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This paper considers reasonable bandwidth allocation for multiclass services in peer-to-peer (P2P) networks, measures the
satisfaction of each peer as a customer by a utility function when acquiring one service, and develops an optimization
model for bandwidth allocation with the objective of utility maximization. Elastic services with concave utilities are first
considered and the exact expression of optimal bandwidth allocation for each peer is deduced. In order to obtain an optimum
in distributed P2P networks, we develop a gradient-based bandwidth allocation scheme and illustrate the performance with
numerical examples. Then we investigate bandwidth allocation for inelastic services with sigmoidal utilities, which is a
nonconvex optimization problem. In order to solve it, we analyze provider capacity provisioning for bandwidth allocation
of inelastic services and modify the update rule for prices that service customers should pay. Numerical examples are finally
given to illustrate that the improved scheme can also efficiently converge to the global optimum.
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1. Introduction

Over the last several years, peer-to-peer (P2P) networks
have received much attention due to the fact that they offer
a simple way to exchange video files as well as to provide
other network services over the Internet. Different from
the traditional client-server architecture, which mainly
depends on a small number of powerful servers, P2Ps
have many advantages such as high scalability and strong
robustness. The main idea behind P2Ps is that each peer
not only receives resources from the networks also but can
provide resources to the networks. A peer can derive much
more benefit from the networks if a larger number of peers
exchange their resources. Thus, P2Ps have been applied
into many fields in recent years, e.g., distributed storage
(Yan et al., 2017), cloud computing (Song et al., 2014),
edge computing (Wang et al., 2018) and hierarchical name
systems (Lin et al., 2015).

P2Ps can support various network services and have
caused a lot of Internet traffic by different protocols (Song
et al., 2015; 2017; Zheng et al., 2016), such as BitTorrent
for file-sharing and VoIP for video conferencing. Indeed,
these services can be mainly divided into two categories
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according to the satisfaction of peer when acquiring
services (Lee et al., 2005; Hande et al., 2007; Li et
al., 2015; 2016b). One corresponds to the traditional
data services, such as file download and upload. They
are almost tolerant of transmission delay and can make
use of even the minimal amounts of bandwidth. These
services are known as elastic services and the satisfaction
of a peer when requesting an elastic service can be
described by a concave utility. The other one is related
to delay or rate sensitive multimedia services, such as
real-time streaming video service. They always have
high requirements on time delay and the service rate
for receiving a certain level of the quality of service
(QoS). These services are regarded as inelastic in their
requirement for bandwidth. The satisfaction of each
peer for obtaining an inelastic service can be modeled as
nonconcave utility (e.g., sigmoidal).

Resource allocation for elastic and inelastic services
in P2P networks has been an emerging area of research.
Resource pricing is regarded as an interesting means
to realize resource allocation. Eger and Killat (2007b)
proposed a pricing mechanism to achieve fair bandwidth
allocation of service providers between service requesters.
They further studied the weighted fairness among
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service requesters and presented an extended bandwidth
allocation mechanism where service requesters adjust
their offered prices and service providers adjust their
service rates (Eger and Killat, 2007a). Then Kumar
et al. (2011) developed a scheme for pricing and resource
allocation in P2P networks, which permits users in a firm
to share computing resources effectively. Koutsopoulos
and Iosifidis (2010) investigated bandwidth allocation in
a star topology P2P network where the access links to
the backbone networks become the capacity bottleneck.
The authors formulated the bandwidth allocation problem
with the objective of maximizing total network utility
through reasonably allocating the bandwidth of each
peer to downloaders and uploaders. Recently, Li
and Sun (2016) as well as Li et al. (2016a) applied
the first-order Lagrangian idea and low-pass filtering
method, and proposed a novel price-based bandwidth
allocation mechanism. Thus a service customer receives
its bandwidth allocation according to its offered price,
which realizes the goal of fair resource allocation. Antal
and Vinkó (2016) considered max-min fair bandwidth
allocation in BitTorrent communities and presented a
mathematical programming model for max-min fairness
bandwidth allocation in a multi-swarm peer-to-peer
content sharing community.

Besides the research results mentioned above, there
are also some other resource allocation mechanisms
based on reputation methods. They are found useful to
encourage cooperation amongst selfish peers and realize
efficient resource allocation. Satsiou and Tassiulas (2010)
presented a distributed reputation-based mechanism to
achieve resource allocation according to which peers
earn reputation analogous to their contributions. Gupta
et al. (2015) described a scheme of reputation-based
probabilistic resource allocation for avoiding free riding
in unstructured P2P networks. Goswami et al. (2017)
considered reputation-based resource allocation in P2P
networks and analyzed a resource allocation mechanism
by using two non-cooperative games: the demand game
and the reputation game.

The research results above mainly concern resource
allocation for elastic services, such as file-transfer in
P2P file-sharing networks. However, how to achieve
efficient resource allocation for inelastic services is also
very important. Chen et al. (2012) considered resource
allocation for P2P multiparty conferencing applications
where it is a crucial challenge to provide a certain
level of the QoS. The authors described the quality of
experience of the conferencing peer through a utility
function and formulated the utility maximization model
for P2P multiparty conferencing applications, which are
constrained by peers’ uplink capacities. Li et al. (2017)
also developed the utility maximization problem for
P2P inelastic services, and derived that the problem
is difficult to resolve by using traditional schemes due

to the nonconvexity of the optimization. In order to
overcome the difficulty and obtain the optimum, they
applied particle swarm optimization (PSO).

In this work we investigate bandwidth allocation for
multiclass services, and develop a utility maximization
(social welfare) model, i.e., the total satisfaction of all
peers in the networks. Our work is different from the
results obtained previously. The objective of our model
is to maximize the aggregated utility of peers when they
acquire services, elastic and/or inelastic. We firstly derive
a scheme of gradient-based bandwidth allocation for only
elastic services, and extend it to apply into bandwidth
allocation for inelastic services by slightly modifying the
paid price rule, even though the bandwidth allocation
model is a difficult nonconvex optimization problem. The
simulation results validate that the scheme can achieve the
global optimum within a reasonable number of iterations.

