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A stage-structured population model with unknown parameters is considered. Our purpose is to study the identifiability
of the model and to develop a parameter estimation procedure. First, we analyze whether the parameter vector can or
cannot uniquely be determined with the knowledge of the input-output behavior of the model. Second, we analyze how the
information in the experimental data is translated into the parameters of the model. Furthermore, we propose a process to
improve the recursive values of the parameters when successive observation data are considered. The structure of the state
matrix leads to an analysis of the inverse of a sum of rank-one matrices.

Keywords: system identification, parameter estimation, dynamic population, discrete-time system, rank-one matrix.

1. Introduction and mathematical
background

Stage-structured models are based on the assumption that
a large group can be divided into smaller ones with similar
parameters and in some way interconnected with one
another. For example, the individuals of a population are
organized in stages because of their evolution in different
phases from birth to death. Although Leslie’s model
is quite a suitable approach for some type of animals,
it does not generally conform to the analysis of the
evolution of a population of many species. This is the
case for some animals such as insects, turtles and even
some mammals (Carnia et al., 2015), or when analyzing
evolving populations of most plants. Detecting whether
a plant will prosper or not depends more on the size
or condition of the plant than on its age. This means
that those plants that do not reach the desired size in an
interval of time will remain in the same class and will not
advance to the next one. This behavior does not fit into
a Leslie model and in these cases the Lefkovitch model
fits better since the elements of the state matrix represent
the transition rate from one class of a stage (or size) to
another.

When populations are structured, the birth rate
is often called fertility (the number of offspring that
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are produced per female of a given stage). Usually,
this fertility is zero for an individual in a pre- or
post-productive age and positive fertility is observed for
individuals of a reproductive age. These structured
systems are employed to model the changes in a
population of organisms and are widely used in studies
of biology, ecology and demography to determine the
growth of a population, (see, e.g., Caswell, 2001; Kajin
et al., 2012; Leslie, 1948; Lefkovitch, 1965). Note that
this kind of dynamic process is represented by a discrete
linear system with nonnegative states and nonnegative
inputs. Therefore, we are considering positive systems
and the study involves the use of nonnegative matrix
theory and positive control theory (Kaczorek, 2002).
These mathematical tools are usually used in the analysis
of the evolution of several real processes (see, e.g.,
Cantó et al., 2014; Cao and Zhou, 2012; De La Sen
and Quesada, 2003; Emmert and Allen, 2004; Li and
Schneider, 2002; Li and Wang, 2006).

The notation and the basic concepts that will be
used throughout the work are as follows (see Berman and
Plemmons, 1994). A matrix M = (mij) is nonnegative
if mij ≥ 0 for all i, j, and it is denoted by M ≥ 0.
Analogously, a nonnegative vector is defined and denoted
by p = (pi) ≥ 0 if pi ≥ 0, for all i. From now on, we
will denote by ei, i = 1, . . . , n the unit canonical basis of
R

n and by col(Xi)
l
i=1 a column matrix by blocks whose

mailto:esanchezj@mat.upv.es


328 C. Coll and E. Sánchez

blocks are Xi, i = 1, . . . , l.
Our mathematical model considers female

populations in each stage as a nonnegative state variables.
Sometimes the process is altered by a nonnegative entry
of a new population. For instance, an inflow of elements
into the first stage appears modifying the dynamic of the
population (Caswell, 2001). In this way, we have the
dynamics of the process represented by the discrete linear
system

x̄(t+ 1) = Ax̄(t) +B, t ≥ 0, (1)

where x̄(t) ∈ R
n
+ represents the female population and the

measure of a new population is given by B = be1; that is,
there exists only the entry of a new population at the first
stage. In this model, the individuals are organized in n
stage classes. Class j includes the female individuals of
this stage, and, at time step t, some individuals are going
from class j to j + 1 but some of them remain in class j.
Many species have different stages, such as eggs, juveniles
or larvae, adults, etc. Then, the population distribution
entails that not all individuals reach the next stage at the
same time. In this status, we have the Lefkovitch model
given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1 + f1 f2 · · · fn−1 fn
s1 τ2 · · · 0 0
...

. . .
. . .

...
...

...
. . .

. . . τn−1

...
0 0 · · · sn−1 τn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the entries fj ≥ 0 are the fertility parameters, at
least one of them nonzero, 0 < sj ≤ 1 is the survival
rate growing into the next stage, and 0 ≤ τj < 1 the
survival rate remaining in the same stage. It is clear that
in these models the fertility in the first stage is usually
zero. We will assume thatf1 = 0. From this matrix, it is
possible to calculate a stable age distribution. Note that
the biological interpretation of the parameters leads to a
system with nonnegative matrices, A ≥ 0 and B ≥ 0.
Hence, the system is positive (see Kaczorek, 2002).

