[c2]=w[c2]

+b[c3][c2]*w[c2-c3-1];
}

To generate parallel tiled code, we can apply
tile reduction—an OpenMP tile aware parallelization
technique that allows parallel reduction to be performed
on multi-dimensional arrays (Gan et al., 2009). OpenMP

932 W. Bielecki and M. Pałkowski

(open multi-processing) is an application programming
interface (API) that supports multi-platform shared
memory multiprocessing programming in C, C++, and
Fortran on most platforms, processor architectures and
operating systems, including Solaris, AIX, HP-UX,
Linux,OS X, and Windows (OpenMP Architecture
Review Board, 2012).

Hovewer, the approach presented by Gan et al.
(2009) can deal only with rectangular tiles. We extend
that approach to cope with target tiles of arbitrary shapes.
This extension divides all target tiles among all threads in
an OpenMP parallel region, each thread computes a local
sum of elements of array w for assigned rectangular tiles,
and then those local sums are summed up in a critical
section. Finally, elements of triangular tiles are added
to the sum of elements comprised into rectangular tiles.
The part of the parallel tiled code for Kernel 6, generated
according to the way above, is presented in Fig. 2 of
Appendix. Comments in that code clarify the role of
particular constructions. The whole source programs used
in experiments are presented in the TRACO repository
(https://sourceforge.net/p/traco/code/
HEAD/tree/trunk/examples/tile_amcs/).

PLUTO is not able to produce any tiled code even
after removing reduction dependences. The explanation
of this fact is the following. The time partition constraint
for relation R1 is (Lim et al., 1999)

C11(i+ 1)− C11i− C12(i− 1) ≥ 0

or
C11 − C12(i − 1) ≥ 0,

where C11, C12 are the unknown coefficients defining
affine transformations. For i satisfying the inequalities
i ≥ 1 and i ≤ −2 + n, there exists single linear
independent solution to the constraint above: C11 =
1, C12 = 0. It is well known that the dimension of
tiles generated with affine transformations is equal to the
number of linear independent solutions to corresponding
time partition constraints (Lim et al., 1999). Accordingly,
there does not exist any affine transformations allowing
even 2-D tiling.

K6 tiled code speed-up is discussed in the following
section.

6. Experimental study

The presented algorithm has been implemented in
the optimizing compiler TRACO, publicy available at
traco.sourceforge.net. It includes Petit, a
dependence analyser (Kelly et al., 1995) whose output is
converted by a preprocessor to the format acceptable by
the Barvinok tool (http://garage.kotnet.org/
~skimo/barvinok/barvinok.pdf), which in turn
offers an interface to the functionality provided by the ISL

library (www.kotnet.org/~skimo/isl/manual.
pdf).

TRACO uses this library to apply operations on sets
and relations, employed in the presented algorithm, to
produce parametric sets defining target tiles. Next, these
sets are passed to the CLooG tool to generate tiled code.
Finally, a postprocessor forms compilable code in the
OpenMP C/C++ standard (OpenMP Architecture Review
Board, 2012).

TRACO uses the ISL library function isl_map
_transitive_closure to calculate the transitive
closure of a loop nest dependence graph.

To evaluate the effectiveness of TRACO and the
efficiency of tiled code generated with it, we experimented
with the NAS Parallel Benchmarks 3.2 (NPB) (NAS,
2015), Polyhedral Benchmarks (PolyBench) (Pol, 2012),
and K6 Kernel of the Livermore Loops (McMahon, 1986).
The NAS benchmarks are derived from computational
fluid dynamics (CFD) applications. The Polybench
benchmarks include linear algebra kernels and solvers,
data mining, dynamic programming, regularity detection,
and a stencil algorithm.

From 431 programs of the NAS benchmark suite,
Petit (the Omega project dependence analyzer) is able
to analyse 257 ones, and dependences are available in
134 programs (the other 123 ones do not expose any
dependence). 60 programs are represented by perfectly
nested loops and 74 are described by arbitrarily nested
loops. For the Polybench suite, there exist 48 loop nests
exposing dependences of which 14 are perfectly nested
and 34 are arbitrarily nested.

To compare results produced by means of TRACO
with those produced with affine transformations, we
chose the state-of-the-art optimizing compiler PLUTO
(Bondhugula et al., 2008a), which implements most
advanced affine transformation techniques. By means of
PLUTO we generated tiled code for all programs under
experiments.

Tiled TRACO and PLUTO codes can be found
at http://sourceforge.net/p/traco/code/
HEAD/tree/trunk/examples/.

To asses the effectiveness of the proposed approach,
we generated tiled code for all programs presented in both
NAS and Polybench benchmarks.

