
Int. J. Appl. Math. Comput. Sci., 2020, Vol. 30, No. 1, 47–59
DOI: 10.34768/amcs-2020-0004

HEALTH–AWARE AND FAULT–TOLERANT CONTROL OF AN OCTOROTOR
UAV SYSTEM BASED ON ACTUATOR RELIABILITY

JEAN CARLO SALAZAR a,* , ADRIÁN SANJUAN a , FATIHA NEJJARI a , RAMON SARRATE a

aPolytechnic University of Catalonia (UPC)
Research Center for Supervision, Safety and Automatic Control (CS2AC)

10, Rambla Sant Nebridi, Terrassa, Spain
e-mail: {jean.salazar,adrian.sanjuan}@upc.edu,

{fatiha.nejjari,ramon.sarrate}@upc.edu

A major goal in modern flight control systems is the need for improving reliability. This work presents a health-aware and
fault-tolerant control approach for an octorotor UAV that allows distributing the control effort among the available actuators
based on their health information. However, it is worth mentioning that, in the case of actuator fault occurrence, a reliability
improvement can come into conflict with UAV controllability. Therefore, system reliability sensitivity is redefined and
modified to prevent uncontrollable situations during the UAV’s mission. The priority given to each actuator is related to its
importance in system reliability. Moreover, the proposed approach can reconfigure the controller to compensate actuator
faults and improve the overall system reliability or delay maintenance tasks.

Keywords: prognostics and health management, health-aware control, fault-tolerant control, reliability analysis, octorotor,
UAV.

1. Introduction

Unmanned aerial vehicles (UAVs) are well-suited to a
wide range of mission scenarios, such as search, rescue,
supervision and inspection, among others. Redundancy
in sensors, actuators and all other essential components
of UAVs plays a vital role in increasing flight safety and
mission accomplishment in the case of degradation or
fault/failure occurrence in those components.

In particular, the use of a multicopter with eight
actuators (octocopter), instead of using a quadcopter,
makes the UAV capable of maintaining normal flight
and accomplishing the mission despite the occurrence of
failures in one or more rotors/propellers.

On the one hand, several reconfiguration control
techniques, such as gain-scheduled PID (Milhim et al.,
2010) or sliding mode control (SMC) (Alwi and Edwards,
2006; Merheb et al., 2015) have been applied to
compensate the fault effect. On the other hand, techniques
which hide the fault from the controller point of view have
also been used in fault-tolerant control (FTC) when the
system has actuator redundancy. In the work of Rotondo

*Corresponding author

et al. (2015), an FTC into a robust linear parameter
varying (LPV) polytopic framework was proposed. A
review of FTC techniques for quadrotors is presented
by Zhang et al. (2013). In the work of Cen et al.
(2015), an active and passive FTC scheme based on fault
estimation for a quadrotor actuator is proposed. Another
popular technique is control allocation (Johansen and
Fossen, 2013).

However, to improve system performance during
UAVs mission operations, it could be more appropriate
to avoid fault occurrence than tolerate them. In this
sense, a new paradigm in which the use of both
control and reliability theories has emerged in terms of
health-aware control (HAC). The reliability of UAVs and
their components against faults and failures is one of
the most important objectives for the safety of critical
systems.

The aim of an HAC system is to modify the control
actions based on system reliability information provided
by a proper online prognostics tool even in the presence
of actuator/sensor faults. This leads to an increase in the
operation time of the system (Salazar et al., 2015; 2016;
Khelassi et al., 2011).

mailto:{jean.salazar,adrian.sanjuan}@upc.edu
mailto:{fatiha.nejjari,ramon.sarrate}@upc.edu

48 J.C. Salazar et al.

The control of multirotor systems and particularly
the octorotor is a topic of interest and a challenging
problem due to their under-actuated nature and nonlinear
dynamics. Several control techniques have been used,
such as model predictive control (MPC) (Raffo et al.,
2010; Liu et al., 2012; Abdolhosseini et al., 2013), PID
(Rinaldi et al., 2014), or LQR (Marks et al., 2012; Adîr
and Stoica, 2012).

Thanks to its actuator redundancy, the octorotor has
the potential to improve safety and reliability. Several
approaches have been proposed and used to manage the
redundancy of this kind of systems by distributing the
control effort among a set of rotors. One approach to
achieve this goal consists in using an optimal control
design to shape in one step the closed-loop dynamics
and actuator control distribution. Another technique is
separating the control task from the effort distribution
one. In this case, a separate control allocation module
is introduced in the closed loop to distribute the control
effort among the actuators (Khelassi et al., 2011; Durham,
1993; Bodson, 2002; Salazar et al., 2015; 2017). The
control allocation approach allows the faulty system to be
accommodated without the need to modify the controller.

This work presents the advantages of component
and system reliability integration into the control by a
control allocation scheme. The proposed approach is
applied to a multirotor UAV system. Such kind of systems
has actuators redundancy which allows the design of
controllers that can optimize the distribution of the control
effort in such a way that the reliability of the system is
preserved or even extended. The objective is to combine
a deterministic part related to system dynamics and a
stochastic part related to system reliability. The resulting
scheme provides control performance and preserves
system reliability in faulty and non-faulty scenarios.

The proposed approach can also be used to schedule
maintenance tasks based on the reliability of the actuators.
This ability is very useful in the case of systems whose
maintenance actions represents a costly process either by
their downtime cost or their economic cost in components,
or labor cost, among others.

The case study is an octorotor UAV system that has
eight propellers in the configuration I (Fig. 1). Four
propellers can rotate in a clockwise direction, while the
remaining ones can rotate anti-clockwise. The octorotor
is moved by changing the rotor speeds. For example,
by increasing or decreasing together the speeds of the
eight propellers, a vertical motion is achieved. Changing
only the speeds of the propellers situated at the opposite
locations produces either roll or pitch rotation, coupled
with the corresponding lateral motion. Finally, yaw
rotation results from the difference in the counter-torque
between each pair of propellers.