On the other hand, if the models involve unknown
parameters, it is essential to obtain their estimated values
to predict or control the behavior of the real process.

We denote by S(p) the class of stage-structured
discrete-time linear systems x(t + 1) = A(p)x(t) + B
with the parameter vector p belonging to a suitable subset
P ⊆ R

l, and by io(·) the input-output response obtained
from an initial condition and an input. Given a system
in S(p), we will use its Markov parameters V (j, p) =
Aj(p)B, j ≥ 0 to determine the input-output behavior of
this system.

We say that S(p) is globally identifiable if and only
if, for any two candidate parameter vector values p, q ∈
P , the same input-output behavior io(p) = io(q) implies
p = q.

Thus, while the identifiability of the model
guarantees that the parameter vector can uniquely be
determined by the knowledge of the input-output behavior
of the model, the estimation responds to how the
information in the experimental data is translated into
the model parameters. The identifiability guarantees
that the model parameters can be estimated under ideal
conditions. Usually, the solution of the estimation
problem is obtained through minimization of a least
squares function. Accordingly, the estimation problem
is usually addressed by fitting model simulations to the
observed experimental data set {ob(i) ∈ R

n, i =
1, . . . ,K}. To solve this problem, the system x(t + 1) =
A(p)x(t) +B is rewritten as

x(t + 1) = M(t)p +N(t), t ≥ 0,

and the objective is to minimize the quadratic cost
function

JK(p) =
1

2

K∑
i=1

e(i)T e(i) =
1

2
eTKeK ,

where e(i) = (ob(i) − x(i)), i = 1, . . . ,K , eK =
(e(i))K−1

i=0 , with {ob(t), t = 1, . . . ,K} being a data set
of K observations and {x(t), t = 1, . . . ,K}, the system
response starting from an initial condition x(0).

Several studies on parameter estimation and structure
identification can be found in the literature. The main
problem of these models is to determine techniques to
adjust the parameters from experimental data. An analysis
of experimental data errors due to parameter sensitivity
is given by Boyadjiev and Dimitrova (2005). In the
work Verdière et al. (2005) a nonlinear pharmacokinetic
model is used and it is analyzed how only one output
polynomial provides information on the identifiability of
the model; this information is used in numerical parameter
estimation. Finally, a good review of identifiability
problems and the estimation process is given by Chou and
Voit (2013).

This paper is organized as follows. In the next
section, we present the stage-structured population model
and a background on the mathematical tools used
throughout the work. In Section 3, we obtain theoretical
results on the identifiability of the parameters involved
in the process. Then, we board the estimation problem
establishing conditions in order to ensure an estimated
value of the parameter from a data set. In Section 4,
the analysis of our model leads us to study properties
of a sum of rank-one matrices. Then, we establish a
recursive process to improve the values of the parameters
by addition of more observed data. The results are
illustrated with an example.
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2. Identifiability and estimation of
parameters in stage-structured models

We consider the stage-structured population model
including a controlled inflow of elements represented by
(1). The transformation matrix

S = diag(1, s1, s1s2, . . . , s1 · · · sn−1)

leads us from the model (1) to a similar system, with
x(t) = S−1x̄(t), given by

x(t+ 1) = A(p)x(t) +B, (2)

with

A(p) = S−1AS =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a2 · · · an−1 an
1 τ2 · · · 0 0
...

. . .
. . .

...
...

...
. . .

. . . τn−1

...
0 0 · · · 1 τn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(3)
where a1 = τ1, aj = fj

∏j−1
i=1 si, j = 2, . . . , n. Note that

the transformation matrix S preserves the matrix

B = (b 0 · · · 0)T . (4)

The parameter vector p is given by p = (p̄T | ¯̄pT )T =

(a1 · · · an | τ2 · · · τn)T ∈ P , where P = P̄ ⊕ ¯̄P , with
P̄ = {(p̄, O) /p̄ = (p̄i) ∈ R

n
+, 0 ≤ p̄1 < 1} and ¯̄P

= {(O, ¯̄p) /¯̄p = (¯̄pi) ∈ R
n−1
+ / 0 ≤ ¯̄pi < 1}.

It is of interest to accurately estimate these
parameters. As a first step, we propose to study the
identifiability of the system.

It is known that a model is globally identifiable if and
only if there exists a single input-output behavior for every
parameter set. Therefore, from a fixed structure, we want
to test whether the relationship between the parameter sets
and the response of the model is unique.