To evaluate the efficiency of tiled programs,
we classified for experiments 5 computative intensive
programs from the NAS benchmarks and 5 computative
intensive programs from the Polybench benchmarks.
The program names are given in Figs. 6 and 7. The
following criteria were taken into account for choosing
those programs: (i) loop nests have to be of depth
2 or more; (ii) the upper loop index bounds have to
be parametric; (iii) the loop nest body has to include
non-trivial assignment statements such that computation
time has to be considerably increased with increasing the

https://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/tile_amcs/
https://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/tile_amcs/
traco.sourceforge.net
http://garage.kotnet.org/~skimo/barvinok/barvinok.pdf
http://garage.kotnet.org/~skimo/barvinok/barvinok.pdf
www.kotnet.org/~skimo/isl/manual.pdf
www.kotnet.org/~skimo/isl/manual.pdf
http://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/
http://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 933

1 2 8 16 32 48
0

2

4

6

8

10

12

S
p
e
e
d
-u
p

CPUs

BT_rhs_1 (N1=N2=N3=N4=256)

1 2 8 16 32 48
0

5

10

15

20

S
p
e
e
d
-u
p

CPUs

BT_rhs_1 (N1=N2=N3=N4=512)

1 2 8 16 32 48
0
2
4
6
8
10
12
14
16

S
p
e
e
d
-u
p

CPUs

LU_HP_rhs_1 (N1=N2=N3=300)

1 2 8 16 32 48
0

5

10

15

20

S
p
e
e
d
-u
p

CPUs

LU_HP_rhs_1 (N1=N2=N3=500)

1 2 8 16 32 48
0
1
2
3
4
5
6
7
8

S
p
e
e
d
-u
p

CPUs

LU_pintgr_4 (N1=N3=1, N2=N4=7500)

1 2 8 16 32 48
0

1

2

3

4

5

6

7

S
p
e
e
d
-u
p

CPUs

LU_pintgr_4 (N1=N3=1, N2=N4=10000)

1 2 8 16 32 48
0

2

4

6

8

S
p
e
e
d
-u
p

CPUs

MG_mg_9 (N[2,4,6,7,8,10,11]=250, N[1,3,5,9]=1)

1 2 8 16 32 48
0

2

4

6

8

S
p
e
e
d
-u
p

CPUs

MG_mg_9 (N[2,4,6,7,8,10,11]=500, N[1,3,5,9]=1)

1 2 8 16 32 48
0

2

4

6

8

10

12

S
p
e
e
d
-u
p

CPUs

UA_adapt_10 (N1=N2=N3=N4=1000)

1 2 8 16 32 48
0
2
4
6
8
10
12
14
16

S
p
e
e
d
-u
p

CPUs

UA_adapt_10 (N1=N2=N3=N4=1200)

TRACO (block=16) TRACO (block=32)

Fig. 6. Speed-up for tiled synchronization-free NBP programs.

values of the upper loop index bounds.
Experiments were carried out by means of a parallel

computer with the following specification: 2 × Intel Xeon
CPU E5-2695 v2, 2.40GHz, 12 cores, 24 Threads, 30 MB
Cache, 16 GB RAM. All programs were compiled with
the Intel C Compiler (icc 15.0.2) and optimized at the
−O3 level.

Analysing the results of experiments for serial tiled
code, we may conclude that for NPB and Polybench
benchmarks the effectiveness of the presented approach
is the same as that of affine transformation techniques
implemented in PLUTO, but there exist loop nest samples
which can be tiled only by means of the presented
approach, for example, K6 Kernel of the Livermore Loops
and Example 2 presented in Section 3.

The numbers of tiles in PLUTO and TRACO tiled
codes in general are different. TRACO always produces
the same number of target tiles as that of the original
ones and does not change the loop nest iteration space.
In general, for a loop nest, PLUTO tiled code represents
more tiles than those generated by TRACO due to the fact
that PLUTO can change the original loop nest iteration
space skewing it. Despite differences in the examined

tiled codes produced with PLUTO and TRACO, we
observed similar code performance for 10 computatively
intensive programs chosen for experiments.

As far as loop nest transformation time is concerned,
we may conclude that for each examined loop nest the
PLUTO code generation time is less than the TRACO one.
PLUTO takes less than one second to produce tiled code,
while TRACO takes from hundred milliseconds to several
seconds to return tiled code. TRACO takes the most time
for calculating transitive closure and code generation by
means of Barvinok function calls. There is a strong need
to reduce the computative complexity of transitive closure
calculation algorithms. In the future, we plan to use ISL
functions directly instead of the Barvinok tool; this will
allow us to reduce code generation time.