Additionally, the octorotor has actuator redundancy
that can offer a degree of over-actuation as it can work

with at least four propellers forming a quadrotor structure.
The paper is organized as follows. The dynamic

modeling of the octorotor UAV system is detailed in
Section 2. In Section 3, the controller design of the UAV
system is presented. Section 4 addresses the problem
of control effort redistribution. In Section 5, reliability
modeling is presented. The HAC scheme is presented
in Section 6. The simulation results are presented in
Section 7 and, finally, some conclusions are given.

2. Octorotor dynamics

To describe the dynamics of a multirotor, it is necessary
to define two frames in which it will operate: the inertial
frame and the body frame. The former {I} is static and
represents the reference of the multirotor while the latter
{B} is defined by the orientation of the multirotor and it is
situated in its center of mass. The two frames are related
by the rotation matrix (1). RI

B transforms a vector in body
reference to a vector in inertial reference. In this case, the
Euler angles, namely, the roll angle (φ), the pitch angle
(θ) and the yaw angle (ψ), are used to model this rotation
following the sequence z − y − x:

RI
B =

⎡
⎣
c(ψ)c(θ) c(ψ)s(θ)s(φ) − s(ψ)c(φ)
s(ψ)c(θ) s(ψ)s(θ)s(φ) + c(ψ)c(φ)
−s(θ) c(θ)s(φ)

c(ψ)s(θ)c(φ) + s(ψ)s(φ)
s(ψ)s(θ)c(φ) − c(ψ)s(φ)

c(θ)c(φ)

⎤
⎦ , (1)

where s(·) and c(·) denote sin(·) and cos(·), respectively.
A similar notation will be used for tan(·) which will be
denoted by t(·).

The dynamics of a multirotor can be defined using
the Newton and Euler equations (Mahony et al., 2012)
describing the translation and rotation of the rigid body:

ξ̇I = vI , (2)

v̇I =
1

m
(fI) , (3)

η̇I = WηωB , (4)

ω̇B =
1

J
(τB − ωB × JωB) , (5)

where vI = [vx vy vz]
T is the linear speed vector in

the inertial frame, ξI = [x y z]T is the position vector
in the inertial frame, η = [φ θ ψ]T is the orientation
vector, ωB = [p q r]T is the body angular velocity vector,
m is the mass of the vehicle, J is the inertia tensor, fI
and τB represent the external forces and torques applied
to the UAV and Wη, which represents the transformation
matrix of angular velocities from the body frame to the

Health-aware and fault-tolerant control of an octorotor UAV system . . . 49

inertial frame, given by (Blakelock, 1991)

Wη =

⎡
⎢⎢⎣
1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0

s(φ)

c(θ)

c(φ)

c(θ)

⎤
⎥⎥⎦ . (6)

The external forces interacting with the vehicle are
the lift of the rotors (T), the translational drag and the
gravity (g). The external torques are the torques generated
by the motors (τx, τy and τz) and the rotational drag.

The model has been developed under the following
assumptions (Freddi et al., 2011):

• The structure of the UAV is symmetrical.

• The body and propellers are rigid.

• The free stream air velocity is zero.

• The motor dynamics can be neglected since they are
relatively fast.

• The blade flexibility can be neglected considering that
it is relatively small.

• The inertia tensor of the octorotor body is diagonal J =
diag(Jxx, Jyy, Jzz).

• The inertia of the octorotor body is much larger than
that of the propeller (it includes the rotating parts of the
rotor), so J � Jprop.

• Translational and rotational drags are negligible.

The multirotor UAV model is obtained by expanding
Eqns. (2)–(5), doing the transformations from the body
to the inertial frame (1), and applying the previous
assumptions:

ẋI =vx, (7)

ẏI =vy, (8)

żI =vz, (9)

v̇x =
1

m
[c(φ)s(θ)c(ψ) + s(φ)s(ψ)]T, (10)

v̇y =
1

m
[c(φ)s(θ)s(ψ) − s(φ)c(ψ)]T, (11)

v̇z =
1

m
[c(φ)c(θ)]T − g, (12)

φ̇ =p+ s(φ)t(θ)q + c(φ)t(θ)r, (13)

θ̇ =c(φ)q − s(φ)r, (14)

ψ̇ =
s(φ)

c(θ)
q +

c(φ)

c(θ)
r, (15)

ṗ =
1

Jxx
[−(Jzz − Jyy)qr − JpqΩp + τx] , (16)

q̇ =
1

Jyy
[(Jzz − Jxx)pr + JppΩp + τy] , (17)

ṙ =
1

Jzz
[−(Jyy − Jxx)pq + τz] , (18)

Fig. 1. Octorotor PPNNPPNN structure.

Table 1. Parameter values.
Parameter Symbol Value

Body inertia Jxx = Jyy 150 · 10−3 [kg·m2]
Body inertia Jzz 400 · 10−3 [kg·m2]
Propeller inertia Jp 104 · 10−6 [kg·m2]
Mass m 8 [kg]
Arm length l 0.4 [m]
Thrust factor kb 54.2 · 10−6 [N·s2]
Drag factor kd 813 · 10−9 [m]

where Jp is the inertia moment of the motor (rotating
parts) and the propeller around the z-axis.

Then, for the PPNNPPNN octorotor structure, as
the one presented in Fig. 1, where P and N define
positive and negative reactive motor torques, respectively,
(represented as arrows in Fig. 1),

Ωp =− |Ω1| − |Ω2|+ |Ω3|+ |Ω4|
− |Ω5| − |Ω6|+ |Ω7|+ |Ω8| ,

(19)

where Ωi is the angular velocity of the i-th motor. It is
assumed that the thrust force of a propeller is proportional
to the angular velocity squared, such that uTi = kbΩ

2
i ,

where uTi is the thrust generated by motor i and kb is
the trust factor. The parameter values which define the
octorotor model are presented in Table 1.