The rest of this paper is organized as follows.
We introduce the bandwidth allocation model for
multiclass services in P2P networks in Section 2.
In Section 3 we analyze the model for only elastic
services by nonlinear programming theory and present a
gradient-based bandwidth allocation scheme. Then we
apply the bandwidth allocation algorithm for inelastic
services by slightly modifying the price rule in Section 4,
and give some numerical examples in Section 5. Finally,
we conclude this paper in Section 6.

2. Bandwidth allocation model

2.1. Services and utility functions. We all know
that there are many different services in the Internet.
Each user who requires a service can have a certain of
satisfaction when the service is guaranteed by a certain
amount of resource. A utility function is usually used
to describe the satisfaction of a user when he/she obtains
a service. Based on the features of their functions, the
services can be classified into two types (Lee et al., 2005;
Hande et al., 2007; Li et al., 2015). One is known as
the traditional data services, such as file download and
upload. These services are not sensitive to transmission
delay and can make use of even the minimal amounts of
granted bandwidth. These are considered to be elastic
and they have concave utility functions. The other type
is related to multimedia services. These services are
very sensitive to transmission delay and usually demand
a certain amount of bandwidth to support required QoS.
Examples of these services include real-time streaming
video and audio services. They are inelastic and usually
have nonconcave utility functions, such as sigmoidal ones.
Here all utility functions are increasing and no less than
zero in their arguments, i.e., Us(y) ≥ Us(0) = 0.

We adopt the utility functions discussed by Lee
et al. (2005), Hande et al. (2007) and Li et al. (2015).
Elastic service s has the concave utility function Us(y) =
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w(log(ay+b)+d)with service rate y, and inelastic service
r has the sigmoidal utility function

U r(y) = w

(
1

1 + e−a(y−b)
+ d

)
,

where a, b, d and w are parameters of service s or
r. Generally, w is regarded as the willingness-to-pay of
the customer who requests service s or r, a and b are
considered the elasticity of service s or the inelasticity of
service r. For example, the larger the parameters a and
b, the more inelastic service r becomes, which means a
greater bandwidth requirement to guarantee its QoS.

2.2. Model description. Consider a P2P network
which consists of a set of peers, a set S of elastic services
and a set R of inelastic services. Each peer in the network
intends to acquire one or several services. At the same
time it can also provide one or several services. Therefore,
each peer acts as not only a service customer, but also as a
service provider. For file-sharing P2P networks, each peer
uses its access link to upload/download a file or a fragment
of a file to other peers, who acquire the file. Hence the
scarce resource of this network is the upload capacity of
each peer, resulting in competition among the requesting
peers. Thus the network faces an important problem of
resource management, that is, how to efficiently allocate
the bandwidth of peers’ access links among the service
requesting ones.

Introduce the set P of peers acting as service
providers that grant bandwidth allocation to requesters.
Also define the sets Cs and Cr of peers acting as service
customers that request elastic services and inelastic
services, respectively. Peer c ∈ Cs obtains a total rate
ysc granted by its providers P s(c) when requesting elastic
service s, and peer c ∈ Cr obtains a total rate yrc granted
by its providers P r(c) when requesting inelastic service
r. For peer p as a service provider, assume xs

pc ≥ 0 is the
service rate offered by service provider p for customer c
who requests elastic service s and xr

pc ≥ 0 is the service
rate offered by service provider p for customer c that
requests inelastic service r. Then the total rate offered by
provider p is subjected to its access link upload capacity
Cp.

Thus bandwidth allocation for multiclass services
in P2P networks can be modeled as the following
optimization problem:

Maximize∑
c∈Cs

Us
c (y

s
c) +

∑
c∈Cr

U r
c (y

r
c ) (1)

subject to
∑

p∈P s(c)

xs
pc = ysc ,

∑
p∈P r(c)

xr
pc = yrc ,

∑
c∈Cs(p)

xs
pc +

∑
c∈Cr(p)

xr
pc ≤ Cp.

The bandwidth allocation problem (1) can be
considered an P2P SYSTEM problem. Here, the objective
of bandwidth allocation is to maximize the aggregated
utility of service rates ysc and yrc over all service
customers with constraints of service providers’ access
link capacities. Notice the equality in the bandwidth
allocation model; for each service customer c, the elastic
(inelastic) service rate ysc (yrc ) is the sum of the rates xs

pc

(xr
pc) that its service providers offer. On the other hand, as

described by the inequality in the optimization problem,
the service rate of provider p is constrained by its upload
capacity, i.e., Cp.

2.3. Model analysis. Now we analyze the bandwidth
allocation model (1) for multiclass services in peer-to-peer
networks. The Lagrangian of the model (1) is

L(x,y;λ, μ)

=
∑
c∈Cs

Us
c (y

s
c) +

∑
c∈Cr

U r
c (y

r
c )

+
∑
c∈Cs

λs

( ∑
p∈P s(c)

xs
pc − ysc

)

+
∑
c∈Cr

λr

( ∑
p∈P r(c)

xr
pc − yrc

)

+
∑
p∈P

μp

(
Cp −

∑
c∈Cs(p)

xs
pc −

∑
c∈Cr(p)

xr
pc

)
,

(2)
where λ is the price vector with elements λs and λr, which
can be considered the price per unit bandwidth paid by
customer c when requesting elastic service s and inelastic
service r, respectively; μ is the price vector with element
μp, which can be regarded as the price per unit bandwidth
charged by provider p when granting bandwidth allocation
for a service; x is the service rate matrix with elements xs

pc

and xr
pc for elastic and inelastic services, respectively; y

is the rate vector with elements ysc and yrc .
We can rewrite the Lagrangian (2) as

L(x,y;λ, μ)

=
∑
c∈Cs

(Us
c (y

s
c)− λsy

s
c)

+
∑
c∈Cr

(U r
c (y

r
c )− λry

r
c)

+
∑
c∈Cs

∑
p∈P s(c)

xs
pc (λs − μp)

+
∑
c∈Cr

∑
p∈P r(c)

xr
pc (λr − μp) +

∑
p∈P

μpCp.