To generate synchronization-free parallel tiled code,
TRACO applies the algorithms presented by Beletska
et al. (2011), for which input data is tiled code
returned by Algorithm 1 and relation R_TILE formed as
described in Section 4. Experiments carried out with
synchronization-free tiled codes produced by TRACO
allow us to derive the following conclusions. TRACO is
able to generate tiled synchronization-free parallel code

934 W. Bielecki and M. Pałkowski

1 2 8 16 32 48
0

5

10

15

S
p
e
e
d
-u
p

CPUs

corcol (N=M=1500)

1 2 8 16 32 48
0

2

4

6

8

10

12

S
p
e
e
d
-u
p

CPUs

corcol (N=M=2000)

1 2 8 16 32 48
0

5

10

15

S
p
e
e
d
-u
p

CPUs

covcol (N=M=1000)

1 2 8 16 32 48
0

5
10

15
20
25
30
35
40

S
p
e
e
d
-u
p

CPUs

covcol (N=M=1500)

1 2 8 16 32 48
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p
e
e
d
-u
p

CPUs

gemver (N=10000, block=200,16)

1 2 8 16 32 48
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
-u
p

CPUs

gemver (N=11000, block=400,16)

1 2 8 16 32 48
0

5

10

15

20

25

S
p
e
e
d
-u
p

CPUs

syr2k (NI=NJ=1536)

1 2 8 16 32 48
0

5

10

15

20

S
p
e
e
d
-u
p

CPUs

syr2k (NI=NJ=2048)

1 2 8 16 32 48
0

10

20

30

40

S
p
e
e
d
-u
p

CPUs

trisolv (N=1024)

1 2 8 16 32 48
0

5

10

15

20

25

S
p
e
e
d
-u
p

CPUs

trisolv (N=1536)

TRACO (block=16) TRACO (block=32)

Fig. 7. Speed-up for tiled synchronization-free Polybench programs.

for 43 (32%) of 134 NBP loops and for 16 (50%) of 32
PolyBench loop nests. TRACO and PLUTO generate tiled
synchronization-free parallel code for the same NPB and
Polybench loop nests; i.e., the effectiveness of TRACO
and PLUTO for these benchmark suites is the same.

Figures 6 and 7 present the speed-up of the five
tiled synchronization-free Polybench programs and the
five synchronization-free NBP programs.

For each benchmark chosen for experiments, we
measured execution time for the original and tiled codes
produced with TRACO, then speed-up was calculated as
the ratio of the execution time of an original code and that
of a corresponding (parallel) tiled code. TRACO tiled
codes were produced for the various sizes of a problem
and the various sizes of the original tile. CPU = 1 means
that data correspond to the time received for a serial tiled
program.

It is worth noting that for the four Polybench
programs: corcol, covcol, gemver, and trisolv, even serial
tiled codes expose positive speed-up (> 1) while the tiled
syr2k program demonstrates positive speed-up only for
parallel code (CPUs > 1). All NBP serial tiled codes
expose positive speed-up (> 1).

Figure 8 present the speed-up of serial tiled code for
Example 2. There is no synchronization-free parallelism
for this code.

����� ����� ����� ����� ����� ����� 	����
���� ����� ������
�
��������
�
�������

���

�

���

���

���

���

��
��

��
��

Fig. 8. Speed-up of tiled code for Example 2.

Figure 9 shows speed-up received for both tiled serial
and parallel Kernel 6 of the Liveromore Loops, which
cannot be tiled with PLUTO. As we can see, parallel tiled
code demonstrates high speed-up, which depends on the
upper bound values of loop indices and the number of

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 935

threads in a parallel region.

��� ���� ���� ���� ���� ���� ����
���	
��
���

�������
�
�����

���

���

���

���

���

���

���

���

���

���

���

����

����

����

����

��

��
	�

�� ! ����"
�
�#�$�% �
&'�(�
��)
*�����
���
�	"
�#���+�
���% *�����
���
�	"
�#���+�
���%
*�����
���
�	"
�#����+�
���%

Fig. 9. Speed-up of Kernel 6 codes.

So, we may conclude that, for the examined
benchmarks, both serial and parallel tiled codes, generated
by means of the presented approach, expose speed-up.

7. Related work

The presented approach is to automatically generate tiled
code by means of optimizing compilers. This is why
we restrict related work only to techniques aimed at
automatic generation of tiled code. There has been a
considerable amount of research into tiling, demonstrating
how to aggregate a set of loop nest iterations into tiles
with each tile as an atomic macro statement, from pioneer
papers (Irigoin and Triolet, 1988; Wolf and Lam, 1991;
Ramanujam and Sadayappan, 1992) to those presenting
advanced techniques (Bondhugula et al., 2008a; Griebl,
2004; Lim et al., 1999; Wonnacott and Strout, 2013).
Several popular frameworks are used to produce tiled code
automatically: the classic polyhedral model (Feautrier,
1992a; 1992b; Lim and Lam, 1994; Bondhugula et al.,
2008a), the sparse polyhedral model (Strout et al., 2004),
the non-polyhedral model (Kim and Rajopadhye, 2009),
and iteration space slicing (Pugh and Rosser, 1997; 1999).

One of the most advanced reordering transformation
frameworks is based on the polyhedral model (Feautrier,
1992a; 1992b; Ramanujam and Sadayappan, 1992; Lim
and Lam, 1994; Bondhugula et al., 2008a). Let
us recall that this approach includes the following
three steps: (i) program analysis aimed at translating
high level codes to their polyhedral representation
and providing data dependence analysis based on this
representation, (ii) program transformation with the aim
of improving program locality and/or parallelization, (iii)
code generation.

