
Int. J. Appl. Math. Comput. Sci., 2019, Vol. 29, No. 1, 169–178
DOI: 10.2478/amcs-2019-0013

MACHINE LEARNING TECHNIQUES COMBINED WITH DOSE PROFILES
INDICATE RADIATION RESPONSE BIOMARKERS

ANNA PAPIEZ a, CHRISTOPHE BADIE b, JOANNA POLANSKA a,∗

aData Mining Group, Institute of Automatic Control
Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland

e-mail: joanna.polanska@polsl.pl

bCancer Mechanisms and Biomarkers, Radiation Effects Department
Centre for Radiation, Chemical & Environmental Hazards, Public Health England

Chilton, Didcot, Oxfordshire OX11 ORQ, UK

The focus of this research is to combine statistical and machine learning tools in application to a high-throughput biolog-
ical data set on ionizing radiation response. The analyzed data consist of two gene expression sets obtained in studies of
radiosensitive and radioresistant breast cancer patients undergoing radiotherapy. The data sets were similar in principle;
however, the treatment dose differed. It is shown that introducing mathematical adjustments in data preprocessing, differ-
entiation and trend testing, and classification, coupled with current biological knowledge, allows efficient data analysis and
obtaining accurate results. The tools used to customize the analysis workflow were batch effect filtration with empirical
Bayes models, identifying gene trends through the Jonckheere–Terpstra test and linear interpolation adjustment according
to specific gene profiles for multiple random validation. The application of non-standard techniques enabled successful
sample classification at the rate of 93.5% and the identification of potential biomarkers of radiation response in breast can-
cer, which were confirmed with an independent Monte Carlo feature selection approach and by literature references. This
study shows that using customized analysis workflows is a necessary step towards novel discoveries in complex fields such
as personalized individual therapy.
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1. Introduction

Contemporary molecular biology implies the need for
developing solutions for efficient data analysis due to
the constantly growing amounts of data gathered in high
throughput experiments. Simple and standard statistical
procedures, though serving as a basis for processing
workflows, are often no longer valid approaches in view
of the complexity of experimental designs and high data
dimensionality. Machine learning and statistical modeling
are fields which are constantly being developed in service
of biomarker detection. Machine learning techniques
successfully enhance knowledge discovery in cancer
research (Parmar et al., 2015; Jagga and Gupta, 2015),
radiotherapy adaptation (Guidi et al., 2017; Fargeas et al.,
2015), and integrative studies aid exploration throughout
transcriptomics (and other omics) data sets (Francescatto
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et al., 2018).
One of the areas with mathematical modeling

constantly in progress is radiation research, especially
when it comes to health risks and opportunities. Ionizing
radiation is an omnipresent factor, which has significant
impact on many aspects of human life. Small doses
are absorbed on a daily basis while using everyday
equipment such as radios or microwave ovens, whereas
higher doses occurring during accidents may have very
detrimental effects (Abbott, 2015). However, high doses
used under controllable conditions carry beneficial effects,
i.e., they are used widely for therapeutic purposes. In
fact, medical procedures such as X-ray imaging or
radiotherapy constitute the main source of man-made
radiation exposure (Ray et al., 2012). For instance, 2 Gy
of ionizing radiation, which is classified as a high dose,
is a commonly used fraction of a total dose given to
the patient during radiation therapy in various types of
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cancer (Joiner, 2004). This is a standard, although, it
is known that radiosensitivity is a trait specific for each
individual and depending on its level the reaction to
radiotherapy may be extremely different. Radiosensitive
patients obtaining too high doses more frequently than
required have a high chance of developing late adverse
effects, while for radioresistant individuals the standard
procedure may be insufficient for the healing effect
to progress. Therefore, there is a pressing need for
a thorough understanding of the processes underlying
radiation response in the field of dosimetry, for enabling
therapy personalization.