The class of positive structured models S(p) =
(A(p), B) given in (2) has the response

x(t) = A(p)tx(0) +
t−1∑
i=0

V (i, p), t ≥ 0,

given by the Markov parameters V (i, p) = A(p)iB, i ≥
0, with matrices A(p) and B given in (3) and (4).

From now on, we consider the initial-value problem

(IVP)

{
x(t+ 1) = A(p)x(t) +B,

x(0) = x1(0)e1 ∈ R
n
+, with x1(0) > 0.

In the following theorem, we analyze its response.

Theorem 1. For (IVP) the response x(i) = (xj(i))
n
j=1,

for all 1 ≤ i < n, satisfies xj(i) ≥ 0 if 1 ≤ j ≤ i,
xi+1(i) > 0 and xj(i) = 0, i+ 1 < j ≤ n.

Proof. The solution of the system (2) is given by

x(i) = Ai(p)x(0) +
i−1∑
l=0

Al(p)B.

From the structure of A(p) and B = be1 given in (3) and
(4), choosing x(0) = x1(0)e1, we obtain that x(i) is in
a polyhedral cone. Specifically, it is a linear combination
with nonnegative scalars of the kind

x(i) = α1e1 + · · ·+ αi+1ei+1, (5)

with αj ≥ 0, j = 1, . . . , i, and αi+1 > 0. Then, xj(i) ≥
0 for j = 1, . . . i, xi+1(i) > 0 and xj(i) = 0, for j =
i+ 1, . . . , n. �

For linear models there are many well established
techniques for analyzing identifiability; see, e.g., the
works of Boyadjiev and Dimitrova (2005) or Dion et al.
(2003) and the references therein. In our case, to identify
the parameters, we consider an initial state x(0) and two
parameters p, q ∈ P , and we suppose that V (j, p) =
V (j, q). Then, we want to prove that p = q, that is,
the identifiability of the system class S(p). This result
is given in the following theorem.

Theorem 2. Consider the stage-structured system
class S(p) = (A(p), B) given by (3) and (4) with
p ∈ P ⊆ R

2n−1
+ . The Markov parameters V (j,p) =

(v(j,p)α)
n
α=1 , j = 1, . . . , n, satisfy

v(j,p)1 =

j∑
l=1

alv(j − 1,p)l,

v(j,p)α = v(j − 1,p)α−1 + ταv(j − 1,p)α,

α = 2, . . . , j,

v(j,p)j+1 = b,

v(j,p)α = 0, α = j + 2, . . . n,

(6)

and the stage-structured system class S(p) = (A(p), B)
is identifiable.

Proof. Exploiting the form of matrix A(p), we obtain

V (j, p) = Aj(p)B = A(p)V (j − 1,p)

=
( n∑

l=1

alv(j − 1,p)l,

v(j − 1,p)1 + τ2v(j − 1,p)2,

· · · , v(j − 1,p)n−1 + τnv(j − 1,p)n

)T

.

(7)

In addition, a straight recursive calculation allows us
to check the expression established in (6). Then, if
we consider V (j, p) = V (j, q), we can identify all
parameters following the steps of Algorithm 1. �
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Algorithm 1. Identification of the parameter p.
Step 1. Input data: b, input variable parameters p and q
such that

p = (p̄T | ¯̄pT )T = (a1 · · · an | τ2 · · · τn)T ,
q = (q̄T | ¯̄qT )T = (â1 · · · ân | τ̂2 · · · τ̂n)T ,

where p̄, q̄ ∈ P̄ and ¯̄p, ¯̄q ∈ ¯̄P .

Step 2. Construct A(p), A(q) and B as in (3) and (4).

Step 3. Set j = 1:

Step 3.1. Construct the Markov parameters V (j, p)
and V (j, q) of the system (2).

Step 3.2. Solve V (j, p) = V (j, q). From (7), it is
obtained that aj = âj and τj = τ̂j (when j = 1 only
a1 = â1).

Step 3.3. Make j = j + 1. If j ≤ n then return to
Step 3.1. Otherwise, go to Step 4.

Step 4. All parameters are identified, aj = âj and τj =
τ̂j , for all j. Then p = q.

Having checked that all the parameters are
identifiable, we attack the estimation of their values.
Parameter estimation is an important issue in biological
and dynamic population systems because it is necessary
in order to know the behavior of the dynamic process.