All the above three steps are available in the approach
presented in this paper. But there exists the following
difference in step (ii): in the polyhedral model a (sequence
of) program transformation(s) is represented by a set

of affine functions, one for each statement, while the
presented approach does not find or use any affine
function for program transformation(s). It applies the
transitive closure of a program dependence graph to
transform invalid original tiles into valid target ones.
From this point of view the program transformation step
is rather within the iteration space slicing framework
introduced by Pugh and Rosser (1997): Iteration Space
Slicing takes dependence information as input to find
all statement instances from a given loop nest which
must be executed to produce correct values for the spec-
ified array elements. The key step in iteration space
slicing is calculating the transitive closure of a loop nest
dependence graph.

Summing up, we may conclude that Algorithm 1 is
based on a combination of the polyhedral and iteration
spacing Slicing frameworks. Such a combination allows
improving loop nest tiling transformation effectiveness
due to the fact that iteration space slicing allows us to
automatically form target tiles so that all original loop nest
dependences are respected under the lexicographic order
of target tiles.

Transformations based on the polyhedral model
produce code at compile-time, while the sparse polyhedral
framework (Strout et al., 2004) extends the polyhedral
model by using uninterpreted function call abstraction
for the compile-time specification of run-time reordering
transformations. The approach presented in this paper
aims at producing code at compile-time, hence we
compare it only with techniques producing tiled code at
compile time.

The works of Bondhugula et al. (2008a), Griebl
(2004) and Lim et al. (1999) generalize pioneer
techniques and present an advanced theory on tiling,
implying that, given a loop nest, first “time-partition
constraints” are to be formed, then a solution to them has
to be found. The “time-partition constraints” (Feautrier,
1992a; 1992b; Lim et al., 1999) represent the condition
that if one iteration is dependent upon another, then the
first one must be assigned to a time that is no earlier
than that of the second; if they are assigned to the same
time, then the first has to be executed after the second. If
there exists more than one linearly independent solution
to the time-partition constraints of a loop nest, then it
is possible to apply a tiling transformation to this loop
nest (Lim et al., 1999). Algorithms implemented in
PLUTO (Bondhugula et al., 2008a), allow for combining
tiling together with the fusion and SCC graph splitting
techniques to improve program locality.

Index set splitting is presented by Griebl et al.
(2000); this approach does not make tiling valid where
it is invalid.

Pugh and Rosser (1999) demonstrate by means of
several examples how iteration space slicing can be
applied to improve program locality due to forming

936 W. Bielecki and M. Pałkowski

slices (not fixed tiles). Each slice is composed of
dependent statement instances. This improves code
locality: while executing each slice, a value produced
with some statement instance is immediately consumed
by the following statement instances. But the authors do
not provide any formal algorithm allowing for extracting
slices and code generation.

Beletska et al. (2011) and Bielecki et al. (2012)
demonstrate how to extract coarse- and fine-grained
parallelism applying different iteration space slicing
algorithms, however, they do not consider any tiling
transformation.

Bielecki and Palkowski (2015), Bielecki et al. (2015)
or Palkowski et al. (2015) deal with applying transitive
closure to only perfectly nested loops.

Summing up, we may conclude that the approach
presented in this paper is the first attempt to demonstrate
how iteration space slicing (instead of a set of affine
functions, one for each statement, to allow tiling validity)
can be used to restructure arbitrarily nested loops in the
program transformation step of the polyhedral model to
produce valid tiled code.

8. Conclusion

In this paper, we presented a novel approach based on a
combination of the polyhedral model and iteration space
slicing frameworks that allows automatic generation of
tiled code by means of optimizing compilers. The popular
affine transformation framework allows tiling only when
it is able to convert an original nest loop to a band of fully
permutable loops. We suggested to apply the transitive
closure of a loop nest dependence graph instead of affine
transformations to generate both serial and parallel tiled
codes. This allows us to enlarge the scope of loop nests
which can be tiled because applying the transitive closure
of a dependence graph does not require full permutability
of loops to generate tiled code.

The main idea of the approach is to first introduce
original rectangular tiles in the loop nest iteration
space, then recognize invalid tiles whose enumeration
in lexicographic order does not respect the original loop
nest dependences, and finally, by means of the transitive
closure of a dependence graph, correct (change) those
invalid tiles so that their enumeration in lexicographic
order is valid. We illustrated this idea by means of
a working example and presented a formal algorithm
implementing this idea.

We demonstrated by means of Kernel 6 of the
Livermore Loops how tiled code can be generated
with the presented approach and showed that the affine
transformation framework fails to generate any tiled code
for this kernel.

The introduced tiling algorithm was implemented
in the TRACO optimizing compiler developed by us and

made available to the public at the TRACO repository
(https://sourceforge.net/p/traco/code/
HEAD/tree/trunk/examples/tile_amcs/.)