Many studies have been conducted in the domain of
radiation research. These experiments are often costly
and time consuming and that is why it is crucial to
extract information entirely efficiently in single studies,
but also to make the most of combining information
from already available data and knowledge. In this
work we examine two datasets from breast cancer patient
samples. In one experiment these blood samples were
treated with a therapeutic dose of 2 Gy and in the other
with a high dose of 4 Gy. While this experimental
setting may be useful to conduct differentiation analyses,
at the same time it could pose a problem when attempting
to merge data sets, for instance, in classification tasks,
as the doses differ. Such factors may greatly affect
results of analyses when not taken under consideration.
However, current biological expertise allows us to assume
a linear model of dependency between radiation dose
and gene expression (Brenner et al., 2003). Although
uncertainty persists when it comes to low radiation
doses absorbed (Mullenders et al., 2009) (Fig. 1), 2
and 4 Gy doses are both classified as high according
to UNSCEAR (UNSCEAR, 2000). These facts enable
the use of appropriate mathematical tools, i.e., linear
interpolation, to estimate and unify the expression values
to correspond in both cases to a 2 Gy dose.

By means of dose response profiles and
overrepresentation in silico analysis, the study provides
guidance for insight into the processes activated and
inhibited along with increased high doses of radiation
used for medical purposes. This research addresses the
task of biomarker identification by means of integrative
transcriptomics data analysis. The non-standard statistical
techniques include differentiation analysis between
doses with respect to the response patterns and applying
these dose profiles as filters in classification. The
combination of statistical differentiation inference and
profile modeling with machine learning methods for
classification and interaction analysis allows identifying
the most significant features, which may serve as a
potential dose response signature.
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Fig. 1. Commonly accepted radiation dose model. The solid
line indicates experimentally confirmed linear depen-
dency between cancer risk and absorbed dose. This,
however, holds for high doses from 0.1 Gy. The low-
dose relation illustrated with possible models in inter-
mittent lines is still under investigation.

2. Material and methods

2.1. Material. The data sets used in this study consist
of two independently obtained expression sets from
microarray experiments on the subject of radiosensitivity.
The experiments were designed with the objective of
identifying genes differentiating between radioresistant
(RR) and radiosensitive (RS) women in a group of
breast cancer patients undergoing radiotherapy. Blood
samples were collected from the donors for the subsequent
RNA extraction from lymphocytes for the microarray
experiment. The first set was processed on the HuGene
Affymetrix 1.0 ST oligonucleotide microarray platform,
measuring 19,718 genes. There were 60 samples, of
which 30 were labeled as radiosensitive and 30 as
radioresistant. These samples were divided into two
lots assigned to one of the two conditions: controls
and irradiated with a therapeutic level dose of 2 Gy.
The second experiment was performed using a custom
Breakthrough 20K cDNA microarray chip (Finnon et al.,
2012), measuring 19,959 genes. The study group
consisted of 31 radiosensitive and 28 radioresistant
patients and the treatment samples were subjected to a
high dose of 4 Gy. The clinical description of the samples
and radiosensitivity status assignment is available in the
work of Yarnold et al. (2005).

2.2. Methods.

2.2.1. Preprocessing. In the first stage of analyses, the
data sets were normalized separately according to their
platform type. The Affymetrix oligonucleotide single
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Fig. 2. Diagram presenting a comparison of experimental designs. The twin experiments were carried out using the same labeling of
RR and RS patients with similar numbers of samples. They differ, nonetheless, with sample treatment doses and microarray
experimental platforms. These issues had to be resolved during combined data processing.

channel data was normalized using the robust multichip
average (RMA) method (Bolstad et al., 2003), specifically
with background correction, quantile normalization and
summarization using the median polish algorithm. Probes
were reannotated with a Brainarray database custom
chip description file (ENTREZG annotation, version
19.0.0) (Dai et al., 2005). The goal of this work was,
however, to carry out a combined analysis of the data.
Therefore, batch effect reduction through empirical Bayes
methods was applied using the ComBat software (Johnson
et al., 2007) for three batches (one for each of the two
channels in cDNA data and one for oligonucleotide data)
with no covariates (Papiez et al., 2014).

