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In the light of regularized dynamic time warping kernels, this paper re-considers the concept of a time elastic centroid for
a set of time series. We derive a new algorithm based on a probabilistic interpretation of kernel alignment matrices. This
algorithm expresses the averaging process in terms of stochastic alignment automata. It uses an iterative agglomerative
heuristic method for averaging the aligned samples, while also averaging the times of their occurrence. By comparing
classification accuracies for 45 heterogeneous time series data sets obtained by first nearest centroid/medoid classifiers, we
show that (i) centroid-based approaches significantly outperform medoid-based ones, (ii) for the data sets considered, our
algorithm, which combines averaging in the sample space and along the time axes, emerges as the most significantly robust
model for time-elastic averaging with a promising noise reduction capability. We also demonstrate its benefit in an isolated
gesture recognition experiment and its ability to significantly reduce the size of training instance sets. Finally, we highlight
its denoising capability using demonstrative synthetic data. Specifically, we show that it is possible to retrieve, from few
noisy instances, a signal whose components are scattered in a wide spectral band.
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1. Introduction

Since Maurice Fréchet’s pioneering work (Fréchet,
1906) in the early 1900s, time-elastic matching of
time series or symbolic sequences has attracted much
attention from the scientific community in numerous
fields such as information indexing and retrieval, pattern
analysis, extraction and recognition, data mining, etc.
This approach has impacted a very wide spectrum of
applications addressing socio-economic issues such as the
environment, industry, health, energy, defense and so on.

Among other time elastic measures, dynamic time
warping (DTW) was widely popularized during the 1970s
with the advent of speech recognition systems (Velichko
and Zagoruyko, 1970; Sakoe and Chiba, 1971), along
with numerous variants that have since been proposed to
match time series with a certain degree of time distortion
tolerance.

The main issue addressed in this paper is time
series or shape averaging in the context of a time elastic
distance. Time series averaging or signal averaging
is a long-standing issue that is currently becoming

increasingly prevalent in the big data context; it is
relevant for denoising (Kaiser and Knight, 1979; Hassan
and Anwar, 2010), summarizing subsets of time series
(Petitjean et al., 2011), defining significant prototypes,
identifying outliers (Gupta et al., 2014), performing data
mining tasks (mainly exploratory data analysis such as
clustering) and speeding up classification (Petitjean et al.,
2014), as well as regression or data analysis processes in
a big data context.

In this paper, we specifically tackle the question of
averaging subsets of time series, not from considering
the DTW measure itself, as has already been largely
exploited, but from the perspective of the so-called
regularized DTW kernel (KRDTW). From this new
viewpoint, the estimation of a time series average or
centroid can be readily addressed with a probabilistic
interpretation of kernel alignment matrices allowing a
precise definition of the average of a pair of time
series from the expected value of local alignments of
samples. The tests carried out so far demonstrate the
robustness and efficiency of this approach compared with
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the state-of-the-art one.
The structure of this paper is as follows. Following

the introductory section, Section 2 summarizes the most
relevant related studies on time series averaging as well as
DTW kernelization. In Section 3, we derive a probabilistic
interpretation of kernel alignment matrices evaluated on
a pair of time series by establishing a parallel with a
forward-backward procedure on a stochastic alignment
automaton. In the fourth section, we define the average of
a pair of time series based on the alignment expectation of
pairs of samples, and we propose an algorithm designed
for the averaging of any subset of time series using
a pairwise aggregating procedure. We present in the
Section 5 three complementary experiments to assess our
approach against the state of the art, and then conclude the
paper.

2. Related works

Time series averaging in the context of (multiple) time
elastic distance alignments has been mainly addressed in
the scope of the dynamic time warping (DTW) measure
(Velichko and Zagoruyko, 1970; Sakoe and Chiba, 1971).
Although other time elastic distance measures such as the
edit distance with real penalty (ERP) (Chen and Ng, 2004)
or the time warp edit distance (TWED) (Marteau, 2009)
could be considered instead, without loss of generality,
we remain focused throughout this paper on DTW and its
kernelization.

2.1. DTW and a time elastic average of a pair of time
series. A classical formulation of DTW can be given
as follows. If d is a fixed positive integer, we define a
time series of length n as a multidimensional sequence
on1 = o1o2 . . . on, such that ∀i ∈ {1, . . . , n}, oi ∈ R

d.

Definition 1. If on1 and o′n
′

1 are two time series with
respective lengths n and n′, an alignment path π = (πk)

of length p = |π| between on1 and o′n
′

1 is represented by a
sequence

π : {1, . . . , p} → {1, . . . , n} × {1, . . . , n′}

such that π1 = (1, 1), πp = (n, n′), and using the
notation πk = (ik, jk), for all k ∈ {1, . . . , p − 1},
πk+1 = (ik+1, jk+1) ∈ {(ik + 1, jk), (ik, jk + 1),
(ik + 1, jk + 1)}.

If δ is a distance on R
d, the global cost of a warping

path π is the sum of distances (or squared distances or
local costs) between pairwise elements of the two time
series along π, i.e.,

cost(π) =
∑

(ik,jk)∈π

δ(oik , o
′
jk).

Definition 2. For a pair of finite time series on1 and

o′n
′

1 , any warping path has a finite length, and thus the
number of existing warping paths is finite. Hence, there
exists at least one path π∗ whose cost is minimal, so we
can define DTW(o, o′) as the minimal cost taken over all
existing warping paths. Hence

DTW(on1 , o
′n′

1 ) = min
π

cost(π(on1 , o
′n′

1 ))

= cost(π∗(on1 , o
′n′

1 )). (1)

Definition 3. From the DTW measure, Gupta et al.
(1996) have defined the time elastic average a(o, o′) of

a pair of time series on1 and o′n
′

1 as the time series A
|π∗|
1

whose elements are Ak = mean(oπ∗
k(1)

, o′π∗
k(2)

), ∀k ∈
1, . . . , |π∗|, where mean corresponds to the definition of
the mean in the Euclidean space.

2.2. Time elastic centroid of a set of time se-
ries. A single alignment path is required to calculate
the time elastic centroid of a pair of time series
(Definition 1). However, multiple path alignments need
to be considered to evaluate the centroid of a larger set of
time series. Multiple alignments have been widely studied
in bioinformatics (Fasman and Salzberg, 1998), and it
has been shown that determining the optimal alignment
of a set of sequences under the score scheme of the
sum of all pairs (SP) is an NP-complete problem (Wang
and Jiang, 1994; Just and Just, 1999). The time and
space complexity of this problem is O(Lk), where k is
the number of sequences in the set and L is the length
of the sequences when using dynamic programming to
search for an optimal solution (Carrillo and Lipman,
1988). This result applies to the estimation of the time
elastic centroid of a set of k time series with respect
to the DTW measure. Since the search for an optimal
solution rapidly becomes intractable with increasing k,
sub-optimal heuristic solutions have been subsequently
proposed, most of them falling into one of the following
three categories.

2.2.1. Progressive heuristics. Progressive heuristic
methods estimate the time elastic centroid of a set
of k time series by combining pairwise centroids
(Definition 3). This kind of approach constructs a
binary tree whose leaves correspond to the time series
of the data set and nodes to the calculation of a local
pairwise centroid such that, when the tree is complete,
the root is associated with the estimated data set centroid.
The proposed strategies differ in the way the tree is
constructed. One popular approach consists in providing
a random order for the leaves, and then constructing the
binary tree up to the root using this ordering (Gupta
et al., 1996). Another approach involves constructing
a dendrogram (a hierarchical ascendant clustering) from
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Fig. 1. Pairwise averaging ((a) top) and progressive hierarchical agglomeration ((a) bottom) vs. iterative agglomeration strategies (b).
Final centroid approximations are presented as thick lines. Temporary estimates are presented using a thick dotted black line.

the data set and then using this dendrogram to calculate
pairwise centroids starting with the closest pairs of
time series and progressively aggregating series that are
farther away (Niennattrakul and Ratanamahatana, 2009),
as illustrated on the left of Fig. 1(a). Note that these
heuristic methods are entirely based on the calculation
of a pairwise centroid, so they do not explicitly require
the evaluation of a DTW centroid for more than two time
series. Their degree of complexity varies linearly with the
number of time series in the data set.