Using TRACO, we carried out an experimental
study to evaluate the effectiveness of the approach and
the efficiency of tiled code generated by means of
this approach. We compared the obtained results with
those achieved by means of PLUTO, the most advanced
optimizing compiler based on the affine transformation
framework. We observed similar tiled code performance
for 10 computatively intensive programs chosen for
experiments and compiled by means of TRACO and
PLUTO.

For Kernel 6 of the Livermore Loops, which can
be tiled with TRACO but cannot be tiled by means of
PLUTO, we get speed-up for both serial and parallel tiled
codes.

One of the limitations of the introduced approach
is that original tiles should be only rectangular; this can
reduce parallelism degree of tiled code. In the future, in
order to increase the tiled code parallelism degree, we plan
to present an extended approach allowing tiling arbitrarily
nested loops with arbitrary shapes of original tiles.

References
Ahmed, N., Mateev, N. and Pingali, K. (2000). Tiling

imperfectly-nested loop nests, ACM/IEEE 2000 Confer-
ence on Supercomputing, Dallas, TX, USA, Article No. 31.

Andonov, R., Balev, S., Rajopadhye, S. and Yanev, N. (2001).
Optimal semi-oblique tiling, IEEE Transactions on Paral-
lel and Distributed Systems 14(9): 940–966.

Bastoul, C. (2004). Code generation in the polyhedral model is
easier than you think, PACT’13, IEEE International Con-
ference on Parallel Architecture and Compilation Tech-
niques, Juan-les-Pins, France, pp. 7–16.

Bastoul, C. and Feautrier, P. (2003). Improving data locality
by chunking, International Conference on Compiler Con-
struction, Warsaw, Poland, pp. 320–335.

Beletska, A., Bielecki, W., Cohen, A., Palkowski, M. and
Siedlecki, K. (2011). Coarse-grained loop parallelization:
Iteration space slicing vs affine transformations, Parallel
Computing 37(8): 479–497.

Bielecki, W., Kraska, K. and Klimek, T. (2014). Using
basis dependence distance vectors to calculate the
transitive closure of dependence relations by means of the
Floyd–Warshall algorithm, Journal of Combinatorial Op-
timization 30(2): 253–275.

Bielecki, W., Klimek, T., Palkowski, M. and Beletska, A. (2010).
An iterative algorithm of computing the transitive closure
of a union of parameterized affine integer tuple relations,
in W. Wu and O. Daescu (Eds.), COCOA 2010: Fourth
International Conference on Combinatorial Optimization
and Applications, Lecture Notes in Computer Science, Vol.
6508, Springer, Berlin/Heidelberg, pp. 104–113.

https://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/tile_amcs/
https://sourceforge.net/p/traco/code/HEAD/tree/trunk/examples/tile_amcs/

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 937

Bielecki, W. and Palkowski, M. (2015). Perfectly nested loop
tiling transformations based on the transitive closure of the
program dependence graph, in A. Wilinski et al. (Eds.),
Soft Computing in Computer and Information Science,
Advances in Intelligent Systems and Computing, Vol. 342,
Springer International Publishing, Cham, pp. 309–320.

Bielecki, W., Palkowski, M. and Klimek, T. (2012). Free
scheduling for statement instances of parameterized
arbitrarily nested affine loops, Parallel Computing
38(9): 518–532.

Bielecki, W., Palkowski, M. and Klimek, T. (2015). Free
scheduling of tiles based on the transitive closure of
dependence graphs, in R. Wyrzykowski (Ed.), 11th Inter-
national Conference on Parallel Processing and Applied
Mathematics, Part II, Lecture Notes in Computer Science,
Vol. 9574, Springer, Berlin/Heidelberg, pp. 133–142.

Błaszczyk, J., Karbowski, A. and Malinowski, K. (2007).
Object library of algorithms for dynamic optimization
problems: Benchmarking SQP and nonlinear interior
point methods, International Journal of Applied Math-
ematics and Computer Science 17(4): 515–537, DOI:
10.2478/v10006-007-0043-y.

Bondhugula, U., Baskaran, M., Krishnamoorthy, S.,
Ramanujam, J., Rountev, A. and Sadayappan, P. (2008a).
Automatic transformations for communication-minimized
parallelization and locality optimization in the polyhedral
model, in L. Hendren (Ed.), Compiler Constructure,
Lecture Notes in Computer Science, Vol. 4959, Springer,
Berlin/Heidelberg, pp. 132–146.

Bondhugula, U., Hartono, A., Ramanujam, J. and Sadayappan,
P. (2008b). A practical automatic polyhedral parallelizer
and locality optimizer, ACM SIGPLAN Notices
43(6): 101–113.

Campbell, S.L. (2001). Numerical analysis and systems theory,
International Journal of Applied Mathematics and Com-
puter Science 11(5): 1025–1034.

Feautrier, P. (1992a). Some efficient solutions to the affine
scheduling problem, I: One-dimensional time, Interna-
tional Journal of Parallel Programming 21(5): 313–348.