Equations (7)–(18) describe the model for a generic
multirotor structure where the control action is given by
uv = [T τx τy τz]

T .
Generally, uv is referred to as the virtual control

action due to the fact that no physical actuators correspond
to the forces and momentums which it describes. In
this work, the control allocation block transforms and
redistributes the control effort (uv) generated by the inner
control loop into the thrust that each motor should deliver
(uT) as presented in Section 4.

3. Controller structure

In this work, the control of the UAV is a cascade
structure (Fig. 2), where two LQR controllers, inner
and outer, define the dynamics of the octorotor, and the

50 J.C. Salazar et al.

Fig. 2. Control scheme.

control allocation distributes the control effort among the
actuators.

The linearized model needed for the design of the
LQR controller is obtained by applying the Taylor series
approximation at the hover position, which corresponds
to the situation where the x-y planes of both frames ({I}
and {B} (Fig. 1) are parallel and the motors generate a
lifting force equal to the weight of the octorotor. The state
and input are considered to be x = [x y z φ θ ψ vx vy
vz p q r]

T and uv = [T τx τy τz]
T , respectively. The

LQR controller is designed following the methodology
proposed by Ogata (1995).

3.1. Cascade structure controller. The inner and
outer LQR linearized models are detailed below.

The inner loop focuses on the orientation and the
altitude of the UAV and is defined as

ėin(t) =Ainein(t) +BinΔuv(t) ,

ėin(t) =

[
04×4 I4×4

04×4 04×4

]
ein(t) +

[
04×4

βin

]
Δuv(t) ,

(20)

where βin = diag(1/m, 1/Jxx, 1/Jyy, 1/Jzz), I4×4 is the
identity matrix, and ein is the inner state vector:

ein = Xrefin −Xin = [ez eφ eθ eψ evz ep eq er]
T , (21)

where Xrefin denotes the altitude, the orientation, the linear
velocity (z-axis) and the angular velocity set-points, and
Δuv is the inner input vector denoted as

Δuv = [ΔT Δτx Δτy Δτz]
T
, (22)

with Δuv = uv − uvff = uv − [mg 0 0 0]T , and uvff is
the feed-forward virtual input that keeps the system at the
equilibrium point (hover position) in open loop.

The outer loop focuses on the position of the UAV

(x-y plane). Its model is as follows:

ėo(t) =Aoeo(t) +BoΔuo(t) ,

ėo(t) =

[
02×2 I2×2

02×2 02×2

]
eo(t) +

⎡
⎢⎢⎣

0 0
0 0
0 g
−g 0

⎤
⎥⎥⎦Δuo(t) ,

(23)
where eo is the outer state vector denoted as

eo = Xrefo −Xo =
[
ex ey evx evy

]T
, (24)

where Xrefo is the position and linear velocity set-point
(x-y plane), and Δuo is the outer input vector denoted as

Δuo = [Δφ Δθ]T = [φref θref]
T . (25)

4. Control allocation loop

The control distribution task will be provided by the
control allocation block. It consists in distributing the
control effort generated in the inner loop (uv) among
the actuators (uT) available in the system (Johansen and
Fossen, 2013).

Taking into account that the virtual control actions
are always in the attainable control set (ACS) (Schneider
et al., 2012) of the actuators, the most extended solution
is to use the generalized inverse, which is described as
follows:

min
uT ∈ R

1

2
(uT)

TW(uT),

subject to uv = BCAuT .

(26)

If BCA has full rank, then this weighted least squares
problem has the following explicit solution (Johansen and
Fossen, 2013):

uT = WinvBT
CA(BCAW

invBT
CA)

−1uv , (27)

where Winv = W−1, and BCA is a function of the
structural matrix of the PPNNPPNN octorotor (Bstr):

uv = BCAuT = BstrΞuT , (28)

where Ξ = diag(ξ1, ξ2, . . . ξ8) denotes the control
effectiveness matrix (ξi = 1 defines the nominal behavior
and a complete failure corresponds to ξi = 0) and Bstr

is the matrix that contains the relation between the thrust
generated by the actuators and the virtual actions,

Bstr

=

⎡
⎢⎢⎣

1 1 1 1
0 −ls(45◦) −l −ls(45◦)
−l −lc(45◦) 0 +lc(45◦)

+kd/kb +kd/kb −kd/kb −kd/kb

Health-aware and fault-tolerant control of an octorotor UAV system . . . 51

1 1 1 1
0 ls(45◦) l ls(45◦)
l lc(45◦) 0 −lc(45◦)

+kd/kb +kd/kb −kd/kb −kd/kb

⎤
⎥⎥⎦ , (29)

where kd is the motor drag factor and l is the distance
between the center of mass to the rotor center.

Note that, the higher the diagonal component of
the matrix Winv, the greater the corresponding actuator
usage, and vice-versa. In this work, the control inputs
are computed based on the redistributed pseudo-inverse
(RPI) (Johansen and Fossen, 2013) and on the cascaded
generalized inverse (CGI) (Bordingnon and Durham,
1995) through Algorithm 1.

It involves the partition of the virtual control vector
(uv) into n subvectors (Steps 1–2):

uv =
n∑
i=1

uvi , (30)

where uvi is a subvector that contains a group of virtual
actions with comparable characteristics or relevance. In
this work, these variables will be clustered depending on
how they affect to the actuator degradation.

Next, a matrix Winv
i is defined for each uvi applying

given criteria (Step 4).
Then, the generalized inverse (31) is applied to

compute uTi (Steps 5–7):

uTi = Winv
i BT

CA(BCAWinv
i BCA

T)−1uvi , (31)

and uT (Step 8):

uT =

n∑
i=1

uTi . (32)

Algorithm 1 stops once uT is between the limits of
the actuator (Step 9):

uT < uT < uT . (33)

If this is not satisfied, return to Step 4 and redefine
the weights.