(3)

Notice that the first part in (3) is separable in ysc and
yrc , and the second part is separable in xs

pc and xr
pc. Thus
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the objective function of the dual problem is

D(λ, μ)
= max

x,y
L(x,y;λ, μ)

=
∑
c∈Cs

Ps(λs) +
∑
c∈Cr

Pr(λr)

+
∑
c∈Cs

∑
p∈P s(c)

Rs
pc(λs, μp)

+
∑
c∈Cr

∑
p∈P r(c)

Rr
pc(λr , μp) +

∑
p∈P

μpCp,

(4)

where

Ps(λs) = max
ys
c

Us
c (y

s
c)− λsy

s
c , (5)

Pr(λr) = max
yr
c

U r
c (y

r
c)− λry

r
c , (6)

Rs
pc(λs, μp) = max

xs
pc

xs
pc(λs − μp), (7)

Rr
pc(λr, μp) = max

xr
pc

xr
pc(λr − μp). (8)

Then, we can obtain the dual problem of the
bandwidth allocation model (1):

Minimize

D(λ, μ) (9a)

subject to

λs ≥ 0, λr ≥ 0, μp ≥ 0. (9b)

The dual problem aims to achieve the objective
of minimizing the total price charged by all service
providers under the constraints that service customers
are guaranteed with certain levels of satisfaction. In
order to obtain the optimal price and bandwidth
allocation, gradient-based schemes could be derived
when only considering elastic services since their utility
functions are all concave. However, when discussing
multiclass services, the bandwidth allocation model
becomes a nonconvex problem, such that these traditional
gradient-based schemes are not necessarily efficient to
converge to the global optimum. They may produce
suboptimal or even infeasible bandwidth allocation for
each peer.

3. Bandwidth allocation for elastic services

In this part, elastic services with concave utility functions
are firstly analyzed through convex optimization theory,
and a gradient-based bandwidth allocation scheme for
them is proposed for achieving the optimum of the
bandwidth allocation model.

3.1. Model analysis. Based on convex optimization
theory (Bertsekas, 2003), we find the utility maximization
model (1) for bandwidth allocation in P2P networks is

a convex programming problem, since it has a concave
objective and linear constraints. The objective of the
model (1) is strictly concave with respect to variable ysc ;
however, it is concave but not strictly concave with respect
to variable xs

pc since each customer can receive bandwidth
allocation from multiple providers. Thus we can derive
the following theorem.

Theorem 1. For the utility maximization model (1)
for bandwidth allocation in P2P networks, if there are
only elastic services, then the the optimal aggregated
service rate of each customer c, i.e., ys∗c , exists and is
unique. Meanwhile, the optimal bandwidth provision of
each customer from its providers, i.e., xs∗

pc , is not neces-
sarily unique.

If there are only elastic services in the network, the
optimal primal objective value is equal to the optimal dual
objective value. Analyzing the prices charged by service
providers, we also obtain the following result when the
bandwidth allocation model (1) achieves its optimum.

Theorem 2. When the bandwidth allocation model (1)
attains its optimum, the prices charges by those providers
offering bandwidth allocation to the same customer are
all equal, i.e., for service providers p, q ∈ P s(c), p �= q,
then μp = μq. Furthermore, these charged prices are
equivalent to the price λs offered by the customer.

Proof. When the bandwidth allocation model (1) attains
its optimum, the Karush–Kuhn–Tucker (KKT) condition
holds for optimality of the bandwidth allocation problem.
Thus, we can obtain

Us
c
′(ys∗c )− λ∗

s = 0 if ys∗c > 0, ∀c ∈ Cs,

λ∗
s − μ∗

p = λ∗
s − μ∗

q = 0

if xs∗
pc > 0, xs∗

qc > 0, ∀p, q ∈ P s(c).

Hence, for the multiple providers that grant
bandwidth allocation for a customer requesting an elastic
service, e.g., p, q ∈ P s(c), the optimal price charged by
each provider is

μ∗
p = μ∗

q = λ∗
s =

asws
c

asys∗c + bs
. (10)

Then the result is obtained. �
We can also understand this theorem from the

relationship of service or bandwidth request and
provision. Here μp is regarded as the price per unit
bandwidth charged by service provider p. It serves as
a load indicator on provider p. If the request load on
this provider increases, μp will increase to show that
its resource is “expensive” to use. Thus, μp tries to
balance the request load by discouraging customers from
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requesting bandwidth from those providers where there
may occur high load. At the end, the prices charged by
providers are all equivalent to that offered by the serving
customer.

3.2. Optimal bandwidth allocation. At the optimum
of an optimization problem, by applying the KKT
condition, the constraint with service provider p in the
bandwidth allocation model (1) is active if the price
associated with it is nonzero, i.e., μp > 0; otherwise,
the constraint is nonactive, which can be ignored in the
following analysis.

Notice that the elastic services have strictly concave
utility functions. Thus from (5) we derive the optimal
aggregated service rate of customer c who requests elastic
service s,

ys∗c = Us
c
′(λs)

−1 =
ws

c

λs
− bs

as
. (11)

Substituting (11) into (3), we obtain the following
simplified Lagrangian:

L(x;λ, μ)

=
∑
c∈Cs

(
ws

c(log
asws

c

λs
+ ds)

+ λs

∑
p∈P s(c)

xs
pc − ws

c +
bs

as
λs

)

+
∑
p∈P

μp

(
Cp −

∑
c∈Cs(p)

xs
pc

)
.