Feautrier, P. (1992b). Some efficient solutions to the affine
scheduling problem, II: Multidimensional time, Interna-
tional Journal of Parallel Programming 21(6): 389–420.

Gan, G., Wang, X., Manzano, J. and Gao, G.R. (2009). Tile
reduction: The first step towards tile aware parallelization
in openmp, in M.S. Muller et al. (Eds.), Evolving
OpenMP in an Age of Extreme Parallelism, Springer,
Berlin/Heidelberg, pp. 140–153.

Greenbaum, A. and Chartier, T.P. (2012). Numerical Methods:
Design, Analysis, and Computer Implementation of Algo-
rithms, Princeton University Press, Princeton, NJ.

Griebl, M. (2004). Automatic Parallelization of Loop Pro-
grams for Distributed Memory Architectures, D.Sc. thesis,
University of Passau, Passau.

Griebl, M., Feautrier, P. and Lengauer, C. (2000). Index set
splitting, International Journal of Parallel Programming
28(6): 607–631.

Grosser, T., Cohen, A., Kelly, P.H., Ramanujam, J., Sadayappan,
P. and Verdoolaege, S. (2013). Split tiling for GPUS:
Automatic parallelization using trapezoidal tiles, Proceed-
ings of the 6th Workshop on General Purpose Proces-
sor Using Graphics Processing Units, Houston, TX, USA,
pp. 24–31.

Irigoin, F. and Triolet, R. (1988). Supernode partitioning, Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL’88, San
Diego, CA, USA, pp. 319–329.

Jeffers, J. and Reinders, J. (2015). High Performance Paral-
lelism Pearls, Volume Two: Multicore and Many-Core Pro-
gramming Approaches, Morgan Kaufmann, Burlington,
MA.

Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T. and
Wonnacott, D. (1995). The omega library interface guide,
Technical report, University of Maryland at College Park,
MD.

Kelly, W., Pugh, W., Rosser, E. and Shpeisman, T.
(1996). Transitive closure of infinite graphs and its
applications, International Journal of Parallel Program-
ming 24(6): 579–598.

Kim, D. and Rajopadhye, S.V. (2009). Parameterized tiling
for imperfectly nested loops, Technical Report CS-09-101,
Colorado State University, Fort Collins, CO.

Kowarschik, M. and Weiß, C. (2003). An overview of
cache optimization techniques and cache-aware numerical
algorithms, in U. Meyer et al. (Eds.), Algorithms for Mem-
ory Hierarchies, Springer, Berlin/Heidelberg, pp. 213–232.

Leader, J.J. (2004). Numerical Analysis and Scientific Compu-
tation, Pearson Addison/Wesley Boston, MA.

Lim, A., Cheong, G.I. and Lam, M.S. (1999). An
affine partitioning algorithm to maximize parallelism and
minimize communication, Proceedings of the 13th ACM
SIGARCH International Conference on Supercomputing,
Rhodes, Greece, pp. 228–237.

Lim, A.W. and Lam, M.S. (1994). Communication-free
parallelization via affine transformations, in K. Pingali et
al. (Eds.), 24th ACM Symposium on Principles of Pro-
gramming Languages, Springer-Verlag, Berlin/Heidelberg,
pp. 92–106.

Maciążek, M., Grabowski, D. and Pasko, M. (2015). Genetic and
combinatorial algorithms for optimal sizing and placement
of active power filters, International Journal of Applied
Mathematics and Computer Science 25(2): 269–279, DOI:
10.1515/amcs-2015-0021.

McMahon, F.H. (1986). The Livermore Fortran kernels: A
computer test of the numerical performance range, Tech-
nical Report UCRL-53745, Lawrence Livermore National
Laboratory, Livermore, CA.

Mullapudi, R.T. and Bondhugula, U. (2014). Tiling for dynamic
scheduling, IMPACT 2014, 14th International Workshop
on Polyhedral Compilation Techniques, Vienna, Austria.

NAS (2015). NAS benchmarks suite, http://www.nas.
nasa.gov.

http://www.nas.nasa.gov.
http://www.nas.nasa.gov.

938 W. Bielecki and M. Pałkowski

OpenMP Architecture Review Board (2012). OpenMP
application program interface version 4.0, http://
www.openmp.org/mp-documents/OpenMP4.
0RC1_final.pdf.

Palkowski, M., Klimek, T. and Bielecki, W. (2015). TRACO: An
automatic loop nest parallelizer for numerical applications,
Federated Conference on Computer Science and Informa-
tion Systems, Łódź, Poland, pp. 681–686

Pol (2012). The Polyhedral benchmark suite, http://www.
cse.ohio-state.edu/~pouchet/software/
polybench/.

Pugh, W. and Rosser, E. (1997). Iteration space slicing and
its application to communication optimization, Interna-
tional Conference on Supercomputing, Vienna, Austria,
pp. 221–228.