2.2.2. Iterative heuristics. Iterative heuristics are
based on an iterated three-step process. For a given
temporary centroid candidate, the first step consists of
calculating the inertia, i.e., the sum of the DTW distances
between the temporary centroid and each time series
in the data set. The second step (Fig. 1(b)) evaluates
the best pairwise alignment with the temporary centroid
cL1 of length L for each time series jo

nj

1 in the data
set (j ∈ {1, . . . , N}). A new time series jo′nj

1 is
thus constructed that contains the contributions of all the
samples of time series jo

nj

1 , but with time being possibly
stretched (duplicate samples) or compressed (average of
successive samples) according to the best alignment path
as exemplified in Fig. 1(b). The third step consists in
producing a new temporary centroid candidate c′L1 from
the set {jo′nj

1 } by successively averaging (in the sense of
the Euclidean centroid) the samples at every timestamp
i of the time series jo′nj

1 . Basically, we have c′i =
(1/n)

∑
j=1,...,n

jo′i.
Then, the new centroid candidate replaces the

previous one and the process is iterated until the inertia is
no longer reduced or the maximum number of iterations
is reached. Generally, the first temporary centroid
candidate is taken as the DTW medoid of the data
set considered. This process is illustrated on the left
of Fig. 1. The three steps of this heuristic method
were first proposed by Abdulla et al. (2003). The

iterative aspect of this heuristic approach was initially
introduced by Hautamaki et al. (2008) and refined
by Petitjean et al. (2011), who introduced the DTW
barycenter averaging (DBA) algorithm. Note that, in
contrast to the progressive method, this kind of approach
needs to evaluate, at each iteration, all the alignments
with the current centroid candidate. The complexity
of the iterative approach is higher than the progressive
one, the extra computational cost being linear with the
number of iterations. More sophisticated approaches
have been proposed to escape from some local minima.
For instance, Petitjean and Gançarski (2012) evaluated a
genetic algorithm for managing a population of centroid
candidates, thus improving, with some success, the
straightforward iterative heuristic methods.

2.2.3. Optimization approaches. Given the entire set
of time series S and a subset of n time series S =
{jonj

1 }j=1,...,n ⊆ S, optimization approaches attempt
to estimate the centroid of S from the definition of an
optimization problem, which is generally expressed by

cnc
1 = arg min

sns
1 ∈S

n∑

j=1

DTW(sns
1 , jo

nj

1 ). (2)

Among other works, some attempts to use this kind
of direct approach for the estimation of time elastic
centroid were recently made by Zhou and De la Torre
(2009; 2016) and Soheily-Khah et al. (2016).

Zhou and De la Torre (2009) detail a canonical
time warp (CTW) and a generalized version of it
(GCTW) (Zhou and De la Torre, 2016) that combines
DTW and CCA (canonical correlation analysis) for
temporally aligning multi-modal motion sequences. From
a least-squares formulation for DTW, a non-convex
optimization problem is handled by means of a
coordinate-descent approach that alternates between
multiple temporal alignments using DTW (or a variant
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exploiting a set of basis functions to parameterize the
warping paths) and spatial projections using CCA (or
a multi-set extension of CCA). Whilst these approaches
have not been designed to explicitly propose a centroid
estimation, they do provide multi-alignment paths that can
straightforwardly be used to compute a centroid estimate.
As an extension to CTW, GCTW requires the set-up
of generally “smooth” function basis that constrains the
shape of the admissible alignment paths. This ensures the
computational efficiency of GCTW, but in return it may
induce some drawback, especially when considering the
averaging of “unsmoothed” time series that may involve
very “jerky” alignment paths. The choice of this function
basis may require some expertise in the data.

Soheily-Khah et al. (2016) derived a non-convex
constrained optimization problem by integrating a
temporal weighting of local sample alignments to
highlight the temporal region of interest in a time series
data set, thus penalizing the other temporal regions.
Although the number of parameters to optimize is linear
with the size and the dimensionality of the time series, the
two-step gradient-based optimization process they derived
is very computationally efficient and shown to outperform
the state of the art approaches on some challenging scalar
and multivariate data sets. However, as numerous local
optima exist in practice, the method is not guaranteed
to converge towards the best possible centroid, which is
anyway the case in all other approaches. Furthermore,
their approach, due to combinatorial explosion, cannot be
adapted for time elastic kernels like the one addressed in
this paper and described in Section 2.4.

2.3. Discussion and motivation. According to the
state of the art in time elastic centroid estimation,
an exact centroid, if it exists, can be calculated by
solving an NP-complete problem whose complexity is
exponential with the number of time series to be averaged.
Heuristic methods with increasing time complexity have
been proposed since the early 2000s. Simple pairwise
progressive aggregation is a less complex approach, but
it suffers from dependence on initial conditions. Iterative
aggregation is reputed to be more efficient, but it entails
a higher computational cost. It could be combined with
ensemble methods or soft optimization such as genetic
algorithms. The non-convex optimization approach
has the merit of directly addressing the mathematical
formulation of the centroid problem in a time elastic
distance context. This approach nevertheless involves a
higher complexity and must deal with a relatively large set
of parameters to be optimized (the weights and the sample
of the centroid). Its scalability could be questioned,
specifically for high dimensional multivariate time series.

It should also be mentioned that some criticism of
these heuristic methods was made by Niennattrakul and
Ratanamahatana (2007). Among other drawbacks, the

fact that DTW is not a metric could explain the occurrence
of unwanted behaviors such as a centroid drift outside the
time series cluster to be averaged. We should also bear
in mind that keeping a single best alignment can increase
the dependence of the solution on the initial conditions. It
may also increase the aggregating order of the time series
proposed by the chosen method, or potentially enhance
the convergence rate.

In this study, we do not directly address the
issue of time elastic centroid estimation from the DTW
perspective, but rather from the point of view of the
regularized dynamic time warping kernel (KRDTW)
(Marteau and Gibet, 2014). Although this perspective
allows us to consider centroid estimation as a preimage
problem, which is in itself another optimization
perspective, we rather show that computation of KRDTW
alignment matrices can be described as the result of
applying a forward-backward algorithm on stochastic
alignment automata. This probabilistic interpretation of
the pairwise alignment of time series makes us propose
a robust averaging scheme for any set of time series
that interpolate jointly along the time axis and in the
sample space. Furthermore, this scheme significantly
outperforms the current state of the art method, as shown
by our experiments.

2.4. Time elastic kernels and their regularization.
The dynamic time warping (DTW) distance between two
time series op1 = o1o2 · · · op and o′q1 = o′1o′2 · · · o′q of
lengths p and q, respectively (Velichko and Zagoruyko,
1970; Sakoe and Chiba, 1971), as defined in Eqn. (1), can
be recursively evaluated as

ddtw(o
p
1, o

′q
1)

= d2E(op, o
′
q) + min

⎧
⎨

⎩

ddtw(o
p−1
1 , o′q1)

ddtw(o
p−1
1 , o′q−1

1 )

ddtw(o
p
1, o

′q−1
1 ),

(3)

where dE(op, o′q) is the Euclidean distance defined on R
d

between the two positions in sequences op1 and o′q1 taken
at times p and q, respectively.

Apart from the fact that the triangular inequality
does not hold for the DTW distance measure, it is not
possible to define a positive definite kernel directly from
this distance. Hence, the optimization problem, which is
inherent to the learning of a kernel machine, is no longer
convex and could be a source of limitation due to the
emergence of local minima.