(12)

Let ∂L(x;λ, μ)/∂λs = 0; then we obtain the optimal
price paid by customer c requesting elastic service s,

λ∗
s =

ws
c∑

p∈P s(c)

xs
pc +

bs

as

. (13)

Inserting (13) into (12), we have

L̃(x;μ)

=
∑
c∈Cs

ws
c

(
log

(
as

∑
p∈P s(c)

xs
pc + bs

)
+ ds

)

+
∑
p∈P

μp

(
Cp −

∑
c∈Cs(p)

xs
pc

)
.

(14)

From (10) and (13), we obtain

∑
p∈P s(c)

xs
pc =

ws
c

μp
− bs

as

=
ws

c

μq
− bs

as
, p, q ∈ P s(c).

(15)

We can construct a bipartite graph which is
composed of the two sets C and P . Then an edge denotes

a service relationship between customer c and provider s.
If the bipartite graph is fully connected, then μ∗

p = μ∗
q =

λ∗
s , p, q ∈ P s(c) holds, whereas if the bipartite graph is

not connected, a similar optimization process can be run
for every disjoint connected subgraph separately. Thus,
inserting (15) into (14), the Lagrangian can be rewritten
as

L̃(x;μ)

=
∑
c∈Cs

ws
c

(
log

(
as

∑
p∈P s(c)

xs
pc + bs

)
+ ds

)

+
∑
p∈P

μpCp −
∑
p∈P

μp

∑
c∈Cs(p)

xs
pc

=
∑
c∈Cs

(
ws

c

(
log

asws
c

μ
+ ds

)
− ws

c +
bs

as
μ
)

+ μ
∑
p∈P

Cp.

Setting dL̃(x;μ)/dμ = 0, we obtain

μ =

∑
c∈Cs

ws
c

∑
p∈P

Cp +
∑
c∈Cs

bs

as

, (16)

and from (15), we have

ys∗c =
∑

p∈P s(c)

xs∗
pc

=
ws

c∑
c∈Cs

ws
c

⎛
⎝∑

p∈P

Cp +
∑
c∈Cs

bs

as

⎞
⎠− bs

as
.

(17)

Thus, if there are only elastic services in the network,
the optimal aggregated service rate ys∗c of customer c
depends on the sum of customers’ parameters bs/as plus
the total capacity of all service providers, and the total
willingness-to-pay weighted by the willingness-to-pay of
the customer. We also find that the optimal aggregated
service rate of each customer is unique, as we have
discussed in Theorem 1.

3.3. Bandwidth allocation scheme. In order to attain
an optimal bandwidth allocation in a decentralized P2P
network, distributed schemes for bandwidth allocation
depending only on locally available information should
be developed. Using the first-order Lagrangian method
and a filtering mechanism, we propose the following
bandwidth allocation scheme for elastic services. Details
of the presented scheme can eliminate typical oscillation
behavior due to nonuniqueness of the optimum. The
proposed bandwidth allocation scheme are described as
follows.
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Each service provider p updates its bandwidth
allocation for customer c who requests elastic service s
with the following scheme:

xs
pc(t+ 1) =

(
(1− α)xs

pc(t) + αx̃s
pc(t)

+ακxs
pc(t)(λs(t)− μp(t))

)+
xs
pc(t)

,
(18)

x̃s
pc(t+ 1) = (1− α)x̃s

pc(t) + αxs
pc(t), (19)

where κ > 0 is the step size; α > 0 is the parameter
for low-pass filtering in the algorithm, which is used
to remove the oscillation and improve the convergence
without changing the optimal solution; a = (b)+c means
a = b if c > 0 and a = max{0, b} if c = 0.

Each customer c computes the price λs(t) paid to its
providers according to the following rule:

λs(t) = argmax
ys
c(t)

Us
c (y

s
c(t))− λs(t)y

s
c(t), (20)

ysc(t) =
∑

p∈P s(c)

xs
pc(t). (21)

Each provider p updates its charged price μp(t) with
the following scheme:

μp(t+ 1) =

(
μp(t) + ν

zp(t)− Cp

Cp

)+

μp(t)

, (22)

zp(t) =
∑

c∈Cs(p)

xs
pc(t), (23)

where ν > 0 is the step size.
In the bandwidth allocation algorithm above,

customer c obtains the aggregated service rate ysc(t) and
computes the price λs(t) paid for provider p according
to (20). Provider p updates its bandwidth allocation
xs
pc(t) for customer c according to (18), (19). Meanwhile,

provider p observes the load zp(t) on it, and updates its
charged price μp(t) according to (22). Obviously, the
rule for bandwidth allocation update (18)–(21) and price
update (22)–(23) are both gradient-based schemes, which
can be proven to converge to the optimum of the convex
optimization problem.

When there are inelastic services besides elastic
ones in the network, the utility maximization model (1)
for bandwidth allocation in P2P networks becomes an
intrinsically difficult problem of nonconvex optimization,
which will be discussed in the next section.

4. Bandwidth allocation for inelastic
services

In this part, we assume that there are both elastic
and inelastic services in the P2P network and analyze
the utility maximization model (1) for bandwidth

allocation. In this scenario the bandwidth allocation
problem becomes a nonconvex optimization because of
the sigmoidal utilities of inelastic services. It is hard
to obtain the optimum through traditional methods. The
gradient-based scheme proposed for bandwidth allocation
of elastic services would not necessarily converge for
inelastic services. In the following analysis we will
show that, if service providers are provisioned with
certain amounts of capacity, we can still obtain the
optimal bandwidth allocation for both elastic and inelastic
services.