Pugh, W. and Rosser, E. (1999). Iteration space slicing for
locality, in L. Carter and J. Ferrante (Eds.), Languages
and Compilers for Parallel Computing, Lecture Notes in
Computer Science, Vol. 1863, Springer, Berlin/Heidelberg,
pp. 164–184.

Pugh, W. and Wonnacott, D. (1993). An exact method for
analysis of value-based array data dependences, 6th An-
nual Workshop on Programming Languages and Com-
pilers for Parallel Computing, Portland, OR, USA, pp.
546–566.

Pugh, W. and Wonnacott, D. (1994). Static analysis of upper
and lower bounds on dependences and parallelism, ACM
Transactions on Programming Languages and Systems
16(4): 1248–1278.

Ramanujam, J. and Sadayappan, P. (1992). Tiling
multidimensional iteration spaces for multicomputers,
Journal of Parallel and Distributed Computing
16(2): 108–120.

Sass, R. and Mutka, M. (1994). Enabling unimodular
transformations, Proceedings of the 1994 ACM/IEEE
Conference on Supercomputing, Washington, DC, USA,
pp. 753–762.

Strout, M.M., Carter, L., Ferrante, J. and Kreaseck, B. (2004).
Sparse tiling for stationary iterative methods, Interna-
tional Journal of High Performance Computing Applica-
tions 18(1): 2004.

Tang, P. and Xue, J. (2000). Generating efficient tiled code
for distributed memory machines, Parallel Computing
26(11): 1369–1410.

Verdoolaege, S. (2011). Integer set library—manual, http://
www.kotnet.org/~skimo//isl/manual.pdf.

Verdoolaege, S. (2012). Barvinok: User guide, Barvinok-0.36,
www.garage.kotnet.org/~skimo/barvinok/
barvinok.pdf.

Verdoolaege, S., Cohen, A. and Beletska, A. (2011). Transitive
closures of affine integer tuple relations and their

overapproximations, in E. Yahav (Ed.), Proceedings of the
18th international Conference on Static analysis, SAS’11,
Springer-Verlag, Berlin/Heidelberg, pp. 216–232.

Wolf, M.E. and Lam, M.S. (1991). A data locality optimizing
algorithm, Proceedings of the ACM SIGPLAN 1991 Con-
ference on Programming Language Design and Implemen-
tation, Toronto, Canada, pp. 30–44.

Wonnacott, D.G. and Strout, M.M. (2013). On the scalability
of loop tiling techniques, Proceedings of the 3rd Inter-
national Workshop on Polyhedral Compilation Techniques
(IMPACT), Berlin, Germany.

Wonnacott, D., Jin, T. and Lake, A. (2015). Automatic tiling
of mostly-tileable loop nests, IMPACT 2015, 5th Interna-
tional Workshop on Polyhedral Compilation Techniques,
Amsterdam, The Netherlands.

Xue, J. (1996). Communication-minimal tiling of uniform
dependence loops, Languages and Compilers for Parallel
Computing, Springer, Berlin/Heidelberg, pp. 330–349.

Xue, J. (1997). On tiling as a loop transformation, Parallel Pro-
cessing Letters 7(4): 409–424.

Xue, J. (2012). Loop Tiling for Parallelism, Springer Science &
Business Media, Springer-Verlag, New York, NY.

Zdunek, R. (2014). Regularized nonnegative matrix
factorization: Geometrical interpretation and application
to spectral unmixing, International Journal of Applied
Mathematics and Computer Science 24(2): 233–247, DOI:
10.2478/amcs-2014-0017.

Włodzimierz Bielecki is a full professor, the head of the Software Tech-
nology Department of the West Pomeranian University of Technology
in Szczecin, Poland. His research interest includes parallel and dis-
tributed computing, optimizing compilers, and techniques of extraction
of both fine- and coarse-grained parallelism available in program loop
nests based on the transitive closure of dependence graphs.

Marek Pałkowski has graduated and obtained his Ph.D. degree in com-
puter science from the Technical University of Szczecin, Poland. The
main goal of his research is extraction of parallelism available in pro-
gram loop nests using the transitive closure of dependence graphs, and
development of the publicly available TRACO compiler implementing
parallelization techniques based on the transitive closure of dependence
graphs.

Appendix

Figure A1 presents tiled code for Example 2. Figure A2
presents parallel tiled code for K6 Kernel of the Livermore
Loops.

http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.openmp.org/mp-documents/OpenMP4.0RC1_final.pdf
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.kotnet.org/~skimo//isl/manual.pdf
http://www.kotnet.org/~skimo//isl/manual.pdf
www.garage.kotnet.org/~skimo/barvinok/barvinok.pdf.
www.garage.kotnet.org/~skimo/barvinok/barvinok.pdf.