2.2.2. Differentiation analysis. In order to benefit
from the joint analysis of two experiments, a common
gene set for the two platforms was extracted for
further processing. Statistical inference was performed
with the use of differentiation tests between the dose
groups: t-test, modified t-test and U Mann–Whitney test,
according to the normality and variance homogeneity
assumptions. Moreover, as an additional criterion
for selection to the next steps, only genes which did
not produce significant differences between controls
in the two experiments were chosen. These genes
were also investigated further for differentiation between
2 Gy and 4 Gy with division into radiosensitive and
radioresistant samples. The differentially expressed
genes between doses specific for radiosensitive and
radioresistant patients were then examined in terms of
the functional characteristics by studying overrepresented
biological process Gene Ontology terms (Ashburner et al.,
2000). Overrepresentation was assessed using Fisher’s
exact test implemented in the topGO R package (Alexa

and Rahnenfuhrer, 2010) with Benjamini–Hochberg
correction for multiple testing. The advantages of
incorporating bioinformatics databases into biomarker
discovery schemes have been previously shown in various
studies (Meehan et al., 2013; Kong et al., 2014).

2.3. Trend testing. With two different doses, the genes
were additionally assessed for the presence of trend with
the Jonckheere–Terpstra test (Terpstra, 1952; Jonckheere,
1954). This test is an equivalent of the Kruskall–Wallis
one for samples that may be sorted. Thus, the hypotheses
are as follows:

H0 : Θ1 = Θ2 = · · · = Θk, (1)

HA : Θ1 ≤ Θ2 ≤ · · · ≤ Θk, (2)

where Θi is the i-th sample median.
The genes marked significant at the level of 5% with

strictly increasing and decreasing (i.e., not significantly
monotonic) trends were analyzed for Gene Ontology term
enrichment.

Furthermore, a more detailed insight into the nature
of the trends was necessary. Hence, taking a step further,
the analyzed genes, which did not present significant
differences between controls in both experiments, were
classified into one of the six types of response profiles
(Fig. 3):

• irradiation related up-regulated,

• irradiation related down-regulated,

• dosimetry applicable up-regulated,

• dosimetry applicable down-regulated,

• high dose activation up-regulated,
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• high dose activation down-regulated.

These response profiles were assigned based on the
differentiation of expression levels between doses, e.g., in
the irradiation related up-regulated group the expression
levels were significantly differentiating between 0 Gy and
2 Gy, but no significant difference was observed between
2 Gy and 4 Gy.

2.4. Multiple random validation. In order to
identify the potential biomarkers of radiation response,
the samples were classified in a multiple random
validation procedure. However, in this case simple
separation between controls and irradiation samples was
not possible, due to the inconsistent doses used in two
experiments. Therefore, information gathered in the
course of trend testing was used and the following
procedure was executed on genes assigned into the
irradiation related and dosimetry applicable categories.
In the features that fell into the dosimetry applicable
group, expression values in the 2 Gy dose point were
substituted with a linear interpolation value between the
control and 4 Gy values in the corresponding samples. In
the irradiation related group, as there were no significant
differences between values in 2 Gy and 4 Gy dose points,
the values remained the same. In this way, a data
set with two classes: controls and 2 Gy samples, was
approximated. Results obtained using this novel method
were compared to multiple random validation performed
on unadjusted expression values.

Multiple random validation was carried out in 500
repetitions. In each repetition the data were randomly
divided into training and test sets with a ratio of 7:3, and
case/control proportions followed the actual proportion
in the entire set. The classification was performed by
means of logistic regression with forward stepwise feature
selection using the Bayes factor (Berger and Pericchi,
1996) as a criterion for increasing the number of model
features. In each repetition, genes forming the final model
were recorded. The genes were ranked according to
the frequency of their occurrence in a single signature.
The resulting list served as the reference for further
comparative analysis.

2.5. Monte Carlo feature selection validation. The
entire data set was submitted to the Broadside tool (Krol,
2015), performing distributed Monte Carlo based feature
selection (MCFS), to identify genes showing the most
significant interaction networks in terms of radiation
response. Broadside is a distributed feature selection and
interaction mining algorithm and application designed for
classification, regression and survival analysis problems.
Interactions are captured by permuting pairs of variables,
capturing the effect these permutations have on the model
performance measure, and solving a linear equation

system in order to perform a decomposition of feature
total effects into the main and interaction ones. As
a result, Broadside is not bound to a specific type of
model and is more robust as it is free from the risk of
misinterpreting unpruned decision tree structures as useful
features and interactions. The most often occurring genes
in the multiple random validation logistic models were
compared to the results of the MCFS networks.