Regularized DTW. The seminal work by Cuturi et al.
(2007), prolonged recently by Marteau and Gibet (2014),
leads us to propose new guidelines to ensure that kernels
constructed from elastic measures such as DTW are
positive definite. A simple instance of such a regularized
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kernel, derived from the work of Marteau and Gibet
(2014), can be expressed as a convolution kernel, which
makes use of two recursive terms:

KRDTW(op1, o
′q
1) = Krdtw(o

p
1, o

′q
1) +K ′

rdtw(o
p
1, o

′q
1),

Krdtw(o
p
1, o

′q
1)

=
1

3
e−νd2

E(op,o
′
q)
(
h(p− 1, q)Krdtw(o

p−1
1 , o′q1)

+ h(p− 1, q − 1)Krdtw(o
p−1
1 , o′q−1

1 )

+ h(p, q − 1)Krdtw(o
p
1, o

′q−1
1 )

)
,

K ′
rdtw(o

p
1, o

′q
1)

=
1

3

(
h(p− 1, q)K ′

rdtw(o
p−1
1 , o′q1)e

−νd2
E(op,o

′
p)

+
1

2
h(p− 1, q − 1)K ′

rdtw(o
p−1
1 , o′q−1

1 )

×
(
e−νd2

E(op,o
′
p) + e−νd2

E(oq,o
′
q)
)

+ h(p, q − 1)K ′
rdtw(o

p
1, o

′q−1
1 )e−νd2

E(oq,o
′
q)
)
,

(4)

where ν ∈ R
+ is a stiffness parameter which weighs

the local contributions, i.e., the distances between locally
aligned positions, dE(·, ·) is a distance defined on R

d, and
h is a symmetric binary non-negative function, usually
with values in {0, 1}, used, e.g., to define a symmetric
corridor around the main diagonal to limit the “time
elasticity” of the kernel. For the remainder of the paper
we will not consider any corridor; hence h(·, ·) = 1
everywhere.

The initialization is simply Krdtw(o
0
1, o

′0
1) =

K ′
rdtw(o

0
1, o

′0
1) = 1.

The first term, Krdtw, is very close to the global
alignment kernel, Kga, proposed by Cuturi et al. (2007).
The second term, K ′

rdtw, is a regularization term that
allows defining a positive definite kernel kπ for each of the
admissible alignment paths π. Hence, the global KRDTW
kernel can be seen as the sum on a set of the admissible
alignment paths (or any subset of it) of the kπ kernels.

The main idea behind this regularization is to
replace the operators min and max (which prevent
symmetrization of the kernel) by a summation operator.
This allows us to consider the best possible alignment,
as well as all the best (or nearly the best) paths by
summing their overall cost. The parameter ν is used to
check what is termed a nearly-the-best alignment, thus
penalizing alignments that are too far away from the
optimal ones. This parameter can be easily optimized
through a cross-validation.

For each alignment path, KRDTW evaluates the
product of local alignment costs e−νd2

E(op,o
′
q)) ≤ 1

occurring along the path. This product can be very
small depending on the size of the time series and the
selected value for ν. This is the source for a diagonal
dominance problem in the Gram matrix. But, above all,
this requires to balance the choice of the ν value according
to the lengths of the matched time series. This is the
main (and probably the only) limitation of the KRDTW
kernel: the selectivity or bandwidth of the local alignment
kernels needs to be adjusted according to the lengths of
the matched time series.

3. Stochastic alignment process

To introduce a probabilistic paradigm to the time elastic
averaging of time series, we first consider the pairwise
alignment process as the output of stochastic automata.
The stochastic alignment process that we propose finds
its roots in the forward-backward algorithm defined for
the learning of hidden Markov models (HMMs) (Rabiner,
1989) and in the parallel between HMMs and DTW that
is proposed by Juang (1985) or Nakagawa and Nakanishi
(1989), and in a more distant way by Chudova et al.
(2003). However, we differ from these founding works
(and others) in the following:

1. We do not construct a parallel with DTW, but with its
kernelized variant KRDTW.

2. Nakagawa and Nakanishi (1989) only consider
an optimal alignment path (exploiting the Viterbi
algorithm) while we consider the whole set of
possible alignments (as Juang (1985)).

3. Juang (1985) constructs an asymmetric classical
left-right HMM (one time series of the observation
sequence, while the other plays the role of the
state sequence). With a similar idea, Chudova
et al. (2003) propose a generative mixture model
along a discrete time grid axis with a local and
global time warp capability. We construct instead
an alignment process that conforms to the DTW
recursive definition without any other hypothesis on
the structure of the automata, and for which the two
aligned time series play the role of the observation
sequence while the set of states corresponds to that
of all possible sample pair alignments.

3.1. Pairwise alignment of time series as a Markov
model. Let on1 = o1o2 · · · on and o′n

′
1 = o′1o

′
2 · · · o′n′

be two discrete time series (observations) of lengths
n and n′, respectively. We suppose that these series
end with a ‘null’ (ε) symbol respectively at indexes
n + 1 and n′ + 1. To align these two time series, we
define a stochastic alignment automaton as a hidden
Markov model. First we consider the set of states
S = {S1,1, S1,2, . . . , Sn,n′ , Sn+1,n′+1}. Each Si,j
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characterizes the alignment between the observed
samples oi and o′j . Sn+1,n′+1 is the final (or output) state.

The hidden state variable (at ’step’ τ ) zτ takes values
from the set of states S. The step index τ follows an
admissible alignment path (cf. Eqn. (1)) and will take
values in {(1, 1), . . . , (n, n′)}. In the following, we adopt
the convention that if τ = (i, j), τ + 1 ∈ {(i, j + 1), (i+
1, j), (i+1, j+1)} and τ−1 ∈ {(i, j−1), (i−1, j), (i−
1, j − 1)}.

The posterior probability for the process to be at state
Si,j at step τ , given the sequences of observations on1 and

o′n
′

1 , is P (zτ = Si,j |on1 , o′
n′
1 ).

The transition probabilities (which are stationary,
hence independent of τ ) between states are driven by a
tensor A = [aij;kl], where, for all τ , aij;kl = P (zτ+1 =
Sk,l|zτ = Si,j), ∀(k, l) and (i, j) ∈ {1 · · ·n} ×
{1 · · ·n′}. A can be defined according to the standard
DTW definition, namely,

aij;kl

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
3 if

⎧
⎪⎨

⎪⎩

(k = i and l = j + 1)

or (k = i+ 1 and l = j + 1)

or (k = i+ 1 and l = j),

1 if i = k = n+ 1 and j = l = n′ + 1,

0 otherwise.

(5)

The factor 1/3 ensures that the transition matrix
equivalent to A is stochastic, basically,

∀i, j
∑

kl

aij;kl = 1. (6)

For the same reason, the final state transition Sn+1,n′+1

needs to be ‘looped’ with P (zτ = Sn+1,n′+1|zτ−1 =
Sn+1,n′+1) = 1.

Notice that any tensor A satisfying (6) could be
considered at this level instead of the previous DTW
surrogate tensor.

Furthermore, each state is observable through the
so-called emission probabilities, which are defined by a
set of functions bij(x, y), where (x, y) is the observation.
The emission probabilities depend only on the state, not
τ , and we can write bij(x, y) = P (x, y|zτ = Si,j) =
P (x, y|Si,j), ∀(x, y) ∈ R

d×R
d and (i, j) ∈ {1, . . . , n}×

{1, . . . , n′}. The bij functions are normalized such that∫∫
x,y bij(x, y) dxdy = 1. Finally, we impose that

bn+1,n′+1 = 1 such that the end ‘loop’ has no effect on
the marginalized probabilities.

Here we differ from the classical HMM: the first
difference lies in the nature of the observation sequence
itself. Unlike the HMM, our observation consists of
a pair of subsequences that are not traveled necessarily

synchronously, but according to the structure of the
transition tensor A. For instance, given the DTW tensor
described by (5), from the current state associated to
the alignment (ou, o′v), three possible alignments can be
reached at the next transition: (ou+1, o

′
v), (ou, o

′
v+1) or

(ou+1, o
′
v+1).

The second difference is that the step index τ
determines the state of the process, i.e., zτ = Su,v means
that τ = (u, v).