4.1. Model analysis. Consider the sigmoidal utility
function U r(yr) = w(1/(1+ e−a(yr−b))+ d) of inelastic
service r, and construct a straight line from the origin
to be tangent to the sigmoidal function. Denote the
y-coordinate of the intersection of the tangent with the
sigmoidal function by yr0 and the slope of the tangent by
λ0
r , as shown in Fig. 1. We know that there is an inflection

point yr0 for the sigmoidal utility function that satisfies
d2U r(yr)/dyr2 > 0, for yr < yr0 , and d2U r(yr)/dyr2 <
0, for yr > yr0 ; that is, the inflection point yr0 separates the
sigmoidal function into two portions; a convex one at a
low rate and a concave one at high rate. It can be observed
that yr0 ≥ yr0 for the sigmoidal function.

We can obtain from (6) that the optimal price offered
by customer c who requests inelastic service r can be
denoted as λ∗

r = U r
c
′(yrc ), which is a function of

the aggregated rate yrc . For one multiplier λ∗
r , there

are two options for inelastic service with a sigmoidal
utility function, i.e., yr1(λ∗

r) and yr2(λ∗
r) (≥ yr1(λ∗

r)).
Indeed, if λr > λ0

r , then yr1∗(λr) = yr2∗(λr) =
argmaxU r(yr) − λry

r = 0; if λr ≤ λ0
r , only the

larger service rate, i.e., yr2∗(λr), is the optimal bandwidth
allocation to maximize the sigmoidal function since the
smaller one, i.e., yr1∗(λr), is in fact to minimize the
sigmoidal function. In particular, when λr = λ0

r, we get
yr2∗(λr) = yr0 and yr1∗(λr) = 0, since both yr0 and 0
maximize U r(yr)− λr0yr.

Accordingly, the optimal price offered by customer

yr

U
r (y

r )

 

 

(y
0
r ,Ur(y

0
r ))

(yr0,U(yr0))

λ
r
0

Fig. 1. Sigmoidal utility function and its tangent.
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c that requests inelastic service r should be less than λ0
r,

and the optimal bandwidth allocation for inelastic service
can be derived. Furthermore, we can also obtain from the
analysis above that yr∗c (λr) ≥ yr0c (λ0

r) if λr ≤ λ0
r or

λr ≤ λ0
r if yr∗c ≥ yr0c . Therefore, in order to attain the aim

that the price offered by customer c requesting inelastic
service r does not exceed the point where the tangent
from the origin intersects the sigmoidal function, i.e., λ0

r,
each inelastic service should be guaranteed with a certain
amount of bandwidth allocation which is not smaller than
the y-coordinate of the intersection of the tangent with the
sigmoidal function, i.e., yr0c .

Generally speaking, increasing the capacities of
service providers can reduce the optimal prices to a certain
value so as to realize the optimal bandwidth allocation
for both elastic and inelastic services. Next, we will
investigate the upload capacities of service providers that
grant bandwidth allocation for requesting customers, and
derive sufficient conditions for provisioning the global
optimum.

4.2. Capacity provisioning. In order to analyze
the conditions of capacity provisioning for the global
optimum, we regard provider capacity Cp as a function
of price μp, i.e., Cp(μp). With no loss of generality,
we suppose that all providers serve both elastic and
inelastic services; otherwise, the providers that do not
serve any inelastic service can be ignored in analysis,
since increasing the capacity on those providers has
no contribution towards improving the QoS of inelastic
services.

Theorem 3. Consider the utility maximization model for
bandwidth allocation of multiclass services in P2P net-
works. The optimal bandwidth allocation for both elastic
and inelastic services can be derived if there exists a price
vector μ ≥ 0 with element μp ≥ 0 which satisfies the in-
equality μp < λ0

r , p ∈ P r(c), and the capacity Cp(μp)
for each service provider p ∈ P , where

Cp(μp) =
∑

c∈Cs(p)

xs
pc(μp) +

∑
c∈Cr(p)

xr
pc(μp). (24)

and

ysc =
∑

p∈P s(c)

xs
pc(μp), y

r
c =

∑
p∈P r(c)

xr
pc(μp). (25)

Here, xs
pc(μp) and xr

pc(μp) are the price-based rate
allocation at price μp obtained by solving (5)–(8) for
services with concave and sigmoidal utility functions,
respectively.

Proof. Under the assumption above, the subgradient of
the Lagrangian dual function D(λ, μ) with respect to link

price μp is provided by

∂D(λ, μ)

∂μp
= Cp −

∑
c∈Cs(p)

xs
pc −

∑
c∈Cr(p)

xr
pc.

If the link capacities satisfy Cp = Cp(μp),
the subgradient at access link price μp vanishes, i.e.,
∂D(λ, μ)/∂μp = 0. Thus the complementary slackness
condition holds and hence μp is the dual optimum.
Here xs

pc(μp) and xr
pc(μp) constitute indeed the primal

optimum. As for the inelastic service with a sigmoidal
utility function, λ∗

r = μp, p ∈ P r(c) and λ0
r > μp, p ∈

P r(c). Thus, λ∗
r < λ0

r , i.e., the optimal price λ∗
r paid

by customer c that requests inelastic service r is smaller
than the slope at the critical point where the tangent from
the origin intersects the sigmoidal function. Thus, the
optimal aggregated bandwidth allocation yrc of customer
c is larger than the critical service rate yr0c , the point
where the tangent from the origin intersects the sigmoidal
utility. The sigmoidal function satisfies yr0 ≥ yr0;
then the optimum yrc lies in the the concave part of the
sigmoidal curve and the optimum (xs

pc(μp), x
r
pc(μp)) is

global. Since μp is the optimal price of the dual problem,
xs
pc(μp) and xr

pc(μp) are the bandwidth allocation that
service provider p offers for customers requesting elastic
and inelastic services, respectively. The proof of this
theorem is completed. �

Notice that the optimal granted bandwidth allocation
for customers is nonincreasing with respect to the service
provider price μp. Thus we can claim that the more
inelastic the services (i.e., the smaller λ0

r), the larger the
provider capacity Cp needed for provision of the global
optimum.