3. Results

3.1. Differentiation analysis. After extracting
the common genes for both experimental platforms:
Affymetrix oligonucleotide and custom cDNA, the joint
analysis was carried out on a total of 9852 genes.
Firstly, these genes were investigated with regard to
the control samples in order to ensure the same base
level for both experimental datasets. Among the control
samples in the two studies, 7429 genes did not produce
a significant difference between the normalized data
sets. This set was then further investigated to determine
gene sets indicating different patterns of response in
radiosensitive and radioresistant patients. The overlap
of the genes producing significant differences between
expression levels in 2 Gy and 4 Gy is presented in Fig. 4.
There were 1214 genes unique to the RS group and 730
genes for one RR.

On performing Gene Ontology enrichment analysis
using Fisher’s exact test with regard to all of the
differentially expressed genes between 2 Gy and 4 Gy,
after Benjamini–Hochberg correction, one significantly
overrepresented term remained, i.e., the cellular amino
acid metabolic process. Within the radiosensitive group,
no significantly overrepresented terms were discovered;
however, in the radioresistant patients 31 terms were
statistically significant (see Table A2). GO BP terms
linked to the radioresistant group included, among others,
Stress response, Oxidative phosphorylation and Immune
response regulation.

3.2. Trend testing. The numbers of features with
increasing, decreasing and monotonic trends according to
the results of the Jonckheere–Terpstra test are presented
in Table 1. Additionally, genes were divided into strictly
increasing and decreasing groups if they did not appear
in the monotonic trend group. The genes with strictly
increasing and decreasing dose response served as a basis
for GO term enrichment analysis. The strictly up-trending
genes yielded 99 significantly overrepresented terms and
the down-trending—38 GO terms. Among the terms
linked to decreasing features, there were processes related
to hemopoiesis and homoeostasis, as well as GPI anchor
metabolism and biosynthesis, whereas among the terms
enriched with increasing trend genes cellular response
to ionizing radiation could be found, along with Wnt
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Fig. 3. Illustration of dose response profiles applied for gene grouping to enable accurate expression value interpolation.
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Fig. 4. Venn diagram presenting a comparison of the numbers
of genes differentially expressed between 2 and 4 Gy
doses in RR vs. RS samples.

signaling. The full lists of GO terms are available upon
request from the authors.

The numbers of genes classified into the six types of
response profiles are summarized in Table 2.

3.3. Multiple random validation. Average statistics
were calculated over the course of 500 multiple random
validation iterations: positive predictive value (PPV),
negative predictive value (NPV) and overall accuracy. The
classification was performed initially on original data, and
afterwards on data adjusted using linear interpolation in
the case of the dosimetry applicable type of gene profiles.
There were 1,677 genes in the irradiation related category

Table 1. Numbers of genes showing a significant dose trend.
The strictly increasing and decreasing genes are those
which do not appear in the monotonic trend group.

Increasing Monotonic Decreasing
No. of genes 717 377 53

Strictly increasing Strictly decreasing
No. of genes 363 30

and 1,088 of the dosimetry applicable one. The original
data results and the compared adjusted data results are
presented in Table 3.

In the adjusted data, features selected for the
logistic regression models were recorded. The top three
most frequent genes included GADD45A, ZMAT3 and
NAMPT. A complete list of the genes together with their
occurrence frequencies is comprised in Table A1.

The entire initial set of features was processed
independently using Monte Carlo feature selection, and
the essential fragment of the ensuing network is presented
in Fig. 5. It is clearly visible that genes with the
highest numbers of interactions, and therefore the largest
networks, are GADD45A, ZMAT3 and CCNG1.

4. Discussion

Basic analysis of differentially expressed genes under
varying doses of radiation indicated potential changes in
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Table 2. Numbers of genes grouped in to particular dose response profiles.
Number of genes in response profiles

Irradiation related Dosimetry applicable High dose activation

Up-No change 610 Up-Up 117 No change-Up 48
Down-No change 1067 Down-Down 969 No change-Down 319

Fig. 5. Central fragment of a gene interaction network created as an illustration of Monte Carlo feature selection results on the entire
data set. The genes in bold show the highest number and largest strength of interaction with other genes.

Table 3. Multiple random validation metric results for analysis
conducted on original expression data values values ad-
justed using linear interpolation of the appropriate gene
profiles.