Given the observed experimental data set {ob(i) ∈
R

n, i = 1, . . . ,K}, we consider e(i) = (ob(i) − x(i))
as the error between the observed value and the obtained
value by the simulation of the given model at time i, i =
1, . . . ,K . Rewriting the system (2),

x(t+ 1) = M(t)p +N(t), t ≥ 0. (8)

From d(i) = ob(i) − N(i − 1), i = 1, . . . ,K and
M(i), i = 0, . . . ,K − 1, we construct the following
stacked matrices:

dK = col(d(i))Ki=1, HK = col(M(i))K−1
i=0 .

We look for the value of the parameter which minimizes
the quadratic error

JK(p) =
1

2

K∑
i=1

e(i)T e(i)

=
1

2
eTKeK =

1

2
(dK −HKp)T (dK −HKp).

This minimizer p satisfies

∂JK(p)

∂p
= HT

KHKp −HT
KdK = 0.

Note that the vector p that minimizes the function JK(p)
is given as follows. If HT

KHK is nonsingular, then p =

(HT
KHK)−1HT

KdK , and if it is singular, then p = H†
KdK ,

where † denotes the Moore–Penrose generalized inverse
matrix.

From the system (2) and the structure of matrix A(p)
given in (3), we obtain

M(t) =

(
xT (t) O
O Dt

)
,

N(t) = (b x1(t) x2(t) · · ·xn−1(t))
T ,

with

x(t) = (xi(t))
n
i=1,

Dt = diag (x2(t), . . . , xn(t)) .

Then,

HT
KHK =

(
XkX

T
K O

O Y T
K YK

)
, dK =

(
d̄K
¯̄dK

)
,

with

XK = (x(0) · · · x(K − 1)) ,

YK = col (Di)
K−1
i=0 ,

d̄K = col(d1(i))
K
i=1,

¯̄dK = col(( ¯̄dK)i)
K
i=1, (9)

with ( ¯̄dK)i = col(dj(i))
n
j=2.

Taking into account the structure of above matrices
and p = (p̄T | ¯̄pT )T , we have the matrix equation
HT

KHKp = HT
KdK , which is uncoupled into two matrix

equations:

SK p̄ = XK d̄K with SK = XKXT
K , (10)

TK ¯̄p = Y T
K

¯̄dK with TK = Y T
K YK . (11)

The analysis of the solutions of these equations leads
to the following results. First, we consider the estimation
problem only referring to the structure of the coefficient
matrices A(p) and B:

(PEP1) Parameter estimation problem without re-
strictions on p:

Find p = (p̄T | ¯̄pT )T satisfying the system of equa-
tions (10) and (11).

(PEP1) has a solution for any number of observations K .
Construct the matrix XK = (x(0) · · · x(K − 1)). Using
the form of x(i) given in (5), matrix SK is singular if
K < n and nonsingular if K ≥ n. When K < n,
we are using the Moore–Penrose inverse of SK to solve
the estimation problem SK p̄ = XK d̄K , and S−1

n when
K = n. We give only the result for the case when the
number of observations K exceeds n.
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Theorem 3. Consider (IVP) and an observed data set
{ob(i)}Ki=1 with K ≥ n. Then (PEP1) has a unique solu-
tion given by

p̄ = S−1
K XK d̄K ,

¯̄p = T−1
K Y T

K
¯̄dK .

(12)

Proof. Construct the matrix

XK = (x(0) · · · x(K − 1)) .

Using the form of x(i) given in (5) we can ensure that
XK is of full row rank. Hence, matrix SK = XKXT

K is
nonsingular. Then p̄ = S−1

K XK d̄K .
From Theorem 1, for all time indices i, 1 ≤ i ≤ n,

we have that, for j = 2, . . . , n, the entry xj(i + 1) is
positive. Then, we can assure that YK is of full column
rank. Thus, TK = Y T

K YK is nonsingular and the assertion
follows. That is, ¯̄p = T−1

K Y T
K

¯̄dK . �
Note that the parameter estimation problem

associated with our model is more restrictive. In
particular, we need a parameter vector p = (p̄T | ¯̄pT )T

which satisfies the necessary conditions to represent the
evolution of a structured population by stages. Thus, the
problem will be formulated as follows:

(PEP2) Parameter estimation problem with p ∈ P:

Find p = (p̄T | ¯̄pT )T satisfying the system of equa-
tions (10) and (11), and fulfilling p = (p̄T | ¯̄pT )T ∈
P , with P = P̄ ⊕ ¯̄P ,

P̄ = {(p̄, O) / p̄ = (p̄i) ∈ R
n
+, 0 ≤ p̄1 < 1},

¯̄P = {(O, ¯̄p) /¯̄p = (¯̄pi) ∈ R
n−1
+ , 0 ≤ ¯̄pi < 1}.