Note that, contrary to what is done in the RPI
methodology where saturated actuators are neglected,
in the proposed approach, if the condition (33) is
not satisfied, the weights must be redefined following
alternative criteria. Also, as long as a solution exists for
(26), the following choice will provide a feasible solution:
Winv

i = I, ∀ i ∈ [1, n], with I ∈ R
8×8 being the identity

matrix.
Therefore, the proposed control allocation scheme

tries to distribute the control actions depending on the
system reliability (Winv

i) and the actuator faults (Ξ).

Algorithm 1. Distribution of the control effort.
1: Given uv
2: Cluster uv into n subvectors (uvi) (30)
3: repeat
4: Define Winv

i following given criteria i
5: for i = 1 to n do
6: Compute uTi as (31)
7: end for
8: Compute uT as (32)
9: until {uT > uT and uT < uT }

5. Reliability modeling

Reliability is defined as the probability that components,
units, equipment, and systems will perform satisfactorily
for a specified period of time under specified operating
conditions and environments (Gertsbakh, 2001).

In particular, the reliability of the i-th component of
a system can be expressed as

Ri(t) = R0
i e

− ∫
t
0
λi(τ) dτ , ∀ i = 1, . . . ,m , (34)

where R0
i is the initial reliability at the mission initial

time and λi(t) is the failure rate of the i-th actuator,
respectively.

Several definitions of the failure rate can be found
in the literature. In this work, a definition based on the
proportional hazard proposed by Cox (1972) is used,

λi(t) = λ0i · gi(�, ϑ), ∀ i = 1, . . . ,m , (35)

where λ0i represents the nominal failure rate of the i-th
component and gi(�, ϑ) is a load function also known as
a covariate, which represents the effect of stress on the
component failure rate as a function of the employed load
(�) and a component parameter (ϑ).

Different definitions of gi(�, ϑ) exist in the literature.
For example, in the work of Khelassi et al. (2011),
a load function based on the root-mean-square of the
employed control input until the end of the mission (tf)
was proposed. This load function is used to distribute the
control efforts between the redundant actuators, and the
control action is calculated using a reliable state feedback
controller. Salazar et al. (2017) defined the covariate
function as the cumulative control effort during the usage
life of the i-th actuator.

In this work, the covariate of the i-th actuator is
expressed through function gi(unorm

i (t), u̇norm
i (t)) as

gi(·) =1 + βi

∫ t

0

unorm
i dv + γi

∫ t

0

u̇norm
i (v) dv ,

(36)
with gi(·) is defined as a cumulative function of the
normalized control effort and its normalized derivative for
the i-th actuator from the beginning of the mission up to

52 J.C. Salazar et al.

the current time t, and βi and γi are constant parameters
that describe the contribution of each term. Normalized
values belong to the interval [0,1], with 0 representing no
contribution and 1 the maximum contribution to actuator
degradation. Then, replacing (36) in (35) yields

λi(t) = λ0i

(
1 + βi

∫ t

0

unorm
i dv +γi

∫ t

0

u̇norm
i (v) dv

)
.

(37)
In contrast to our previous work (Salazar et al.,

2017), the failure rate (37) considered here includes a term
related to control variations which represents the actuator
degradation due to fatigue.

This definition implies that actuators are under a
reliability decay due to the baseline failure rate which is
increased when the actuators are used.

5.1. System reliability. The overall system reliability
can be computed by means of its structure function.
It expresses the state of the system in terms of the
state of its components, allowing the computing of the
system reliability. This system structure could be serial,
parallel, or a mix of both. In complex structures (i.e., a
bridge structure), the structure function can be computed
following the pivotal decomposition method (Gertsbakh,
2001) or based on the set of minimal path sets or minimal
cut sets. Alternatively, system reliability can be modeled
using a dynamic Bayesian network (DBN) (Salazar et al.,
2015).

In this work, octorotor motors are the only
components that are considered in the system reliability
computation. This computation is based on determining
the minimal path sets.

Although the octorotor system has eight actuators (ri
∀ i ∈ [1, 8]), control performance is guaranteed as long as,
at least, certain quadrotor configurations are operational
(Sanjuan et al., 2019) (see Fig. 4). Based on them, the
following minimal path sets are defined:

ζ1 : {r1, r3, r5, r7}, ζ2 : {r2, r4, r6, r8},
ζ3 : {r2, r3, r6, r7}, ζ4 : {r1, r4, r5, r8} .

(38)

Given s minimal path sets, it is possible to compute
the structure function as

Φ = 1−
s∏
j=1

⎛
⎝1−

∏
i∈ζj

Xi

⎞
⎠ , (39)

where Xi is a random binary variable representing the
state of the i-th rotor (up or down). To compute the
reliability of the system, the structure function expression
must be previously expanded. Then, the expanded
expression should be simplified taking into account that,
due to its binary nature, any power of Xi is equal to Xi.
The system reliability expression (RS) is obtained from

Fig. 3. System reliability block diagram.

Fig. 4. Octorotor controllable configurations.

the resulting structure function expression by replacingXi

with the component reliability Ri.
Figure 3 represents the reliability block diagram of

the octorotor system based on its minimal path sets (ζi).
The resulting expression for the computation of its system
reliability is

RS =R1R3R5R7 +R1R4R5R8 +R2R3R6R7

+R2R4R6R8 −R1R2R3R5R6R7

−R1R2R4R5R6R8 −R1R3R4R5R7R8

−R2R3R4R6R7R8 +R1R2R3R4R5R6R7R8 .
(40)

5.2. Reliability importance measure. The sensitivity
of system reliability to the i-th actuator reliability
(Birnbaum’s measure) (Birnbaum, 1969) is defined as

IBi(t) =
∂RS(t)

∂Ri(t)
= RS(1i, t)−RS(0i, t) , (41)

where RS(1i, t) denotes the system reliability when the
i-th actuator is perfectly reliable, and RS(0i, t) denotes
the system reliability when the i-th actuator is faulty. This
index indicates how sensitive system reliability is against
changes in particular actuator reliability.