Original expression data

Mean [%] Lower CI [%] Upper CI [%]
PPV 86.71 86.13 87.29
NPV 89.32 88.76 89.89
Accuracy 87.73 87.44 88.02

Interpolation adjusted data
PPV 93.11 92.78 93.45
NPV 94.38 94.08 94.67
Accuracy 93.56 93.39 93.72

the expression profiles of radiosensitive and radioresistant
patients. The genes specifically differentially expressed
in the radiosensitive group participate in a wide range
of biological processes, some of them being directly
reported to play major roles in radiation response and
tumor development (Weichselbaum et al., 1994; Park
et al., 2014; Reinhardt et al., 1997). Meanwhile, the
radiosensitive group gene set shows a lack of activity in
processes known to be of biological importance. This is in
coherence with the issue of key processes being silenced

in radiosensitive patients and points to an area of further
experimental investigation.

In the trend analysis, genes with strictly increasing
trend were overrepresented in biological processes such
as explicitly cellular response to ionizing radiation, but
also Wnt signaling, which has been reported to be linked
to breast cancer mechanisms in a study comprising a
large dataset analyzed in a non-customary manner going
beyond differential expression (Schmid et al., 2012).
The down-trending genes tend to be more engaged
in hemopoiesis and homoeostasis, which have been
previously shown to play a role in stem cell injury from
ionizing radiation (Shao et al., 2014). Also, GPI anchors,
being important apoptosis regulators when deregulated by
ionizing radiation, may have a considerable impact on
cellular resistance (Brodsky et al., 1997).

The use of a non-standard approach to data
classifying was highly beneficial. While simple logistic
regression classification in a multiple random validation
scheme on unadjusted data yielded satisfactory results
in the context of separating control and dose-treated
samples, there was room for improvement. Considering
the twofold nature of the doses applied to samples in both
experiments, data in the 4 Gy timepoint were linearly
interpolated to 2 Gy. However, instead of executing this
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in a non-selective approach, the genes were processed
according to their dose response profile. The adjusted data
gave significantly supreme results in comparison with the
situation where dose values were not taken into account.
Adjusted data classifying surpassed the simple approach
in terms of positive and negative predictive values, as well
as accuracy. This proves that, when possible, not only
increasing sample size enhances classifier potential, but
also using tailored solutions based on the knowledge of
the underlying models to adjust data may be necessary.

The genes most often occurring in the logistic
regression models were examined in terms of their
biological function, to justify their contribution to the
underlying processes. They include the following:

• GADD45A is a member of a group of genes
whose transcript levels are increased following
stressful growth arrest conditions and treatment with
DNA-damaging agents. The DNA damage-induced
transcription of this gene is mediated by both
p53-dependent and independent mechanisms (Zhan,
2005). It has been previously proven to be a
biomarker of radiation response (Kabacik et al.,
2015).

• ZMAT3 mRNA and the protein are up-regulated by
wildtype p53 and overexpression of this gene inhibits
tumor cell growth, suggesting that this gene may
have a role in the p53-dependent growth regulatory
pathway (Bersani et al., 2014).

• NAMPT is thought to be involved in many important
biological processes, including metabolism, stress
response and aging. It has been shown to play a key
role in radiotherapy treatment (Elf et al., 2017).

Moreover, an independent feature selection method
was applied to the entire data set. The MCFS method as a
rule based algorithm points out genes with regard to their
number and strength of interactions. In the illustration
(Fig. 5) it is clearly visible that three genes hold most
interactions (number of lines starting in a node) and also
the strongest ones (width of interaction line). These key
features in the case of the two merged experiments were
mainly GADD45A, ZMAT3 and CCNG1. Cyclin G1
(CCNG1) is a gene associated with G2/M phase arrest
in response to DNA damage. It acts as an intermediate
by which p53 mediates its role as an inhibitor of cellular
proliferation and has been found to be linked with
radiation response (Kabacik et al., 2015; 2011; Manning
et al., 2013; Cruz-Garcia et al., 2018).

The independent identification of key features
important for modeling radiation response further justifies
the use of a tailored non-standard data processing
technique for classification purposes. The two most
significant features, GADD45A and ZMAT3, were

supported by means of another feature selection
algorithm, as well as literature research. Furthermore, this
may provide an incentive towards scientific research of the
less frequent logistic regression model genes as to their
possible importance not as single biomarkers of radiation
response, but rather in terms of the impact they have when
functioning in a network.