Lemma 1. Consider (IVP) and an observed data set
{ob(i)}Ki=1 with 1 ≤ K ≤ n. Then the equation SK p̄ =
XK d̄K has a solution p̄ = (p̄i)

n
i=1, satisfying p̄i ≥ 0 and

0 ≤ p̄1 < 1 if and only if the following conditions are
satisfied:

(i)
∑i

j=1(−1)i−jMi−j(j − 1)x1(0)
j−1d1(j) ≥ 0, i =

1, . . . ,K , with Mα(β) given in (13) and M0(β) = 1.

(ii) 0 ≤ d1(1) < x1(0).

Proof. For the observed data set in question and from the
initial state x(0) = x1(0)e1 ∈ R

n
+ with x1(0) > 0, the

matrix XK given in (9) is

XK =

(
UK

O

)
,

with

UK =

⎛
⎜⎜⎜⎝

x1(0) x1(1) · · · x1(K − 1)
0 x2(1) · · · x2(K − 1)
...

... · · · ...
0 0 · · · xK(K − 1)

⎞
⎟⎟⎟⎠ ,

nonsingular. When K < n, we are using the
Moore–Penrose inverse of SK to solve the estimation
problem SK p̄ = XK d̄K , and S−1

n when K = n,

S†
KXK = (XT

K)† =
(

(UT
K)−1

O

)
,

S−1
n Xn = U−1

n .

(14)

From Theorem 1, K ≤ n, and from the expressions
given in (14), we consider the inverse matrix of (UT

K)−1,
which is a lower triangular matrix. Then, to calculate its
inverse matrix, we can use the explicit formula given by
Baliarsingh and Dutta (2015), obtaining its (i, j)-th entry
given by

((UT
K)−1)ij

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)i−jMi−j(j − 1)

(x1(0))i−j+1
, 1 ≤ j < i,

1

x1(0)
, j = i,

0, j > i,

for i, j = 1, . . . ,K, with Mα(β) given in (13).
Denoting by p̄i the i-th entry of p̄ and by ((UT

K)−1)i
the i-th row (UT

K)−1, we observe that

p̄i = ((UT
K)−1)id̄K

=

i−1∑
j=1

(−1)i−j Mi−j(j − 1)

(x1(0))i−j+1
d1(j)

+
1

x1(0)
d1(i), i = 1, . . . ,K,

p̄i = 0, i = K + 1, . . . , n.

(15)

Then, the condition (i) is satisfied if and only if
((UT

K)−1)id̄K ≥ 0, that is, p̄i ≥ 0, for i = 1, . . . , n.
Moreover, we have that

((UT
K)−1)1 =

( 1

x1(0)
0 · · · 0

)
.

Then p̄1 = d1(1)/x1(0) and 0 ≤ p̄1 < 1 if and only if the
condition given in (ii) holds. �

Lemma 2. Consider (IVP) and an observed data set
{ob(i)}Ki=1 with K ≥ 1. Setting x

(i)
K = col(xi(j))

K−1
j=0

and d
(i)
K = col(di(j))

K
j=1 i = 2, . . . , n, we have that

TK ¯̄p = Y T
K

¯̄dK has a solution ¯̄p satisfying 0 ≤ ¯̄pi < 1,
with ¯̄p = (¯̄pi)

n−1
i=1 if and only if

(iii) 0 ≤ (x
(i)
K )Td

(i)
K < ‖x(i)

K ‖22.

Proof. From the definition of matrix YK in (9), we have

Y †
K = diag

(
‖x(2)

K ‖−2
2 , . . . , ‖x(K)

K ‖−2
2

)
Y T
K .
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Mα(β) =

∣∣∣∣∣∣∣∣∣

xβ+1(β + 1) xβ+2(β + 1) 0 · · · 0
xβ+1(β + 2) xβ+2(β + 2) xβ+3(β + 2) · · · 0

...
...

...
. . .

...
xβ+1(β + α) xβ+2(β + α) xβ+3(β + α) · · · xβ+α(β + α)

∣∣∣∣∣∣∣∣∣
, (13)

Then, from Eqn. (11), we have that ¯̄pi, i = 1, . . . , n−
1, is given by

¯̄pi = ‖x(i+1)
K ‖−2

2

K−1∑
j=0

xi+1(j)di+1(j + 1)

if i = 1, . . . ,K − 1,
¯̄pi = 0 if i = K, . . . , n− 1,

(16)

when K < n. If K ≥ n, the expression (16) holds for
i = 1, . . . , n− 1. Then, 0 ≤ ¯̄pi < 1 if and only if

0 ≤ (xi+1(0) · · ·xi+1(K − 1))
T

⎛
⎜⎝

di+1(1)
...

di+1(K)

⎞
⎟⎠

< (xi+1(0) · · ·xi+1(K − 1))
T

⎛
⎜⎝

xi+1(0)
...

xi+1(K − 1)

⎞
⎟⎠ .