The third difference from the classical HMM is that
the emission probabilities are independent of the state,
such that ∀i, j bi,j(x, y) = b(x, y). We use a local
(density) kernel to estimate these probabilities as follows:

b(x, y) = κ(x, y) = γe−νd2
E(x,y), (7)

where γ is the normalization coefficient.
Consequently, given two observation sequences on1

and o′n
′

1 , we define the emission probability matrix B =

[bkl] = b(ok, o
′
l) = γe−νd2

E(ok,o
′
l), for k ∈ {1, . . . , n} and

l ∈ {1, . . . , n′}.
Finally, let u be the initial probability vector defined

by ∀(i, j) ∈ {1, . . . , n} × {1, . . . , n′}, uij = P (z1 =
Si,j). uij = 1 if i = j = 1, and 0 otherwise.

Thereby, the stochastic alignment automaton is fully
specified by the triplet θ = (A,B,u), where A only
depends on the lengths n and n′ of the observations, and
B depends on the complete pair of observations on1 and

o′n
′

1 .

3.2. Forward-backward alignment algorithm. We
derive the forward-backward alignment algorithm for
our stochastic alignment automaton from its classical
derivation that was defined for hidden Markov models
(Rabiner, 1989).

For all St,t′ ∈ S, the posterior probability P (zτ =

S|on1 , o′
n′
1 , θ) is decomposed into forward/backward

recursions as follows:

P (zτ = St,t′ |on1 , o′
n′

1 , θ)

=
P (on1 , o

′n′
1 , zτ = St,t′ |θ)

P (on1 , o
′n′
1 |θ)

=
P (ot1, o

n
t , o

′t′
1 , o

′n′
t′ , zτ = St,t′ |θ)

P (on1 , o
′n′
1 |θ)

=
P (ont , o

′n′
t′ |zτ = St,t′ , θ)P (zτ = St,t′ , o

t
1, o

′t′
1 |θ)

P (on1 , o
′n′
1 |θ)

.

(8)

The last equality results from the application of the

Bayes rule and the conditional independence of ont , o
′n′
t′
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and ot1, o
′t′
1 given S, θ.

Let ατ (t, t
′) = P (ot1, o

′t′
1 , zτ = St,t′ |θ) be the

probability for the process to be at state St,t′ at step τ once

the partial observation sequences (ot1, o
′t′
1 ) are aligned.

Here ατ (t, t
′) can be recursively evaluated as the forward

procedure

{
ατI (1, 1) = u11b11,
ατ (t, t

′) = btt′
∑

τ−1∈Ft,t′
ατ−1(u, v)auv;tt′ , (9)

where τI = (1, 1), Ft,t′ is the subset of indexes of states
allowing reaching the state St,t′ in a single transition. For
the DTW tensor A (cf. (5)), we have Ft,t′ = {(t −
1, t′), (t, t′ − 1), (t − 1, t′ − 1)}, whenever t < n + 1
and t′ < n′ + 1.

Similarly, let βτ (t, t
′) = P (ont , o

′n′
t′ |zτ = St,t′ , θ)

be the probability of the alignment of the pair of partial

sequences (ont , o
′n′
t′ ) given the alignment process is at state

St,t′ at step τ . Here βτ (t, t
′) can be recursively evaluated

as the backward procedure

{
βτF (n, n

′) = 1,
βτ (t, t

′) =
∑

τ+1∈Bt,t′
βτ+1(u, v)att′;uvbuv, (10)

where τF = (n, n′), Bt,t′ is the subset of indexes
of states that can be reached from the state St,t′

in a single transition, and T = n + n′ + 2.
For the DTW tensor A (cf. Eqn. (5)), we have
Bt,t′ = {(t + 1, t′), (t, t′ + 1), (t + 1, t′ + 1)}, if
0 < t and 0 < t′.

Hence, from Eqn. (8), we get the probability that
the process is in state St,t′ at step τ given the complete
observation

P (zτ = St,t′ |on1 , o′
n′

1 , θ) =
ατ (t, t

′)βτ (t, t
′)

P (on1 , o
′n′
1 |θ)

. (11)

Any tensor A satisfying Eqn. (6) is not eligible:
for the αt,t′ and βt,t′ recursions to be calculable, one
has to impose linearity. Basically, αt,t′ cannot depend
on any αu,v′ that is not previously evaluated. The
constraint we need to impose is that the time stamps are
locally increasing, i.e., if αt,t′ depends on any αu,v′ , then
necessarily [(t < u and t′ ≤ v′) or (t ≤ u and t′ < v′)].
The same applies for the βt,t′ recursion.

As an example, Fig. 2 presents the forward

backward (FB) matrix (FB(t, t′) = P (St,t′ |on1 , o′
n′
1 , θ))

corresponding to the alignment of a positive half-wave
with a sinus wave. The three areas of likely alignment
paths are clearly identified in gray scale colors.

20 40 60 80

5

10

15 -340
-320
-300
-280
-260
-240

Fig. 2. Forward backward matrix (logarithmic values) for the
alignment of a positive halfwave with a sinus wave. The
dark gray color color represents high probability states,
while the black color represents low probability states.

3.3. Parallel with KRDTW. A direct parallel exists
between KRDTW and the previous Markov process. It
follows from the forward equation (9) that

Krdtw(o
k
1 , o

′l
1) =

∑

i,j

aij,klbklKrdtw(o
i
1, o

′j
1)

= κ(ok, o
′
l)
∑

i,j

aij,klKrdtw(o
i
1, o

′j
1),

(12)

where A = [aij;kl] is defined in Eqn. (5), and
B = [bkl], defined in Eqn. (7), is such that bkl =

e−νd2
E(ok,o

′
l). Hence, the Krdtw recursion coincides

exactly with the forward recursion (Eqn. (9)). Similarly,
we can assimilate the backward recursion (Eqn. (10)) to
the Krdtw evaluation of the pair of time series obtained

by inverting on1 and o′n
′

1 along the time axis. Hence,
the forward-backward matrix elements (Eqn. (11)) can be
directly expressed in terms of the Krdtw recursions.

Furthermore, the corridor function h(·) that occurs
in the Krdtw recursion (Eqn. (4)) modifies directly the
structure of the transition tensor A by setting aij;kl = 0
whenever h(i, j) = 0 or h(k, l) = 0. Neighbor states may
be affected also by the normalization that is required to
maintain A stochastic.

3.4. Time elastic centroid estimate of a set of time se-
ries. Let us introduce the marginal probability for the
process to be, at step τ , in one of the states of subset
St,• = {St,1, St,2, . . . , St,n′} given the observations on1
and o′n

′
1 , namely, the probability that the process visits at

step τ one of the states of subset St,•, meaning that sample

ot is aligned with the samples of o′n
′

1 ,

P (zτ ∈ St,•|on1 , o′
n′

1 , θ)

=
∑

t′
P (zτ = St,t′ |on1 , o′

n′

1 , θ)

=
1

P (on1 , o
′n′
1 |θ)

∑

t′
ατ (t, t

′)βτ (t, t
′).

(13)
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Also, let us consider, for all t and t′, the conditional
probability of visiting state St,t′ given the two observation
sequences, parameter θ and St,•, namely, the probability
that ot and o′t′ are aligned given the knowledge that ot is

aligned with one of the samples of o′n
′

1 ,

P (zτ = St,t′ |on1 , o′
n′

1 , zτ ∈ St,•, θ)

=
P (zτ = St,t′ |on1 , o′

n′
1 , θ)

P (zτ ∈ St,•|on1 , o′n
′

1 , θ)

=
ατ (t, t

′)βτ (t, t
′)∑

t′ ατ (t, t′)βτ (t, t′)
.

(14)

The previous equality is easily established
using Bayes’ rule, because P (zτ = St,t′ , zτ ∈
St,•|on1 , o′

n′
1 , θ) = P (zτ = St,t′ |on1 , o′

n′
1 , θ).

Hence, for estimating P (zτ = St,t′ |on1 , o′
n′
1 , zτ ∈

St,•, θ), we only need to evaluate the forward (ατ (t, t
′))

and backward (βτ (t, t
′)) recursions, since P (on1 , o

′n′
1 |θ)

is eliminated.