4.3. Bandwidth allocation scheme. With guarantee of
the sufficient condition in Theorem 3, the gradient-based
bandwidth allocation scheme (18)–(23) proposed for
elastic services in Section 3 could also be applied to
bandwidth allocation for multiclass services with a mix
of concave and sigmoidal utilities. In order to guarantee
the convergence to the global optimum, we modify the
price λr(t) paid by customer c when requesting inelastic
service r into the following rule:

λr(t) =

[
argmax

yr
c (t)

U r
c (y

r
c(t)) − λr(t)y

r
c(t)

]λ0
r

0

, (26)

yrc(t) =
∑

p∈P r(c)

xr
pc(t). (27)

Here, a = [b]c0 means a = min{c,max{0, b}}.
In this modified price rule, the price λr(t) paid by

customer c is not larger than λ0
r and the granted bandwidth

allocation yrc(t) for customer c is not smaller than yr0c .
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Fig. 2. Optimal bandwidth allocation for elastic services.

Thus the bandwidth allocation scheme converges to the
global optimum despite nonconcavity of utility functions,
and customers requesting inelastic services attain certain
levels of the QoS guarantee.

5. Further discussion

In this section we discuss different forms of utility
functions for elastic and inelastic services proposed by Vo
et al. (2012). Firstly, we consider the following utility
functions for elastic services:

Us
c (y

s
c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ws
c log(y

s
c + 1) if α = 1,

ws
c

(ysc + 1)1−α − 1

1− α
if α > 0

and α �= 1.

(28)

We find that the utility functions are also concave and
the proposed bandwidth allocation scheme (18)–(23) can
be applied for elastic services as well. In this case
the optimal bandwidth allocation for customer c when

requesting elastic service s is

ys∗c =
(ws

c)
1
α∑

c∈Cs

(ws
c)

1
α

⎛
⎝∑

p∈P

Cp + |Cs|
⎞
⎠− 1, (29)

which depends on the elastic service parameter α, the
number of customers who request this elastic service s,
and the total willingness-to-pay of customers weighted by
the willingness-to-pay of customer c.

Now we consider the sigmoidal utility functions for
inelastic services as follows:

U r
c (y

r
c) = wr

c

(yrc )
β

(yrc )
β +m

, ∀β > 1,m > 0. (30)

For this type of sigmoidal utility function U r
c (y

r
c), there

also exists a critical point where the tangent from
the origin intersects the sigmoidal function, i.e., λ0

r .
Bandwidth allocation for customer c when requesting
inelastic service r should be guaranteed with a certain
value that is not smaller than yr0c . Then the analysis
in Section 4 also holds for this type of utility functions,
and the proposed bandwidth allocation scheme with a
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modified price update rule (26)–(27) can be applied for
inelastic services.

6. Simulation results

In this part we analyze the performance of the proposed
bandwidth allocation scheme in a P2P network through
some numerical examples. We choose step sizes κ = ν =
0.2 and the low-pass filtering parameter α = 0.2 for the
proposed bandwidth allocation algorithm.

6.1. Elastic services. In this part we assume that
the customers are only requesting elastic services and
analyze the proposed bandwidth allocation scheme. First
we consider a simple P2P network which consists of two
service providers and four service customers. The access
link capacity of service providers is C = (C1, C2) =
(20, 50)Mbps. The utility functions of elastic services are
given by Us

1 (y
s
1) = 20 log(ys1+1), Us

2 (y
s
2) = 15 log(ys2+

1), Us
3 (y

s
3) = 10 log(ys3+1), and Us

4 (y
s
4) = 5 log(ys4+1).

The simulation results of the bandwidth allocation
scheme (18)–(23) are illustrated in Figs. 2 and 3, which
show the service rates of each customer granted by
providers and the performance of the proposed scheme.
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Fig. 3. Performance of the bandwidth allocation algorithm for
elastic services.
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Fig. 5. Performance of the algorithm in different network sce-
narios for elastic services.

We observe from the simulation results that the bandwidth
allocation scheme gradually tends to a steady state where
the access link of each provider is approximately 100%
utilized. This can be understood from the selfish feature
of each peer as customer, acquiring as much resource as
possible. The scheme can achieve the optimal bandwidth
allocation within reasonable iteration times, providing
efficient bandwidth allocation for elastic services. Also,
we observe that the prices charged by two providers that
offer service to the same customer are both equivalent to
the price paid by the customer (i.e., λ∗

s = μ∗
p, p ∈ P s(c)),

which is illustrated in Fig. 3(b).
Table 1 lists the optimal bandwidth allocation by

using the proposed scheme. Also, it presents the optimal
solution solved by the nonlinear programming software
LINGO. We can observe that the optimal bandwidth
allocation for customers is not unique since the objective
of the bandwidth allocation model is not strictly concave
with respect to x = (xs

pc, c ∈ C, p ∈ P, s ∈ S).
However, we also find that the optimal total bandwidth
allocation for each customer is unique, which has been
verified in Theorem 1. Meanwhile, in this case the
optimal bandwidth allocation for each customer can also
be derived from (17), which is equivalent to the optimal
values provided in Table 1 (e.g., ys∗1 = 28.6000Mbps).
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Fig. 6. Optimal bandwidth allocation for elastic and inelastic services.