5. Conclusions

In this work a customized approach to high-throughput
transcriptomic data analysis was proposed, based on
statistical tools and current knowledge of the biological
mechanisms. The data were obtained in the course of twin
experiments with varying details, i.e., radiation dose and
microarray platform. The analysis stages consisted of

1. identifying differentiating genes between
radioresistant and radiosensitive patients, and
the related biological processes;

2. assigning genes to their response patterns using
the Jonckheere–Terpstra test and a custom profiling
classification scheme;

3. applying the gene profiles as a filter to adjust data
by means of linear interpolation to enable efficient
classification in a multiple random validation setting.

These steps led to successful determination of potential
biomarkers of radiation response, which were confirmed
with an independent computational approach (MCFS) and
literature study. Moreover, the differentiation and trend
analyses confirmed the participation of genes deemed
significant in biological processes linked with radiation
response and cancer.

In silico machine learning analysis combined with
classic statistical techniques with functional validation
and profile modeling is a comprehensive solution for
elucidating potential dose response mechanisms and
revealing the most significant features to form a signature.
Application of this kind of tailored procedures is a step
towards enabling personalized individual therapy. It
narrows down the search area for experts, potentially
saving time and effort and allowing improvement in
planing the design of future biological experiments
established in order to study the impact of specific doses
on breast cancer radiotherapy.
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Appendix

Table A1. Gene occurrence frequency in multiple random
validation iterations for genes incorporated in the
model at least 10 times.

Gene symbol Frequency

GADD45A 413
ZMAT3 87
NAMPT 64
COL4A3BP 51
TRAP1 49
SYNCRIP 45
G3BP1 44
SRSF8 42
DDX39A 38
NAALAD2 36
KAT5 25
RNPS1 22
XPOT 22
SPON1 15
DENND4A 13
ARHGAP19 10
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Table A2. GO terms enriched with genes differentiating 2 Gy and 4 Gy dose response in radioresistant patients.
Term Annotated Significant Expected Fisher p-value

cellular metabolic process 4063 559 489.21 2.90E-09
cellular response to stress 764 123 91.99 5.20E-08
immune response-regulating cell surface receptor 156 34 18.78 3.10E-07
metabolic process 4400 589 529.79 3.20E-07
macromolecular complex subunit organization 820 143 98.73 6.70E-06
protein modification by small protein conjugation 404 76 48.64 7.20E-06
nucleobase-containing compound metabolic process 2233 350 268.87 9.00E-06
oxidative phosphorylation 55 19 6.62 1.30E-05
antigen processing and presentation 106 28 12.76 1.30E-05
response to stress 1496 195 180.13 1.80E-05
cell cycle 723 114 87.05 3.50E-05
cellular nitrogen compound metabolic process 2491 385 299.93 3.50E-05
electron transport chain 58 18 6.98 4.20E-05
RNA processing 304 69 36.60 4.40E-05
mitochondrial transport 131 30 15.77 4.90E-05
mRNA metabolic process 271 63 32.63 5.40E-05
translational elongation 50 18 6.02 5.70E-05
mitochondrion organization 231 55 27.81 7.30E-05
translational termination 39 16 4.70 8.80E-05
DNA-templated transcription, elongation 59 19 7.10 1.20E-04
mitochondrial translation 45 18 5.42 1.20E-04
cellular macromolecule catabolic process 364 74 43.83 1.50E-04
regulation of establishment of protein localization 53 16 6.38 1.60E-04
proteolysis involved in cellular protein catabolic process 259 53 31.19 1.90E-04
immune response-regulating signaling 221 38 26.61 2.00E-04
cellular protein catabolic process 270 57 32.51 2.40E-04
regulation of axon extension 33 9 3.97 2.40E-04
nitrogen compound metabolic process 2686 398 323.41 2.50E-04
T cell receptor signaling pathway 68 25 8.19 3.20E-04
positive regulation of ubiquitin-protein transferase activity 38 13 4.58 3.20E-04
immune response-activating cell surface receptor 145 34 17.46 3.40E-04
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