Writing

x
(i)
K = col(xi(j))

K−1
j=0 , d

(i)
K = col(di(j))

K
j=1,

i = 2, . . . , n, we have the condition given in (iii). �

Note that, under the conditions (i)–(iii), the
parameter p = (p̄T | ¯̄pT )T belongs to P , with P = P̄⊕ ¯̄P ,
P̄ = {(p̄i) ∈ R

n
+ / 0 ≤ p̄1 < 1} and ¯̄P = {(¯̄pi) ∈

R
n−1
+ / 0 ≤ ¯̄pi < 1}. As a direct consequence of the

previous lemmas, we give the following result.

Theorem 4. Consider (IVP) and an observed data set
{ob(i)}Ki=1 with 1 ≤ K ≤ n. The parameter vector p =
(p̄T | ¯̄pT )T given in (15) and (16) solves (PEP2) for K ≤
n if and only if the conditions (i)–(iii) given in Lemmas 1
and 2 hold.

Remark 1. When k > n, the matrix XK is a full-rank
matrix, and we move to the next section the study of that
case.

3. Recursive process using inversion of
a sum of rank-one matrices

The matrix Si = XiX
T
i with Xi = (x(0) · · · x(i− 1))

is a sum of rank-one matrices,

S1 = x(0)xT (0),

Si+1 = Xi+1X
T
i+1

=

i∑
l=0

x(l)xT (l) = Si + x(i)xT (i), i ≥ 1.

This fact motives the study of the inverse of a sum of
rank-one matrices. It is known (Ljung and Soderstrom,
1983) that, given S ∈ R

n×n and v ∈ R
n, if S is

nonsingular, then S + vvT is also nonsingular and its
inverse matrix is given by

(S + vvT )−1 = S−1 − S−1vvTS−1

1 + vTS−1v
.

We are now able to establish a recursive process in
order to improve the estimated value of the parameter
vector p by successive construction of an inverse of a
matrix, which is formed as a sum of rank-one matrices.

We assume that K ≥ n, and we study (PEP2) when
a new observed data piece ob(K + 1) is obtained.

Given a K observed data set, {ob(i), i = 1, . . . ,K},
we have an estimated value, pK , of the parameter vector
and we construct the system (2) with matrices A(pK) and
B given in (3) and (4), and define the following matrices:

AK =
S−1
K x(K)

1 + αK
, BK = (I +D2

KT−1
K )−1DK , (17)

with αK = xT (K)S−1
K x(K). To improve the

approximated value of parameter p, we add one
observation ob(K + 1) and fit the mathematical model to
the (K + 1)-element observed data set.

Theorem 5. Let K (K ≥ n) be an observed data set
{ob(i)}Ki=1. Consider the assumptions of Theorem 3 and
pK = (p̄T

K | ¯̄pT
K)T as the parameter solving (PEP1) for

K . Given a new observed data piece ob(K + 1), the pa-
rameter vector pK+1 = (p̄T

K+1 | ¯̄pTK+1)
T given by

p̄K+1 = (I −AKxT (K))p̄K +AKd1(K + 1), (18)

¯̄pK+1 = BKD−1
K

⎛
⎜⎝¯̄pK + T−1

K DK

⎛
⎜⎝

d2(K + 1)
...

dn(K + 1)

⎞
⎟⎠

⎞
⎟⎠

solves (PEP1) for K + 1.

Proof. Given the observed data {ob(i)}K+1
i=1 , we have that

pK+1 = (p̄T
K+1 | ¯̄pT

K+1)
T solves (PEP1) for K + 1 if it

is the solution of the system

SK+1p̄ = XK+1d̄K+1, (19)

TK+1¯̄p = Y T
K+1

¯̄dK+1. (20)
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By construction of matrices Si, Xi and d̄i, we have

p̄K+1 = S−1
K+1XK+1d̄K+1

=
(
S−1
K − S−1

K x(K)xT (K)S−1
K

1 + αK

)

× (XK x(K))

(
d̄K

d1(K + 1)

)

=
(
I − S−1

K x(K)xT (K)

1 + αK

)
S−1
K XK d̄K︸ ︷︷ ︸

p̄K

+ S−1
K x(K)d1(K + 1)

− S−1
K x(K)

αK︷ ︸︸ ︷
xT (K)S−1

K x(K)

1 + αK
d1(K + 1)

=
(
I − S−1

K x(K)xT (K)

1 + αK

)
p̄K

+
S−1
K x(K)

1 + αK
d1(K + 1).