This measure will be later used as a criterion to define
the Winv (27) of the control allocation procedure.

Health-aware and fault-tolerant control of an octorotor UAV system . . . 53

6. Health-aware control methodology

The health-aware control methodology uses the weight
matrix Winv (27) to incorporate the health state of
the actuators, represented by their reliability level and
their importance for system reliability, as a criterion to
redistribute the control effort in the control allocation
module.

In fact, this methodology can be applied to satisfy
two different objectives during the mission. On the one
hand, we have an objective aimed at maximizing the
system lifetime. In effect, enhancing system reliability
at mission time tf will lead to an increase in system
lifetime. On the other hand, there is an objective
aimed at maximizing individual rotor lifetime. In fact,
incrementing rotor reliability will enhance rotor lifetime.
In this case, it is assumed that predictive maintenance
is performed on the system when any rotor reliability
decreases below a predefined reliability thresholdRth.

Usually, actuators are brushless rotors, therefore
maintenance could be just a visual inspection and a check
of the fastening of the propellers. Therefore, different
cases have been generated to maximize each of these
policies as discussed below.

Nominal case. This case represents the behavior of
the system when reliability is not taken into account
and, consequently, all rotors have the same importance.
Therefore, the weights (31) of the control allocation block
are Winv = I.

Case A. The objective is to maximize the overall system
reliability at mission time (Rs(tf)). In this case, the
weights (31) of the control allocation block are

Winv = diag(1− IB) , (42)

where IB is a measure of the importance of each actuator
for the system reliability (41). Therefore, it is expected
that applying a smaller load on the rotors with higher IB
will improve system reliability at mission time.

Case B. The objective is to maximize the time at which
the individual rotor reliability decreases below Rth.

The policy consists in reducing the load applied to
the actuators that are more degraded. Thus, the weights
will be given by

Winv = diag(winv
i), ∀ i ∈ [1, 8] , (43)

where winvi = 60σ(25(Ri − 0.95)) + 5Ri , with σ being
the sigmoid function. Note that the objective of (43) is
to increase the difference between the weights when their
values are near to 1.

As the degradation of the actuators (37) is a function
of the magnitude and variations in the control input, ui
and u̇i, weighting them equally with a uniqueWinv matrix
might lead to a suboptimal behavior of each criterion.

Moreover, the UAV actuators have two tasks. The
first one is to generate a thrust that compensates the weight
of the vehicle such that the hover position can be achieved
and guaranteed. The second task is to follow the reference
trajectory by generating an imbalance between the forces
produced by the rotors. Taking this fact into account,
the following partition of the virtual control action is
proposed according to (30):

uv = uv1 + uv2 , (44)

where uv1 = [T 0 0 0]T is the constant load that the
actuators should generate and uv2 = [0 τx τy τz]

T is
the variable load which allows modifying its orientation,
and position. Taking into account the different criteria
proposed, the weights of uv1 are defined as (42) for
Case A and (43) for Case B. Stronger restrictions are
imposed on uv2 because it is assumed that this virtual
action causes a larger degradation than uv1 . Algorithm 1
has been applied to generate the thrust of the rotors
when different weights for the virtual control inputs are
involved. Then, the selected criteria for Winv

i are as
follows.

Case A*. As in Case A, the objective is to maximize
system reliability. Therefore, the assignment done in (42)
is used for the first part of the virtual control input (uv1),
and for the second part (uv2) the assignment is

Winv
2 = diag((1− IB)

5) . (45)

Case B*. As in Case B, the objective is to maximize the
maintenance time tm of the actuators. For the first part of
the virtual control action (uv1), the assigment in (43) is
used, and for the second part (uv2) the assigment is

Winv
2 = diag(winv

2,i) ∀ i ∈ [1, 8] , (46)

where winv
2,i = 300σ(30(Ri − 0.8)) + 5Ri.

7. Simulation results

7.1. Simulation setup. The reliability behavior of the
PPNNPPNN octorotor is studied during a cornfield aerial

Fig. 5. UAV reference trajectory. The arrows represent the ori-
entation of the octorotor.

54 J.C. Salazar et al.

supervision involving different criteria. The cornfield has
an area of 3000 m2 which is overflown by the aircraft at
an altitude of 10 m following the grid path and returning
to the starting point as presented in Fig. 5.

The octorotor is regulated by a cascade LQR control
structure (detailed in Section 3) and the simulation, whose
parameters are presented in Table 3, is done using the
non-linear model of the PPNNPPNN octorotor. To
illustrate the different policies proposed, higher rotor
failure rate values have been considered, so that they
are scaled to the mission time. It must be highlighted
that a rotor reliability threshold (Rth) of 0.6 has been
considered. It is assumed that the degradation of the
actuator increases when its reliability (Ri) is lower than
that reliability threshold (i.e., parameter βi in (37) is 10
times higher).

In initial conditions of the system, Actuator 8 starts
with a lower reliability (Ro8). Thus, this component will
define the system behavior. Note that the transitions of
the control effort are generated by the trajectory reference
that the UAV must follow and the performance of the
controller. The chosen dynamics of the controller are very
fast in order to increase the degradation produced by the
fatigue of the rotors.

The objectives presented in Section 6 have been
studied in both the nominal conditions of the octorotor and
when a rotor fails at some point during the mission.