We can then define the expectation of the samples

of o′n
′

1 that are aligned with sample ot (given that ot
is aligned) as well as the expectation of the time of

occurrence of the samples of o′n
′

1 that are aligned with
ot as follows:

E(o′|ot) ∝
n′∑

t′=1

o′t′P (zτ = St,t′ |on1 , o′
n′
1 , zτ ∈ St,•, θ),

E(t′|ot) ∝
n′∑

t′=1

t′P (zτ = St,t′ |on1 , o′
n′
1 , zτ ∈ St,•, θ).

(15)

Fig. 3. Centroids obtained for the CBF data set. For the three
shapes, the expected start (24) and end (88) time stamps
(hence the expected shape duration of 64 frames) are cor-
rectly extracted.

The expectations (15) form a basis of our procedure
for averaging a set of time series. LetO = {konk

1 }k=1,...,N

be a set of time series, and rn1 a reference time series
(rn1 can be initially set up as the medoid of set O). The
centroid estimate of O is defined as the pair (C, T ), where
C is a time series of length n and T is the sequence of time
stamps associated with the samples of C,

Ct =
1

N

N∑

k=1

E(ko|rt)

∝ 1

N

N∑

k=1

nk∑

kt=1

koktP (zτ = St,kt|rn1 , konk
1 , zτ ∈ St,•, θ),

Tt =
1

N

N∑

k=1

E(kt|rt)

∝ 1

N

N∑

k=1

nk∑

kt=1

ktP (zτ = St,kt|rn1 , konk
1 , zτ ∈ St,•, θ).

(16)

Obviously, (C, T ) is a non-uniformly sampled time
series for which T (t) is the time stamp associated with
observation C(t). T (t) could be understood as the
expected time of occurrence of the expected observation
C(t). A uniform re-sampling can straightforwardly be
used to get back to a uniformly sampled time series.

The proposed iterative agglomerative algorithm (cf.
Fig. 1(b)), called TEKA (time elastic kernel averaging),
which provides a refinement of the centroid estimation
at each iteration until reaching a (local) optimum is
presented as Algorithm 1.

As an example, Fig. 3 presents the obtained time
elastic centroid estimates. Using Algorithm 1 with K =
Krdtw, for the synthetic functions cylinder c(t), bell b(t),
funnel f(t) (Saito, 1994) defined as follows:

c(t) = (6 + η)χ[a,b](t) + ε(t),

b(t) = (6 + η)χ[a,b](t)
(t− a)

(b − a)
+ ε(t),

f(t) = (6 + η)χ[a,b](t)
(b− t)

(b − a)
+ ε(t),

where χ[a,b] = 0 if t < a∨t > b, 1 if a ≤ t ≤ b, η and ε(t)
are obtained from a standard normal distribution N(0, 1),
a is an integer obtained from a uniform distribution in
[16, 32] and b−a is another integer obtained from another
uniform distribution in [32, 96]. Hence such shapes are
characterized with start and end time stamps of 24 and 88,
respectively, and a shape duration of 64 samples. Figure 3
clearly shows that, from a subset of 300 time series (100
for each category), the algorithm has correctly recovered
the start and end shape events (hence the expected shape
duration) for all three shapes.
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DBA CTW TEKA

Fig. 4. Centroid estimation for the three categories of the CBF dataset and for the three tested algorithms: DBA (left), CTW (center)
TEKA (right). The centroid estimates are indicated as a thick black line superimposed on top of the time series (in light grey)
that are averaged.

Figure 4 compares the centroid estimates provided
by iterated DBA (Petitjean and Gançarski, 2012), CTW
(Zhou and De la Torre, 2009) and TEKA algorithms.
For the experiment, the DBA and TEKA algorithms
were iterated until convergence. The centroid estimates
provided by the TEKA algorithm are much smoother
than the ones provided by DBA or CTW. This denoising
property, expected from any averaging algorithm, will be
addressed in a dedicated experiment (cf. Section 4.3).

3.5. Role of parameter ν. In practice, the selectivity
or bandwidth of the local alignment kernels (that is,
controlled by parameter ν) has to be adapted according to
the lengths of the time series. If the time series are long,
then ν should be reduced to maintain the calculability of
the forward-backward matrices, while the local selectivity
decreases. Hence, more alignment paths are likely and
more sample pairs participate in the calculation of the
average such that local details are filtered out by the

averaging. Conversely, if the time series are short, ν can
be increased, hence fewer sample pairs participate in the
calculation of the average, and details can be preserved.

Hence parameter ν controls the smoothing of the
centroid, as exemplified in Fig. 5 for the CBF dataset.
Too small a value of ν will filter out high frequencies and
the TEKA algorithm acts as a low-pass filter. On the top
sub-figure, for ν = 0.001, the cylinder, bell and funnel
shapes are distorted, in particular near the discontinuities
of the functions. When ν is too high, the probability
estimates given in Eqn. (14) are vanishing and the TEKA
centroid calculation is not reliable anymore. This is what
happens for ν = 10 in the bottom sub-figure, in which
the centroids for the bell and funnel functions converge
(in the context of our current implementation) toward the
constant functions that correspond to the mean values of
the shapes. For a “correct” ν value, the additive noise can
be filtered out while keeping neatly the discontinuities that
are present in the shapes. This is the case for the CBF data
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Algorithm 1. Iterative time elastic kernel averaging
(TEKA) of a set of time series.

1: Let K be a similarity time elastic kernel for time
series satisfying Eqn. (12)

2: Let O be a set of time series of d dimensional samples
3: Let C0 be an initial centroid estimate (e.g., the medoid

of O) of length n
4: Let T and T0 be two sequences of time stamps of

length n initialized with zero values
5: Let MeanK0 = 0 and MeanK be two double

values;
6: repeat
7: C = C0, T = T0, MeanK = MeanK0;
8: Evaluate C0 and T0 according to Eqn. (16)
9: //Average similarity between C0 and elements of O

10: MeanK0= 1
|O|
∑

o∈O K(C0, o)

11: until MeanK ≤ MeanK0

12: (C, T ) is the centroid estimation
13: Finally, uniformly re-sample C using the time stamps

T

set when ν = .1, as depicted in the sub-figure located at
the center of Fig. 5.

The upper bound for ν can be experimentally (and
automatically) tuned to ensure that, for a given data
set, the numerical vanishing of the probability estimates
given in Eqn. (14) is avoided. The lower bound for ν
is 0+. Finding the “correct” value for ν within these
two bounds is unfortunately dependent on the application.
However, in a time series classification framework, ν
can be automatically optimized using a cross-validation
or a leave-one-out procedure, for instance. In a
clustering framework, the expertise of the practitioner (the
knowledge of the physical process behind the production
of the time series) is in general required to determine an
acceptable ν value. In some cases, few utterances of the
clean signal are available and can be used to adjust the
ν value, similarly to a procedure used for adjusting the
parameters of a band-pass filter to improve or optimize a
signal to noise ratio.

3.6. Computational complexity. TEKA has in-
trinsically the same algorithmic complexity as the
DBA algorithm; basically O(L2) for each pairwise
averaging, where L is the average length of the time
series. Nevertheless, computationally speaking, the
TEKA algorithm is slightly more costly mainly because
of two reasons:

• the FB matrix induces a factor three in complexity
because of the reverse alignment and the
multiplication term by term of the forward and
backward matrices;

• the exponential terms that enter into the computation

Fig. 5. Centroid estimation for the three categories of the CBF
dataset with ν = .001 (top), ν = .1 (middle) and ν =
10 (bottom).

of KRDTW (Eqn. (4)) are costly; basically,
O(M(n)n1/2), where M(n) is the cost of the
floating point multiplication, and n is the number of
digits. This induces another factor 2 or 3, depending
on the chosen floating point precision.

The overall algorithmic cost for averaging a set of N
time series of average length L with an average number
of iterations I is, for the two algorithms, O(I ·N · L2).

Some optimization is indeed possible, in particular
replacing the exponential function by another local kernel
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easier to compute is an important source of algorithmic
simplification. We do not address further this issue in this
paper and let it stand as a perspective.