Further, using the definitions of Ti, Yi, Di and ¯̄di, as

T−1
K+1 =

(
(Y T

K DK)

(
YK

DK

))−1

= (TK +D2
K)−1 = (I + T−1

K D2
K)−1T−1

K ,

we obtain

¯̄pK+1

= T−1
K+1Y

T
K+1

¯̄dK+1

= (I + T−1
K D2

K)−1T−1
K (Y T

K DK)

⎛
⎜⎜⎜⎝

¯̄dK
d2(K + 1)

...
dn(K + 1)

⎞
⎟⎟⎟⎠

= (I + T−1
K D2

K)−1

×

⎛
⎜⎜⎜⎝T−1

K Y T
K

¯̄dK︸ ︷︷ ︸
¯̄pK

+T−1
K DK

⎛
⎜⎜⎜⎝

d2(K + 1)
...

dn(K + 1)

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ .

Hence, using the matrices AK and BK defined in (17), the
parameter vector pK+1 = (p̄T

K+1 | ¯̄pT
K+1)

T given in (18)
solves (PEP1) for K + 1. �

Analyzing the expressions given in (18), if the
parameter p̄K ∈ P , we can prove that the conditions

(iv) p̄K +AKβK ≥ O,

(v) −p̄K,1 ≤ (AK)1βK < 1− p̄K,1,

guarantee that p̄K+1 is nonnegative with the first entry less
than 1, where βK = (d1(K + 1)− xT (K)p̄K). Also, the
condition

(vi)
(di+1(K + 1)− xi+1(K))xi+1(K)

‖x(i+1)
K ‖22

< (1 − ¯̄pK,i),

for all i = 1, . . . , n− 1,

is equivalent to 0 ≤ ¯̄pK+1,i < 1, i = 1, . . . , n− 1.
Thus, under these conditions, the parameter vector

given in (18) also solves (PEP2) for K + 1. This fact is
expressed in the following theorem.

Theorem 6. Let K (K ≥ n) be an observed data
set {ob(i)}Ki=1. Under the assumptions of Theorem 3 let
pK = (p̄T

K | ¯̄pTK)T be a parameter solving (PEP2) for
K . Given a new observed data piece ob(K + 1), pK+1

given in (18) solves (PEP2) for K + 1 if and only if the
conditions (iv)–(vi) are satisfied.

Last, using the 2-norm, we show some conditions to
ensure the closeness between the two approaches. From
(18) we have

‖p̄K+1 − p̄K‖2
= ‖(I −AKxT (K))p̄K +AKd1(K + 1)− p̄K‖2
= ‖AK

(−xT (K)p̄K + d1(K + 1)
) ‖2

≤ ‖AK‖2| − xT (K)p̄K + d1(K + 1)|
= ‖AK‖2|ob1(K + 1)− x1(K + 1)|, (21)

and

‖¯̄pK+1 − ¯̄pK‖2
= ‖((I + T−1

K D2
K)−1 − I)¯̄pK

+ (I + T−1
K D2

K)−1T−1
K DK

¯̄d(k + 1)‖2
= ‖BKT−1

K

(
−DK ¯̄pK + ¯̄d(k + 1)

)
‖2

≤ ‖BKT−1
K ‖2‖ −DK ¯̄pK + ¯̄d(k + 1)‖2

= ‖BKT−1
K ‖2‖¯̄x(K + 1)− ¯̄ob(K + 1)‖2, (22)

with ¯̄σ(K +1) = col(σi(K +1)))ni=2, and σ = x, d, ob.
Thus, given ε > 0 and a new observed data piece ob(K +
1) such that

|x1(K + 1)− ob1(K + 1)| < ε

2‖AK‖2 ,

‖¯̄x(K + 1)− ¯̄ob(K + 1)‖2 <
ε

2‖BKT−1
K ‖2

,
(23)

we have

‖pK+1 − pK‖ ≤ ‖p̄K+1 − p̄K‖+ ‖¯̄pK+1 − ¯̄pK‖2 < ε.