7.2. Fault-free scenario. Cases A and B are analyzed
when all actuators are working properly.

Scenario 1 (Cases A and B). The simulation results are
summarized in Table 2, whereRs(tf) is system reliability
at the end of the mission and tm is the time when an
actuator requires a maintenance (when Ri = Rth). The
dash symbol means that the maintenance time is higher
than the end of mission time (tm > tf). The reliability
of each component (Ri) is presented in Fig. 8, whereas
the system reliability (Rs) is shown in Fig. 6. The thrust
generated by the actuators under the different criteria is
shown in Fig. 12.

Applying the generalized inverse (27), it can be seen
that system reliability is slightly better in Case A, where
the sensitivity is used as weights (42), compared to the
nominal case. Also, in comparison with the nominal
case, in Case B the reliability of the most critical actuator
(Rotor 8) is maintained 100 seconds longer; before that, a
maintenance task should be performed.

Scenario 2 (Cases A* and B*). The obtained results
applying the proposed approach with Algorithm 1 are
presented in Table 2. With the proposed methodology
(Case A*) the reliability of the system is improved from
0.271 to 0.302 compared with that of Case A, (Fig. 6).
On the other hand, the maintenance time is increased
around 100 seconds (Case B*) with respect to Case B and

Table
2.

P
olicy

results
in

fault-free
and

faulty
scenarios

(rotor
1

blocked).

C
ase

study
R
s (t

f
)

M
aintenance

tim
e

(t
m
[s])

C
ase

study
R
s (t

f
)

M
aintenance

tim
e

(t
m

[s])

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

N
om

inal
0.269

448
-

-
-

660
-

-
279

N
om

inal
0.069

Faulty
443

-
-

626
-

-
238

A
(W

1
=

W
2)

0.271
424

-
-

-
599

-
-

268
A

2
(W

1
=

W
2)

0.068
Faulty

437
-

610
588

-
-

230

A
*

(W
1 �=

W
2)

0.302
367

-
-

651
493

-
-

260
A

*2
0.075

Faulty
434

-
550

502
-

-
216

B
(W

1
=

W
2)

0.264
507

641
-

-
-

-
-

384
B

(W
1
=

W
2)

0.061
Faulty

418
-

-
-

-
-

337

B
*

(W
1 �=

W
2)

0.255
539

586
-

-
-

-
-

475
B

*
0.062

Faulty
436

668
589

661
-

676
417

Health-aware and fault-tolerant control of an octorotor UAV system . . . 55

Fig. 6. System reliability (fault-free scenario).

Fig. 7. System reliability (scenario for a fault in Rotor 1).

approximately 200 seconds with respect to the nominal
case (Fig. 8).

7.3. Faulty scenario. For the faulty scenario, it
has been considered that the rotor 1 becomes faulty at
the time of 120 seconds. It is also assumed that a
fault detection and diagnosis (FDD) module detects and
estimates the fault in a deterministic time of 1 second after
its occurrence. The FDD information is then introduced
in the effectiveness matrix Ξ (28) in the control allocation
block.

It has been observed that in Case A the octorotor
becomes uncontrollable after the occurrence of a fault.
This is due to the fact that reliability and controllability
objectives are in conflict in the faulty scenario. Analyzing
the minimal path sets of the system (38), it is possible
to determine that when the rotor 1 is faulty the paths ζ1
and ζ2 become unavailable. Hence, the most important
rotors are 2 and 6 because they belong to the active paths.
This behavior poses a problem for system controllability
because rotors 1 and 2 of the octorotor PPNNPPNN
cannot be faulty or have restricted use (W inv

i,i → 0) at the
same time.

Algorithm 2 can be represented as in Fig. 10, where
two switches (Sw1 and Sw2) are added to the diagram
of Fig. 3. The switches are closed in the presence of

Table 3. Simulation parameters.
Parameter Symbol Value

Inner sampling time tsi 0.05 [s]
Outer sampling time tso 0.25 [s]
Mission time tf 684 [s]
LQR controller
Q inner loop Qin diag([100.0 820.7

820.7 131.3
25.0 8.2

8.2 3.6])
R inner loop Rin I[4×4]

Q outer loop Qo I[4×4]

R outer loop Ro I[2×2]

Rotor parameters
β; γ; Rth 3; 323; 0.6
Initial reliability R0

i diag([0.83 0.95
0.89 0.97
0.94 1

1 0.72])

Baseline failure
rate

λ0i 1.86 · 10−4 [s−1]

Initial conditions
controlled outputs y(0) 0x, 0y, 0z , 0ψ
states x(0) 0[12×1]

Feed-forward input uvff [mg, 0, 0, 0]T

a failure of those actuators belonging to their respective
mesh. Note that Algorithm 2 is used for the purpose
of computing the IBi measure when an actuator state
DOWN. This measure allows building Winv in Cases A
and A*, and they have been denoted as Cases A2 and
A*2, respectively. Their component reliability will still
be computed following (34). Note that the PPNNPPNN
octorotor UAV becomes uncontrollable if contiguous
rotors rotating in the same direction are faulty (or not
used). Thus, the minimal cut sets of the structure are

C1 : {r1, r2}, C2 : {r3, r4},
C3 : {r5, r6}, C4 : {r7, r8} .

(47)

The minimal cut sets are composed of the rotors
whose faults or limitation use cause the loss of the total
controllability of the system.

Intuitively, observing Fig.1, if Rotors 1 and 2 are
faulty, then there will be more rotors rotating clockwise
than counterclockwise. Thus, it is impossible to find
a feasible solution for the control allocation problem
without losing controllability. In the presence of actuator
faults, a relaxation of weight assignments should be taken.
Hence, an approach has been developed to compute IBi ,
taking into account the critical component sets or cut
sets (47), in order to achieve the objectives of Section 6
without losing controllability. This problem is handled as
proposed in Algorithm 2.

Algorithm 2 aims to assign the same importance to
all actuators located in the mesh which contain a faulty

56 J.C. Salazar et al.

Fig. 8. Component reliability (fault-free scenario).

Fig. 9. Component reliability (scenario for a fault in Rotor 1).