4. Experiments

The two first proposed experiments aim at demonstrating
the benefits of using time elastic centroids in a data
reduction paradigm: 1-NC/NM (first near centroid or
medoid) classification for the first one, and isolated
gesture recognition for the second one using 1-NC/NM
and SVM classifiers in conjunction with the KRDTW
kernel. The third experiment explores the noise reduction
angle brought by time elastic centroids.

4.1. 1-Nearest centroid/medoid classification. The
purpose of this experiment is to evaluate the effectiveness
of the proposed time elastic averaging method (TEKA)
against a triple baseline. The first baseline allows us to
compare centroid-based with medoid-based approaches.
The second and third baselines are provided by the DBA
(Petitjean and Gançarski, 2012) and CTW (Zhou and De
la Torre, 2009) algorithms (thanks to the implementation
proposed by the authors), currently considered a state of
the art methods to average a set of sequences consistently
with DTW. We have tested the CTW averaging with
a 1-NC-DTW (CTW1) and a 1-NC-KRDTW (CTW2)
classifier to highlight the impact of the selected similarity
measure.

For this purpose, we empirically evaluate the
effectiveness of the methods using a first nearest
centroid/medoid (1-NC/NM) classification task on a set
of time series derived from widely diverse fields of
application. The task consists in representing each
category contained in a training data set by estimating
its medoid or centroid and then evaluating the error rate
of a 1-NC classifier on an independent testing data set.
Hence, the classification rule consists of assigning to the
tested time series the category which corresponds to the
closest (or most similar) medoid or centroid according
to the DTW measure for the DTW medoid (DTW-M)
and the DBA and CTW centroids (CTW1) or to the
KRDTW measure for KRDTW medoid (KRDTW-M),
CTW (CTW2) and TEKA centroids.

In the work of Petitjean et al. (2014) a generalized
k-NC task is described. The authors demonstrate that,
by selecting the appropriate number k of centroids (using
DBA and k-means), they achieve, without loss, a 70%
speed-up on average, compared to the original k-nearest
neighbor task. Although, in general, the classification
accuracy is improved when several centroids are used to
represent the training datasets, our main purpose is to
highlight and amplify the discrimination between time
series averaging methods: this is why we stick here to the
1-NC task.

A collection of 45 heterogeneous data sets is used to
assess the proposed algorithms. The collection includes
synthetic and real data sets, as well as univariate and
multivariate time series. These data sets are distributed
as follows:

• 42 of these data sets are available at the UCR
repository (Keogh et al., 2006). Basically, we used
all the data sets except for StarLightCurves, Non-
Invasive Fetal ECG Thorax1 and Non-Invasive Fetal
ECG Thorax2. Although these last three data sets
are still tractable, their computational cost is high
because of their size and the length of the time series
they contain. All these data sets are composed of
scalar time series.

• One data set, uWaveGestureLibrary 3D was
constructed from the uWaveGestureLibrary X—Y—Z
scalar data sets to compose a new set of multivariate
(3D) time series.

• One data set, CharTrajTT, is available at the UCI
repository (Lichman, 2013) under the name Char-
acter Trajectories Data Set. This data set contains
multivariate (3D) time series and is divided into two
equal sized data sets (TRAIN and TEST) for the
experiment.

• The last data set, PWM2, which stands for Pulse
Width Modulation (Marteau, 2007), was specifically
defined to demonstrate a weakness in the dynamic
time warping pseudo distance. This data set is
composed of synthetic scalar time series.

For each dataset, a training subset (TRAIN) is defined
as well as an independent testing subset (TEST). We use
the training sets to extract single medoids or centroid
estimates for each of the categories defined in the data
sets.

Furthermore, for KRDTW-M, CTW2 and TEKA,
the ν parameter is optimized using a leave one out
(LOO) procedure carried out on the TRAIN data
sets. The ν value is selected within the discrete set
{.01, .05, .1, .25, .5, .75, 1, 2, 5, 10, 15, 20, 25, 50, 100}.
The value that minimizes the LOO classification error
rate on the TRAIN data is then used to provide the error
rates that are estimated on the TEST data.

The classification results are given in Table 1. It can
be seen from this experiment that

1. centroid-based methods outperform medoid-based
ones: DBA and CTW (CTW2) yield lower error rates
compared to DTW-M, as does TEKA compared with
KRDTW-M and DTW-M;

2. CTW pairs much better with KRDTW (CTW2
outperforms CTW1);



386 P.-F. Marteau

Table 1. Comparative study using the UCR and UCI data sets: classification error rates evaluated on the TEST data set (in %) obtained
using the first nearest neighbour classification rule for DTW-M, KRDTW-M, (medoids), DBA, CTW1, CTW2 and TEKA
(centroids). A single medoid/centroid extracted from the training data set represents each category.
Dataset # Cat | L DTW-M DBA CTW1 CTW2 KRDTW-M TEKA

Synthetic Control 6|60 3.00 2.00 19.00 3.33 3.33 2.33
Gun Point 2|150 44.00 32.00 54.67 25.33 52.00 27.33
CBF 3|128 7.89 5.33 34.22 3.55 8.11 3.33
Face (all) 14|131 25.21 18.05 34.38 27.93 20.53 13.61
OSU Leaf 6|427 64.05 56.20 64.05 57.02 53.31 50.82
Swedish Leaf 15|128 38.56 30.08 32 25.76 31.36 22.08
50Words 50|270 48.13 41.32 48.57 36.48 23.40 19.78
Trace 4|275 5.00 7.00 6.00 18 23.00 16.00
Two Patterns 4|128 1.83 1.18 26.75 37.75 1.17 1.10
Wafer 2|152 64.23 33.89 37.83 33.27 43.92 8.38
Face (four) 4|350 12.50 13.64 19.32 15.91 17.05 10.23
Lightning-2 2|637 34.43 37.70 37.70 29.51 29.51 29.51
Lightning-7 7|319 27.40 27.40 41.10 38.35 19.18 16.44
ECG200 2|96 32.00 28.00 27.00 25 29.00 26.00
Adiac 37|176 57.54 52.69 54.73 34.78 40.67 32.22
Yoga 2|426 47.67 47.87 53.56 48.97 47.53 44.90
Fish 7|463 38.86 30.29 39.42 22.28 20.57 14.28
Beef 5|470 60.00 53.33 53.33 50 53.33 50
Coffee 2|286 57.14 32.14 32.14 28.57 32.14 32.14
OliveOil 4|570 26.67 16.67 13.33 23.33 30 16.67
CinC ECG torso 4|1639 74.71 53.55 73.33 42.90 66.67 33.04
ChlorineConcentration 3|166 65.96 68.15 67.40 67.97 65.65 64.97
DiatomSizeReduction 4|345 22.88 5.88 5.23 2.61 11.11 2.94
ECGFiveDays 2|136 47.50 30.20 34.49 13.47 11.38 16.37
FacesUCR 14|131 27.95 18.44 32.20 21.66 20.73 12.19
Haptics 5|1092 68.18 64.61 58.77 57.47 63.64 53.57
InlineSkate 7|1882 78.55 76.55 81.64 82.18 78.36 75.09
ItalyPowerDemand 2|24 31.68 20.99 15.84 9.33 5.05 6.61
MALLAT 8|1024 6.95 6.10 5.24 3.33 6.87 3.66
MedicalImages 10|99 67.76 58.42 58.29 59.34 57.24 59.60
MoteStrain 2|84 15.10 13.18 19.01 15.33 12.70 9.35
SonyAIBORobot SurfaceII 2|65 26.34 21.09 20.57 17.52 26.230 19.30
SonyAIBORobot Surface 2|70 38.10 19.47 14.48 9.31 39.77 17.95
Symbols 6|398 7.64 4.42 22.31 20.70 3.92 4.02
TwoLeadECG 2|82 24.14 13.17 20.37 19.23 27.04 18.96
WordsSynonyms 25|270 70.85 64.26 78.84 63.32 64.26 56.11
Cricket X 12|300 67.69 52.82 78.46 73.85 61.79 52.82
Cricket Y 12|300 68.97 52.82 69.74 65.64 46.92 50.25
Cricket Z 12|300 73.59 48.97 78.21 64.36 56.67 51.79
uWaveGestureLibrary X 8|315 38.97 33.08 37.33 34.61 34.34 32.18
uWaveGestureLibrary Y 8|315 49.30 44.44 45.42 41.99 42.18 39.64
uWaveGestureLibrary Z 8|315 47.40 39.25 47.65 39.36 41.96 39.97
PWM2 3|128 43.00 35.00 63.66 6.33 21.00 4.33
uWaveGestureLibrary 3D 8|315 10.11 5.61 9.35 7.68 13.74 7.73
CharTrajTT 3D 20|178 11.026 9.58 13.45 15.05 6.93 4.99

# Best Scores – 1 7 0 9 6 27
# Uniquely Best Scores – 1 5 0 7 5 23
Average rank – 4.56 2.87 4.62 2.97 3.22 1.6
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3. TEKA outperforms DBA (under the same
experimental conditions) and CTW.