In addition, we compare the performance of our
bandwidth allocation algorithm with the existing schemes
such as PSO-based resource allocation (Li et al., 2017),
and depict the evolution of the aggregated utility in
Fig. 4. In the simulation we choose swarm size 20 for
the PSO-based scheme. As we observe in the result, the
aggregated utility is gradually driven to the optimal value
151.21 within a reasonable number of iterations for both

Table 1. Optimum for the bandwidth allocation model: elastic
services.

variable xs∗
11 xs∗

21 xs∗
12 xs∗

22

algorithm 8.1650 20.4350 6.0536 15.1464
LINGO 10.8238 17.7762 8.5618 12.6382

variable xs∗
13 xs∗

23 xs∗
14 xs∗

24

algorithm 3.9439 9.8561 1.8376 4.5624
LINGO 0.0727 13.7273 0.5417 5.8583

variable ys∗1 ys∗2 ys∗3 ys∗4
algorithm 28.6000 21.2000 13.8000 6.4000
LINGO 28.6000 21.2000 13.8000 6.4000

the proposed algorithm and the PSO-based scheme.
We also consider the performance of the proposed

bandwidth allocation algorithm in different network
scenarios. Assume the access link capacity of service
providers is 20 Mbps, and the willingness-to-pay of
service customers is 10. In Fig. 5, we depict the evolution
of the aggregated utility in P2P networks with a different
number of peers. We find that the final aggregated utility
increases with the number of peers but, in all cases, the
optimal value is reached within almost the same number
of iterations (e.g., 200). Thus the algorithm can work well
in general network scenarios, and the size of the network
does not affect its performance.

6.2. Elastic and inelastic services. Now, in this
section we consider bandwidth allocation for multiclass
services, that is, the services requested by the customer
are not only elastic but also inelastic, and investigate
the performance of the proposed bandwidth allocation
scheme. Also we first consider a simple P2P network
which consists of two service providers with access link
capacity C = (C1, C2) = (20, 50)Mbps and four service
customers. The first two customers are requesting elastic
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Fig. 7. Performance of the bandwidth allocation algorithm for
elastic and inelastic services.

services, and the utility functions of elastic services are
given by Us

1 (y
s
1) = 20 log(ys1 + 1) and Us

2 (y
s
2) =

15 log(ys2 + 1). The other customers are requesting
inelastic services and the utility functions of inelastic
services are

U r
3 (y

r
3) = 10

( 1

1 + e−(yr
3−2)

− 1

1 + e2

)

U r
4 (y

r
4) = 20

( 1

1 + e−(yr
4−4)

− 1

1 + e4

)
.

We can obtain that, for these two inelastic services, yr03 =
2.9166 Mbps, λ0

3 = 2.045, and yr04 = 5.5398 Mbps,
λ0
4 = 2.9078.

We obtain the simulation results of the proposed
bandwidth allocation scheme (18)–(23) with the modified
price rule (26), (27) for inelastic services and illustrate
them in Figs. 6 and 7. Obviously, we observe that the
scheme can converge to the optimal bandwidth allocation
for multiclass services within a reasonable number of
iterations, i.e., x∗ =(9.3432, 23.8396, 6.9383, 17.6987,
1.4280, 3.2817, 2.2903, 5.1802) Mbps. Meanwhile, we
also find from Fig. 7(b) that the optimal price paid by
customers is λ∗

r = 0.5851, which is smaller than the

critical prices λ0
3 = 2.045 and λ0

4 = 2.9078 of the two
inelastic services. The prices charged by the two providers
that offer services are both equal to the price paid by
each customer. In this case, the condition derived from
Theorem 3 is satisfied. Thus the optimum is global.

We also compare the performance of our bandwidth
allocation algorithm with that of a PSO-based resource
allocation scheme (Li et al., 2017) for inelastic services,
and depict the evolution of the aggregated utility in
Fig. 8. Similarly to the case for only elastic services,
the aggregated utility is gradually driven to the optimal
value of 146.50 within a reasonable number of iterations
for both the proposed algorithm and the PSO-based
scheme. We also investigate the robustness of the
proposed algorithm in different network scenarios.

Assume that the willingness-to-pay of customers for
elastic services is 20 and for inelastic services it is 10. The
key parameters are a = 1, b = 2 for inelastic services. In
Fig. 9, we depict the evolution of the aggregated utility for
both elastic and inelastic services in P2P networks with a
different number of peers. As we can observe from the
simulation, the proposed algorithm works well to achieve
the optimal bandwidth allocation for multiclass services
in P2P networks with a different number of peers.
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7. Conclusions

In this paper we considered the optimal bandwidth
allocation for both elastic and inelastic services in P2P
networks, and formulated the utility maximization model
for peers who request these services. First we considered
only elastic services with concave utilities, and obtain the
expression of the optimal bandwidth allocation of each
peer. To attain an optimum in decentralized networks, we
developed a gradient-based bandwidth allocation scheme.
However, the scheme may not work well for bandwidth
allocation for inelastic services due to the non-concavity
of utilities. In order to overcome this, we discussed the
capacity provisioning for bandwidth allocation of inelastic
services and modified the update rule for prices that
customers should pay. Some numerical examples were
finally given to verify the performance of the bandwidth
allocation scheme for both elastic and inelastic services.
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Antal, E. and Vinkó, T. (2016). Modeling max-min fair

bandwidth allocation in bittorrent communities, Computa-
tional Optimization and Applications 66(2): 383–400.

Bertsekas, D. (2003). Nonlinear Programming, Athena
Scientific, Belmont, MA.

Chen, M., Ponec, M., Sengupta, S., Li, J. and Chou, P.
(2012). Utility maximization in peer-to-peer systems with
applications to video conferencing, IEEE/ACM Transac-
tions on Networking 20(6): 1681–1694.

Eger, K. and Killat, U. (2007a). Fair resource allocation in
peer-to-peer networks (extended version), Computer Com-
munications 30(16): 3046–3054.

Eger, K. and Killat, U. (2007b). Resource pricing in peer-to-peer
networks, IEEE Communications Letters 11(1): 82–84.

Goswami, A., Gupta, R. and Parashari, G. (2017).
Reputation-based resource allocation in P2P systems:
A game theoretic perspective, IEEE Communications
Letters 21(6): 1273–1276.