Fig. 10. Relaxed system reliability block diagram.

Algorithm 2. IB soft computing.
1: Given Ms
2: if (Ms1 = DOWN) OR (Ms2 = DOWN) OR

(Ms5 = DOWN) OR (Ms6 = DOWN) then
3: R1 = R2 = R5 = R6 = 1
4: end if
5: if (Ms3 = DOWN) OR Ms4 = DOWN) OR

(Ms7 = DOWN) OR (Ms8 = DOWN) then
6: R3 = R4 = R7 = R8 = 1
7: end if
8: Compute IB (41)

rotor or when the reliability of the rotor is lower than
a specific value (Rth). The octorotor system has two
meshes; one with the rotors {1, 2, 5, 6} and the other with
the rotors {3, 4, 7, 8}; see Fig. 3.

Msi, in Algorithm 2, is the state that actuators
can take, i.e., DOWN when the actuator is faulty or
its reliability is lower than a threshold (Rth), and UP
otherwise.

Msi =

{
UP if Ri > Rth and ri is not faulty,

DOWN otherwise.
(48)

For instance, if the rotor 1 is faulty, Actuators 2, 5
and 6 have the same importance, and then switch Sw1

(Fig. 10) is closed following Algorithm 2 (Cases A2 and
A*2).

The trade-off between reliability and controllability
has been studied by applying the three cases defined
before. The obtained results are presented in Table 2 and
Figs. 7–13. Note that, if the diagnosis block detects that
an actuator is faulty, its probability of being functional is
zero, and hence its reliability becomes zero.

In Case A2 the system reliability at the end of the
mission is worse than in the nominal case. Nevertheless,
applying the proposed approach of Case A*2, a slight
improvement is achieved (see Fig. 7). Moreover, in Case
B*, the system will need a maintenance of all rotors
at around 500 seconds. The maintenance time of the
most degraded rotor is improved by 180 seconds over the
nominal case (Fig. 9).

Figure 11 shows the control performance when a
fault in Rotor 1 occurs while tracking a section of the
reference trajectory given in Fig. 5. Note that the
controller is able to stabilize the system as soon as the
fault is detected.

The reliability improvement is achieved by setting
the control action according to the chosen criteria for both
scenarios: the fault-free case (Fig. 12) and the one where
Rotor 1 is faulty (Fig. 13).

Health-aware and fault-tolerant control of an octorotor UAV system . . . 57

Fig. 11. Octorotor recovery behavior when Actuator 1 fails.

8. Conclusions

In this work, the behavior of the PPNNPPNN octorotor
when its reliability is taken into account in the control
loop of the system has been studied and presented. Several
policies have been proposed to distribute the control effort
under a control allocation scheme.

As a key contribution, in this work, the system
reliability block diagram has been obtained from the
system functioning analysis showing that at least certain
4-rotor configurations are required.

On the one hand, it has been considered that the
component degradation depends on the load applied and
its derivative. As a consequence, virtual control actions
do not have the same importance. Therefore, an algorithm
has been developed to solve the control allocation problem
by taking into account the effect of each virtual control
action on the degradation of the component. Results
demonstrate that the algorithm maximizes the objective
of the studied scenarios.

On the other hand, it has been observed that the
controllability and reliability objectives are in conflict
when a total fault is introduced in the system. Therefore, it
is necessary to redefine system reliability sensitivity using
Algorithm 2 to prevent an uncontrollable situation during
the mission of the UAV.

It must be highlighted that the proposed methodology
to solve this conflict between controllability and reliability
is applicable in the case of multirotors. Simulation results
demonstrate the validity of this approach in terms of
reliability and controllability of the octorotor through an
effective health management of the UAV actuator effort.

Further theoretical developments should be made in
order to determine the efficiency of this method in other
application domains. Moreover, research could address

the integration of system reliability information on other
FTC strategies such as active or passive approaches.

Concerning system reliability computation, a more
detailed study on the link between system reliability and
controllability should be pursued.

Acknowledgment

This work has been partially supported by the Spanish
State Research Agency (AEI) and the European Regional
Development Fund (ERFD) through the project SCAV
(ref. MINECO DPI2017-88403-R), by AGAUR through
the contract FI-AGAUR (ref. 2017FI-B00285) and by the
DGR of Generalitat de Catalunya (SAC group ref. 2017/
SGR/482).

References

Abdolhosseini, M., Zhang, Y. and Rabbath, C. (2013). An
efficient model predictive control scheme for an unmanned
quadrotor helicopter, Journal of Intelligent & Robotic Sys-
tems 70(1–4): 27–38.

Adîr, V. and Stoica, A. (2012). Integral LQR control of a
star-shaped octorotor, INCAS BULLETIN 4(2): 3–18.

Alwi, H. and Edwards, C. (2006). Sliding mode FTC with
on-line control allocation, Proceedings of the 45th IEEE
Conference on Decision and Control, San Diego, CA, USA,
pp. 5579–5584.

Birnbaum, Z. (1969). On the importance of different
components in a multicomponent system, in P. Krishnaiah
(Ed.), Multivariate Analysis, Vol. II, Academic Press, New
York, NY, pp. 581–592.

Blakelock, J. (1991). Automatic Control of Aircraft and Missiles,
John Wiley & Sons, New York, NY.

58 J.C. Salazar et al.

Fig. 12. Thrust generated by the actuators under different crite-
ria (fault-free scenario).

Bodson, M. (2002). Evaluation of optimization methods for
control allocation, Journal of Guidance, Control, and Dy-
namics 25(4): 703–711.

Bordingnon, K. and Durham, W. (1995). Closed-form solutions
to constrained control allocation problem, Journal of Guid-
ance, Control, and Dynamics 18(5): 1000–1007.