The average ranking for all six tested methods,
which supports our preliminary conclusion, is given at
the bottom of Table 1.

In Table 2 we report the p-values for each pair of
the tested algorithms using a Wilcoxon signed-rank test.
The null hypothesis is that, for a tested pair of classifiers,
the difference between classification error rates obtained
on the 45 data sets follows a symmetric distribution
around zero. With a .05 significance level, the p-values
that lead to rejecting the null hypothesis are shown in
boldface in the table. This analysis confirms our previous
study of the classification results. We observe that
centroid-based approaches perform significantly better
than medoid-based ones. Furthermore, KRDTW-M
appears to be significantly better than DTW-M.

Furthermore, TEKA is evaluated as significantly
better than DBA and CTW2 in this experiment. Note also
that DBA does not seem to perform significantly better
than KRDTW-M or CTW2, and that CTW1 performed
similarly to DTW-M and poorly compared to the other
centroid methods. Hence, this confirms out that CTW
method seems to pair well with the KRDTW measure but
poorly with the DTW one.

4.2. Instance set reduction. In this second
experiment, we address an application that consists in
summarizing subsets of training time series to speed up
an isolated gesture recognition process.

The data set that we consider (Ghouaiel et al., 2017)
enables us to explore the hand-shape and the upper
body movement using 3D positions of skeletal joints
captured using a Microsoft Kinect 2 sensor. 20 subjects
were selected (15 males and 5 females) to perform in
front of the sensor (at a three-meter distance) the 6
selected NATOPS gestures. Each subject repeated each
gesture three times. Hence the isolated gesture dataset
is composed of 360 gesture utterances that have been
manually segmented to a fixed length of 51 frames.1.

An excerpt of this multivariate time series database
is shown in Fig. 6. The 3D positions for the thumbs, hand
extremities, elbows and shoulders are shown as a function
of time for the Lock Wings gesture.

To evaluate this task, we performed a subject
cross-validation experiment consisting of 100 tests: for
each test, 10 subjects were randomly drawn among 20
for training and the remaining 10 subjects were retained
for testing. The 1-NN/NC (our baselines) and SVM
classifiers are evaluated, with or without summarizing
the subsets composed of the three repetitions performed

1This dataset is available at https://github.com/pfmartea
u/IGR_Kinect_DB.

Fig. 6. Excerpt of the gesture database: 3D positions evolving
with time for two hand extremities; two thumbs and two
elbows are shown.

by each subjects using a single centroid (DBA, CTW,
TEKA) or medoid (KRDTW-M). The parameter ν of
the KRDTW kernel as well as the SVM meta parameter
(RBF bandwidth σ and C) are optimized using a leave
one subject procedure on the training dataset. The kernels
exp(−DTW(·, ·)/σ) and exp(−KRDTW(·, ·)/σ) are
used respectively in the SVM DTW and SVM KRDTW
classifiers.

Table 3 gives the assessment measures (ERR:
average error rate, PRE: macro average precision, REC:
macro average recall and F1 = 2 × precision·recall

precision+recall ) for
the isolated gesture classification task. In addition, the
number of reference instances used by the 1-NN/NC
classifiers or the number of support vectors exploited
by the SVM (#Ref column in the table) are reported
to demonstrate the data reduction that is induced by the
methods in the training sets.

The results show that the DTW measure does not fit
well with the SVM compared with KRDTW: the error
rate or the F1 score are about 9% higher or lower for
the isolated gesture task. Hence, to compare the DBA,
CTW and TEKA centroids using an SVM classification,
the KRDTW kernel was used. When employing the
centroids (SVM KRDTW-DBA, SVM KRDTW-CTW,
SVM KRDTW-TEKA) or medoids (SVM KRDTW-M),
the error rate or F1 score increases or decreases only
by around 2.5% and 2% compared with SVM-KRDTW,
which achieves the best scores. Meanwhile, the number
of support vectors exploited by the SVM drops by a
factor of 2, leading to an expected speed-up of 2.
Compared with 1-NN classification without centroids,
SVM KRDTW with centroids achieves much better
performance, with an expected speed-up of 4 (∼ 50
support vectors comparatively to 180 gesture instances).
This demonstrates the capacity of centroid methods to
reduce significantly the size of the training sets while

https://github.com/pfmarteau/IGR_Kinect_DB
https://github.com/pfmarteau/IGR_Kinect_DB
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Table 2. Wilcoxon signed-rank test of pairwise accuracy differences for 1-NC/NM classifiers carried out on the 45 datasets.
Method KRDTW-M DBA CTW1 CTW2 TEKA

DTW-M p<.0001 p<.0001 0.638 0.0002 p<.0001
KRDTW-M – 0.395 0.0004 0.5261 p<.0001
DBA – – p<.0001 0.8214 p<.0001
CTW1 – – – p<.0001 p<.0001
CTW2 – – – – p<.0001

Table 3. Assessment measures (ERR: error rate, PRE: precision, REC: recall and F1 score) for the isolated gestures recognition. #Ref
is the number of training gestures for the 1-NN/NC classifiers and the mean number of support vectors for the SVM classifiers.

Method
ERR
mean ‖ std

PRE REC F1 #Ref

1-NN DTW .134 ‖ .012 .869 .866 0.867 180
1-NN KRDTW .128 ‖ .016 .876 .972 .874 180

1-NC DTW-DBA .136 ‖ .014 .868 .864 .866 60
1-NC KRDTW-CTW .135 ‖ .016 .871 .865 .868 60
1-NC KRDTW-TEKA .133 ‖ .014 .871 .867 .869 60
SVM DTW .146 ‖ .015 .871 .854 .862 164.97
SVM KRDTW .051 ‖ .015 .952 .949 .951 103.10

SVM KRDTW-M .087 ‖ .02 .92.9 .92.6 .92.7 47.62
SVM KRDTW-DBA .080 ‖ .017 .935 .931 .931 46.74
SVM KRDTW-CTW .085 ‖ .021 .933 .927 .930 50.12
SVM KRDTW-TEKA .079 ‖ .019 .937 .933 .935 47.45

Table 4. Wilcoxon signed-rank test of pairwise accuracy differences for 1-NN/NC classifiers. The DTW and KRDTW methods exploit
the entire training sets while the other methods only use one centroid for each subject and each gesture label.

Method 1-NN 1-NC 1-NC 1-NC
KRDTW DBA CTW TEKA

1-NN DTW p<.0001 0.140 0.886 0.371
1-NN KRDTW – p<.0001 0.026 0.087
1-NC DBA – – 0.281 0.006
1-NC CTW – – – 0.199

Table 5. Wilcoxon signed-rank test of pairwise accuracy differences for SVM classifiers. The DTW and KRDTW methods exploit the
entire training sets while the other methods only use one centroid for each subject and each gesture label.

Method SVM SVM SVM SVM SVM
KRDTW KRDTW-M DBA CTW TEKA

SVM DTW p<.0001 p<.0001 p<.0001 p<.0001 p<.0001
SVM KRDTW – p<.0001 p<.0001 p<.0001 p<.0001
SVM KRDTW-M – – 0.002 0.57 0.0002
SVM DBA – – – 0.107 0.339
SVM CTW – – – – 0.013

maintaining a very similar level of accuracy.