From now on we shall write

mK = max{‖AK‖2, ‖BKT−1
K ‖2}, (24)

with AK and BK given in (17).
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Theorem 7. Let K ≥ n and the assumptions of Theo-
rem 3 hold. Consider observed data {ob(i)}Ki=1 and pK
solving (PEP2) for K . Given ε > 0 and a new observed
data piece ob(K + 1) such that

‖x(K + 1)− ob(K + 1)‖2 <
ε

mk
, (25)

with mK given in (24) we have, ‖pK+1−pK‖2 < ε, pK+1

being the estimated value given in (18).

Proof. Joining expressions given in (18) and rewriting as
in (21) and (22), we obtain

‖pK+1 − pK‖2
= ‖

( AK O
O BKT−1

K

)
(ob(K + 1)− x(K + 1)) ‖2

≤ mK‖x(K + 1)− ob(K + 1)‖2 < ε.

�

The recursive process to improve the estimated value
of the parameter vector, fulling also the restrictions of
(PEP2) is shown as Algorithm 2.

Algorithm 2. Estimation of the parameter p.

Step 1. Input data: b, x1(0) > 0, the observed data
{ob(i)}ni=1, an initial estimate of parameter vector pn, and
K (K ≥ n).

Step 2. Construct the vector x(0) = (x1(0) 0 · · · 0)T ,
A(pn) and B as in (3) and (4).
For i = 1 to n, we construct x(i) = A(pn)x(i − 1) +B.

Step 3. Calculate Xn, Yn, d̄n, ¯̄dn, Sn and Tn as in (9).

Step 4. Set j = 1.

Step 5. Input observed data ob(n+ j).

Step 5.1. Calculate p̄n+j and ¯̄pn+j as in (18).

Step 5.2. Check the conditions (iv)–(vi). If some of
them do not hold, then go to Step 6. Otherwise, go to
Step 5.3.

Step 5.3. For i = 1, . . . , n + j, construct x(i) =

A(pn+j)x(i− 1)+B and Xn+j , Yn+j , d̄n+j , ¯̄dn+j ,
Sn+j and Tn+j .

Step 5.4. Set j = j+1. If n+ j ≤ K , return to Step
5.1. Otherwise, go to Step 6.

Step 6. The process is finished.

3.1. Illustrative example. The aim of this part is to
discuss estimation of the parameters for an element of
S(p) in the particular case of a population with three
stages. In this model, the individuals that do not reach

the desired maturity in a step of time will remain in the
same class and will not advance to the next one.

We start from the fact that the initial observed data
are known and we have simulated an observed data set to
analyze the reliability of the above algorithm.

In our population model, fj : the fertility parameters,
sj : the survival rates growing into the next stage and
τj the survival rates remaining in the same stage, are
given by f1 = 0, f2 = 0, f3 = 3, s1 = 0.6, s2 =
0.7, τ1 = 0.17, τ2 = 0.25, τ3 = 0.86. Taking
into account the discussion of the previous sections and
making the relevant transformations, we have that p =
(0.17, 0, 1.26, 0.25, 0.86). We consider an initial
condition which only has individuals of the first class,
in particular, given by xT (0) = (4000, 0, 0), and we
suppose the process is altered, in each step, by an entry of
b = 400 individuals of new population at the first stage.
Then we simulate the process established in the above
algorithm. Starting from the fact that the estimated value
of the parameter from three observations obtained is

p3 = (0.1625, 0.0105745, 1.24467, 0.247957, 0.8625),

new observations are added. The obtained results are
displayed in Fig. 1. These represent the evolution of the
parameter estimates for the first K = 15 observations.
The difficulty of finding approximations to specific data is
well known, especially when there are some altered data.
Nevertheless, our observed data set satisfies the conditions
of the theorems given in the last section. Therefore, using
the 2-norm, it is observed how close two consecutive
estimates of the parameter are.

4. Conclusions

A class S(p) of stage-structured population models with
unknown parameters was considered. We proposed an
iterative method to analyze if the parameters can be
uniquely recovered from the observed data. Using this
method, we ensured the identifiability of the models in
S(p). This fact guarantees that the model parameters
can be estimated under ideal conditions. We solved
the estimation problem with or without restrictions on
the parameters by minimizing the least squares criterion.
The novelty that our proposal presents is the use of the
structure of the matrices that describe the models of the
S(p) class. Thus, these matrices were analyzed and results
were obtained that allow us to improve the estimation
procedure. In the analysis of the estimation of parameters,
we gave some conditions to ensure the restrictions on the
parameters, both for a number of observations smaller
and larger than the size of the state vector. Finally,
we solved the problem of adjusting the parameters from
experimental data given a boundary that ensures that two
consecutive approximations are sufficiently close.
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Fig. 1. Estimated values of the parameter p = (pi)
5
i=1 from the

iterative process when K = 15.
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