Gupta, R., Singha, N. and Singh, Y. (2015). Reputation based
probabilistic resource allocation for avoiding free riding
and formation of common interest groups in unstructured
P2P networks, Peer-to-Peer Networking and Applications
9(6): 1101–1113.

Hande, P., Zhang, S. and Chiang, M. (2007). Distributed rate
allocation for inelastic flows, IEEE/ACM Transactions on
Networking 15(6): 1240–1253.

Koutsopoulos, I. and Iosifidis, G. (2010). A framework for
distributed bandwidth allocation in peer-to-peer networks,
Performance Evaluation 67(4): 285–298.

Kumar, C., Altinkemer, K. and De, P. (2011). A mechanism
for pricing and resource allocation in peer-to-peer
networks, Electronic Commerce Research and Applica-
tions 10(1): 26–37.

Lee, J., Mazumdar, R. and Shroff, N. (2005). Non-convex
optimization and rate control for multi-class services
in the internet, IEEE/ACM Transactions on Networking
13(4): 827–840.

Li, S., Jiao, L., Zhang, Y., Wang, Y. and Sun, W. (2017).
A scheme of resource allocation for heterogeneous
services in peer-to-peer networks using particle swarm
optimization, IAENG International Journal of Computer
Science 44(4): 482–488.

Li, S. and Sun, W. (2016). A mechanism for resource pricing and
fairness in peer-to-peer networks, Electronic Commerce
Research 16(4): 425–451.

Li, S., Sun, W., E, C.-G. and Shi, L. (2016a). A
scheme of resource allocation and stability for peer-to-peer
file-sharing networks, International Journal of Applied
Mathematics & Computer Science 26(3): 707–719, DOI:
10.1515/amcs-2016-0049.

Li, S., Sun, W. and Hua, C. (2016b). Optimal resource allocation
for heterogeneous traffic in multipath networks, Interna-
tional Journal of Communication Systems 29(1): 84–98.

Li, S., Sun, W. and Tian, N. (2015). Resource allocation for
multi-class services in multipath networks, Performance
Evaluation 92(1): 1–23.

Lin, F., Zhou, X., Huang, D. and Yuan, J. (2015). Hierarchical
name system based on hybrid p2p for multimedia
networks, Telecommunication Systems 59(3): 393–400.

Satsiou, A. and Tassiulas, L. (2010). Reputation-based resource
allocation in p2p systems of rational users, IEEE Transac-
tions on Parallel and Distributed Systems 21(4): 466–479.

Song, F., Huang, D., Zhou, H., Zhang, H. and You, I. (2014). An
optimization-based scheme for efficient virtual machine
placement, International Journal of Parallel Programming
42(5): 853–872.

Song, F., Li, R. and Zhou, H. (2015). Feasibility and issues for
establishing network-based carpooling scheme, Pervasive
and Mobile Computing 24(1): 4–15.

Song, F., Zhou, Y., Kong, K., Zheng, Q., You, I. and Zhang, H.
(2017). Smart collaborative connection management for
identifier-based network, IEEE Access 5: 7936–7949.

Vo, P., Lee, S. and Hong, C. (2012). The random access
num with multiclass traffic, EURASIP Journal on Wireless
Communications and Networking 242: 1–12.

Wang, K., Yin, H., Quan, W. and Min, G. (2018). Enabling
collaborative edge computing for software defined
vehicular networks, IEEE Network 32(5): 112–117.



Utility optimization-based bandwidth allocation for elastic and inelastic services . . . 123

Yan, H., Gao, D., Su, W., Foh, C., Zhang, H. and Vasilakos, A.
(2017). Caching strategy based on hierarchical cluster for
named data networking, IEEE Access 5: 8433–8443.

Zheng, Y., Lin, F., Yang, Y. and Gan, T. (2016).
Adaptive resource scheduling mechanism in P2P file
sharing system, Peer-to-Peer Networking and Applications
9(6): 1089–1100.

Shiyong Li received his PhD degree from Bei-
jing Jiaotong University, China, in 2011. Cur-
rently he is an associate professor in the School of
Economics and Management at Yanshan Univer-
sity. He is a (co)author of more than 50 papers in
mathematics, engineering, and management jour-
nals. He has been a principal investigator/co-
investigator in several research projects sup-
ported by the National Natural Science Founda-
tion of China, the National Education Committee

Foundation of China, the China Postdoctoral Science Foundation, and
others. His research interests include resource allocation in networks,
electronic commerce, and economics of queues.

Yue Zhang received her BSc degree from Yan-
shan University, Qinhuangdao, China, in 2017.
She is currently working toward her MSc degree
in the School of Economics and Management at
Yanshan University. Her research interests in-
clude resource allocation in cloud computing and
electronic commerce.

Yan Wang received her BSc degree from Yan-
shan University, Qinhuangdao, China, in 2017.
She is currently working toward her MSc degree
in the School of Economics and Management at
Yanshan University. Her research interests in-
clude resource allocation in networks and eco-
nomics of queues.

Wei Sun received her PhD degree from Yanshan
University, Qinhuangdao, China, in 2010. Cur-
rently she is a full professor in the School of Eco-
nomics and Management at Yanshan University.
She has published more than 40 papers in lead-
ing international journals in the areas of opera-
tions research and applied mathematics. She has
been involved in several projects supported by the
National Natural Science Foundation of China,
the National Education Committee Foundation of

China, and others. Her research interests include economics of queues
and queueing systems with vacations.

Received: 14 March 2018
Revised: 3 September 2018
Accepted: 22 October 2018


	Introduction
	Bandwidth allocation model
	Services and utility functions
	Model description
	Model analysis

	Bandwidth allocation for elastic services
	Model analysis
	Optimal bandwidth allocation
	Bandwidth allocation scheme

	Bandwidth allocation for inelastic services
	Model analysis
	Capacity provisioning
	Bandwidth allocation scheme

	Further discussion
	Simulation results
	Elastic services
	Elastic and inelastic services

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