In greater detail, TEKA is the centroid-based
method that achieves the lowest error rates for the two
classification tasks, while DBA is the centroid-based
method that exploits the fewest support vectors (46.5).

Tables 4 and 5 give the p-values for the Wilcoxon
signed-rank tests. With the same null hypothesis as
above (the difference between the error rates follows
a symmetric distribution around zero) and with a .05
significance level, the p-values that lead to rejecting the
null hypothesis are presented in boldface in the tables.
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From Table 4 we note that 1NN-KRDTW (which exploits
the full training set) performs significantly better than
1NN DTW, 1-NC DTW-DBA and 1-NC KRDTW-CTW,
but not significantly better than 1-NC KRDTW-TEKA.
Conversely, 1-NC KRDTW-TEKA performs significantly
better than 1-NC DTW-DBA but not significantly better
that 1-NC KRDTW-CTW. Similarly, from Table 5 we
observe that SVM KRDTW, which exploits the full
training set, performs significantly better than all centroid
or medoid based methods. Also, SVM KRDTW-TEKA
performs significantly better than SVM KRDTW-CTW
but not significantly better than SVM KRDTW-DBA.
Finally, SVM KRDTW-TEKA and SVM KRDTW-DBA
outperform the medoid based method (SVM KRDTW-M)
but not SVM KRDTW-CTW.

If the three centroid methods show rather close
accuracies on this experiment, TEKA is significantly
better than DBA on the 1NC task and significantly better
than CTW on the SVM task.

4.3. Denoising experiment. To demonstrate the
utility of centroid based methods for denoising data,
we construct a demonstrative synthetic experiment that
provides some insights. The test is based on the following
2D periodic signal:

Xk(t) =

(
Ak +Bk

∞∑

i=1

δ(t− 2πi

6ωk
)

)
cos(ωkt+ φk),

(17)

Yk(t) =

(
Ak +Bk

∞∑

i=1

δ(t− 2πi

6ωk
)

)
sin(ωkt+ φk),

where Ak = A0 + ak, Bk = (A0 + 5) + bk and
ωk = ω0 + wk, A0 and ω0 are constant, and ak,
bk, ωk, φk are small perturbations in the amplitude,
frequency and phase, respectively, and randomly
drawn from ak ∈ [0, A0/10], bk ∈ [0, A0/10],
ωk ∈ [−ω0/6.67, ω0/6.67], φk ∈ [−ω0/10, ω0/10].

In practice we adopted the following setting: f0 =
ωo/(2π) = 20Hz, and A0 = 1. We then center
and normalize this 2D signal to get (X̃k(t), Ỹk(t))
corresponding to the plots given in the top of Fig. 7. The
log-power spectrum of the X̃k component shows the Dirac
spike located at f0 = 20 Hz (corresponding to the sine
component), and the convolution of this spike with a Dirac
comb in the frequency domain that results in pairs of Dirac
spikes symmetrically located (±20 Hz) around multiples
of 6f0, namely, 120 Hz, 240 Hz, etc. This shows that the
signal is characterized by an infinite spectrum.

We then consider noise utterances εk(t) with zero
mean and unit variance, added to each instances of the

2D signal:

xk(t) = X̃k(t) + εk(t),

yk(t) = Ỹk(t) + εk(t),

leading to a signal to noise ratio of 0 dB. An example
of such a noisy instance is given in the bottom of Fig. 7.
Because of the scattering of the random components of the
signal in a wide spectral band, traditional noise reduction
techniques, such as those presented by Hassan and Anwar
(2010), for instance, will not allow us to recover the signal
properly.

The task consists in reducing the noise as far as
possible to recover the 2D shape of the noise free signal
from a small set of noisy instances {(xk, yk)}k=1,...,8

containing two “periods” of the clean signal. Figure 8
presents the centroid shapes obtained using, from left to
right, the Euclidean, DBA, CTW and TEKA methods,
respectively. We can see that the Euclidean centroid
retrieves partially the low frequency sine component
without properly sorting out the spikes components,
while DBA more accurately retrieves the spikes, although
without achieving to suppress the low frequency noise
around the sine component. The CTW centroid appears
to be in between and partially reduces the low frequency
noise and extracts the spikes. TEKA achieves the best
retrieval of the sine and spikes components that are better
timely and spatially separated. The spectral analysis
presented in Fig. 8 (top) gives further insight: for DBA
and CTW centroids, (top center sub-figures), the series
of pairs of Dirac spikes (in dotted gray) are still hidden
into the noise level (black curve), while being much more
separated from the noise for the TEKA centroid, as shown
in the top right side sub-figure.

Moreover, if we take the clean shapes as ground
truth, the signal to noise ratio (SNR) gains estimated from
the log-power spectra (to get rid of the phase) is 0 dB for
the noisy shapes, 1.58 dB for the Euclidean centroid, 1.17
dB for the DBA centroid, 1.57 dB for the CTW centroid
and 3.88 dB for the TEKA centroid. Note that in the
calculation of the SNR, preserving the spikes has a lower
impact compared to preserving the low frequency sine
wave, which explains why the SNR values obtained by the
DBA and CTW centroid are lower than for the Euclidean
one.

In terms of noise reduction, this experiment
demonstrates the ability of the TEKA centroid to better
recover, from few noisy utterances, a signal whose
components are scattered in a wide band spectrum.
Indeed, if the noise level increases, the quality of the
denoising will be reduced.

4.4. Discussion. We believe that the noise filtering
ability of TEKA is mainly due to the averaging technique
described in Eqn. (16), which aggregates many plausible
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Fig. 7. Waveforms, 2D shape and power spectra for the clean synthetic signal (top) and the noisy synthetic signal (bottom).

alignments between samples (instead of a best one) while
averaging also the time of occurrence of the samples,
in particular those corresponding to the expected pattern
location and duration such as the CBF shapes or the spike
locations in the third experiment. This ability is also likely
to explain the best accuracy results obtained by TEKA
compared to the state of the art methods, CTW and DBA.

Furthermore, it seems that the KRDTW measure is
more adapted to match centroids than DTW. Here again,
handling several good to best alignments rather than a
single optimal one allows matching the centroids in many
ways that are averaged by the measure. This has been
verified for CTW in 1-NC classification tasks and is true
for TEKA and DBA as well.

The main limitation in exploiting TEKA (and
KRDTW) is the tuning of the parameter ν that controls
the selectivity of the local kernel. Note that ν is dependent
on the length of the time series and needs to be adapted to
the task itself. Basically, if ν is too small, TEKA will
filter out high frequency events just as a moving average
filter. Conversely, if ν is too high, the computation of
the products of local probabilities along the alignment
paths will bear some loss of significance in terms of the
numerical calculation. Despite this tuning requirement,
the three experiments, that we have carried out in this
study, demonstrate its applicability and usefulness.

5. Conclusion

In this paper, we addressed the problem of averaging
a set of time series in the context of a time elastic
distance measure such as dynamic time warping. The new

perspective provided by the kernelization of the elastic
distance allows a re-interpretation of pairwise kernel
alignment matrices as the result of a forward-backward
procedure applied on the states of equivalent stochastic
alignment automata. Following this re-interpretation, we
proposed a new algorithm, TEKA, based on an iterative
agglomerative heuristic method that allows efficient
computing good solutions to the multi-alignment of time
series. This algorithm exhibits quite interesting denoising
capabilities, which enlarges the area of its potential
applications.

We reported extensive experiments carried out
on synthetic and real data sets, containing univariate
but also multivariate time series. Our results show
that centroid-based methods significantly outperform
medoid-based ones in the context of a first nearest
neighbor and SVM classification tasks. More strikingly,
the TEKA algorithm, which integrates joint averaging in
the sample space and along the time axis, is significantly
better than the state-of-the art DBA and CTW algorithms,
with a similar algorithmic complexity. It enables robust
training set reduction, which was experimented on an
isolated gesture recognition task. Finally, we developed
a dedicated synthetic test to demonstrate the denoising
capability of our algorithm, a property that is not
supported at the same level by the other time-elastic
centroid methods on this test.
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