Tiling arbitrarily nested loops by means of the transitive closure of dependence graphs 939

for (c1 = 0; c1 <= floord(n, 32); c1 += 1)
for (c2 = 0; c2 <= 2; c2 += 1) {

if (c2 == 2) {
for (c5 = 32 * c1; c5 <= min(n, 32 * c1 + 31); c5 += 1)

for (c6 = max(1, 32 * c1 - c5 + 2); c6 <= 2; c6 += 1) {
if (c6 == 2) {

d[c5][n]=a[c5+1][n]+a[c5][n];
} else

for (c7 = max(n + 32 * c1 - c5 + 1, -(n % 32) + n); c7 <= n; c7 += 1)
a[c5][c7]=a[c5+1][c7-1]+b[c5+1][c7]+b[c5][0]+a[c5][c7+1];

}
} else if (c2 == 1) {

for (c3 = 0; c3 <= n / 32; c3 += 1)
for (c5 = 32 * c1; c5 <= min(n, 32 * c1 + 31); c5 += 1) {
if (c3 == 0 && c5 >= 32 * c1 + 1)

b[c5][0]=c[c5][0];
for (c7 = max(0, 32 * c1 + 32 * c3 - c5);

c7 <= min(n + 32 * c1 - c5, 32 * c1 + 32 * c3 - c5 + 31); c7 += 1)
a[c5][c7]=a[c5+1][c7-1]+b[c5+1][c7]+b[c5][0]+a[c5][c7+1];

}
} else

b[32*c1][0]=c[32*c1][0];
}

Fig. A1. Tiled code for Example 2.

omp_set_num_threads(kind); // sets the number of threads in a parallel region
int btile=32; // btile defines the value of tile side
long double w_[48][32]; // array w_ is to be declared as shared in the parallel region

// 32 is the maximal tile side; 48 is the maxiaml number of threads

int lb_c0,thread_id,block,lb,ub,num_threads;
num_threads = kind; //num_threads defines the number of threads in the parallel region

for (l=1 ; l<=loop ; l++) { // serial no tiled loop
for (c0 = 0; c0 <= floord(n - 2, 32); c0 += 1){ // defines tile id along axis i
lb_c0 = 32*c0+1; // offset for the value of index i

// Pragma omp parallel defines a parallel region, which is code that will be
// executed by multiple threads in parallel.
// ’private’ specifies that each thread should have its own instance of a variable.
// ’shared’ specifies that the variables should be shared among all threads.

#pragma omp parallel private(i,w_,c1,c2,c3,lb,ub,thread_id) shared(c0,b,lb_c0,num_threads,btile)
{

thread_id = omp_get_thread_num(); //returns the thread number
block = c0/num_threads ; // specifies the number of tiles along axis i for a given c0

lb = thread_id * block; //lower bound of c1 for the tread with the identifier thread_id
ub = min((thread_id+1) * block, c0-1); // upper bound of c1 for the thread with

// the identifier thread_id

for(i=0; i<btile; i++) // zeroing elements of array w_
w_[thread_id][i] = 0;

for (c1 = lb; c1 <= ub; c1 += 1) // this and the next two loops enumerate iterations
// of 2-d tiles assigned to the thread with
// the identifier thread_id

for (c2 =32*c0+1; c2 <= min(n - 1, 32 * c0 + 32); c2 += 1) {
if (c1 == 0 && c0 == 0 && c2 >= 2)

w_[thread_id][c2-lb_c0] += b[0][c2]*w[c2-0-1];
for (c3 = max(32*c1, -c0 + floord(-c0 + c2-2, 31) + 1); c3 <= min(32*c1 + 31, c2-1); c3++)

w_[thread_id][c2-lb_c0] += b[c3][c2]*w[c2-c3-1];
}

#pragma omp critical //specifies that the code below is only executed on one thread at a time.
{
for(i=0; i<btile; i++) //sums all local w_[thread_id][i] calculated for rectangular tiles

w[lb_c0+i] += w_[thread_id][i];
}

}

// taking into account elements of triangular tiles
for (c2 = 32 * c0 + 1; c2 <= min(n - 1, 32 * c0 + 32); c2 += 1) {
// c1 = c0 block
if (c0 >= 1 && c2 >= 32 * c0 + 2)
w[c2]=w[c2]+b[0][c2]*w[c2-0-1];

for (c3 = max(32 * c0, -c0 + floord(-c0 + c2 - 2, 31) + 1); c3 <= min(32*c0 + 31, c2-1); c3++)
w[c2]=w[c2]+b[c3][c2]*w[c2-c3-1];

}
}

}

Fig. A2. Main part of parallel tiled code for Kernel 6 of the Livermore Loops.

Received: 3 November 2015
Revised: 12 April 2016
Re-revised: 5 June 2016
Accepted: 9 August 2016

	Introduction
	Background
	Tiling algorithm
	Section objective and basic concepts
	Tiling idea
	Illustrating the tiling idea by means of a working example
	Formal algorithm and its correctness

	Tiled code parallelization
	Applying the approach to real-life code: General linear recurrence equations
	Experimental study
	Related work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