Cen, Z., Noura, H. and Younes, Y.A. (2015). Systematic
fault tolerant control based on adaptive Thau observer
estimation for quadrotor UAVs, International Jour-
nal of Applied Mathematics and Computer Science
25(1): 159–174, DOI: 10.1515/amcs-2015-0012.

Cox, D.R. (1972). Regression models and life-tables, Jour-
nal of the Royal Statistical Society B (Methodological)
34(2): 187–220.

Durham, W.C. (1993). Constrained control allocation, Journal
of Guidance, Control, and Dynamics 16(4): 717–725.

Freddi, A., Lanzon, A. and Longhi, S. (2011). A feedback
linearization approach to fault tolerance in quadrotor
vehicles, IFAC Proceedings Volumes 44(1): 5413–5418.

Gertsbakh, I.B. (2001). Reliability Theory: With Applications
to Preventive Maintenance, 2nd Edn, Springer, New York,
NY.

Johansen, T. and Fossen, T. (2013). Control allocation—a
survey, Automatica 49(5): 1087–1103.

Khelassi, A., Theilliol, D., Weber, P. and Ponsart, J. (2011).
Fault-tolerant control design with respect to actuator health
degradation: An LMI approach, Proceedings of the IEEE
International Conference on Control Applications (CCA),
Denver, CO, USA, pp. 983–988.

Liu, C., Chen, W.-H. and Andrews, J. (2012). Tracking control
of small-scale helicopters using explicit nonlinear MPC

Fig. 13. Thrust generated by the actuators under different
policies (scenario for a fault in Rotor 1).

augmented with disturbance observers, Control Engineer-
ing Practice 20(3): 258–268.

Mahony, R., Kumar, V. and Corke, P. (2012). Multirotor aerial
vehicles: Modeling, estimation, and control of quadrotor,
IEEE Robotics Automation Magazine 19(3): 20–32.

Marks, A., Whidborne, J. and Yamamoto, I. (2012). Control
allocation for fault tolerant control of a VTOL octorotor,
2012 UKACC International Conference on Control (CON-
TROL), Cardiff, UK, pp. 357–362.

Merheb, A.-R., Noura, H. and Bateman, F. (2015). Design
of passive fault-tolerant controllers of a quadrotor based
on sliding mode theory, International Journal of Applied
Mathematics and Computer Science 25(3): 561–576, DOI:
10.1515/amcs-2015-0042.

Milhim, A., Zhang, Y. and Rabbath, C.-A. (2010). Gain
scheduling based PID controller for fault tolerant
control of quad-rotor UAV, Proceedings of AIAA In-
fotech@Aerospace 2010, Atlanta, GA, USA, pp. 1–13.

Ogata, K. (1995). Discrete-time Control Systems, 2nd Edn,
Prentice-Hall, Upper Saddle River , NJ.

Raffo, G., Ortega, M. and Rubio, F. (2010). An integral
predictive/nonlinear control structure for a quadrotor
helicopter, Automatica 46(1): 29–39.

Rinaldi, F., Gargioli, A. and Quagliotti, F. (2014). PID and
LQ regulation of a multirotor attitude: Mathematical
modelling, simulations and experimental results, Journal
of Intelligent & Robotic Systems 73(1–4): 33–50.

Rotondo, D., Nejjari, F. and Puig, V. (2015). Robust
quasi-LPV model reference FTC of a quadrotor UAV
subject to actuator faults, International Journal of Applied
Mathematics and Computer Science 25(1): 7–22, DOI:
10.1515/amcs-2015-0001.

Health-aware and fault-tolerant control of an octorotor UAV system . . . 59

Salazar, J., Nejjari, F., Sarrate, R., Weber, P. and Theilliol, D.
(2016). Reliability importance measures for a health-aware
control of drinking water networks, Proceedings of the 3rd
Conference on Control and Fault-Tolerant Systems (Sys-
Tol), Barcelona, Spain, pp. 572–578.

Salazar, J., Sanjuan, A., Nejjari, F. and Sarrate, R. (2017).
Health-Aware control of an octorotor UAV system based
on actuator reliability, Proceedings of the 4th International
Conference on Control, Decision and Information Tech-
nologies (CoDIT), Barcelona, Spain, pp. 815–820.

Salazar, J., Weber, P., Nejjari, F., Theilliol, D. and Sarrate,
R. (2015). MPC framework for system reliability
optimization, in Z. Kowalczuk (Ed.), Advanced and Intel-
ligent Computations in Diagnosis and Control, Springer
International Publishing, Cham, pp. 161–177.

Sanjuan, A., Nejjari, F. and Sarrate, R. (2019). Reconfigurability
analysis of multirotor UAVs under actuator faults, Pro-
ceedings of the 4th Conference on Control and Fault-
Tolerant Systems (SysTol), Casablanca, Morocco, pp.
26–31.

Schneider, T., Ducard, G., Konrad, R. and Pascal, S.
(2012). Fault-tolerant control allocation for multirotor
helicopters using parametric programming, International
Micro Air Vehicle Conference and Flight Competition
(IMAV), Braunschweig, Germany, pp. 1–8.

Zhang, Y., Chamseddine, A., Rabbath, C., Gordon, B.,
Su, C.-Y., Rakheja, S., Fulford, C., Apkarian, J. and
Gosselin, P. (2013). Development of advanced FDD
and FTC techniques with application to an unmanned
quadrotor helicopter testbed, Journal of the Franklin In-
stitute 350(9): 2396–2422.

Jean C. Salazar received his PhD degree in automation, robotics, and
vision from Universitat Politècnica de Catalunya (UPC), Terrassa, Spain,
in 2018. He has visited the Research Center for Automatic Control
(CRAN) at the University of Lorraine in Nancy, France. His research
fields are model-based diagnosis, prognosis, and the integration of con-
trol with prognosis and health management strategies.

Adrián Sanjuan received his BS and MS degrees from the Universitat
Politècnica de Catalunya (UPC), Spain. Since 2017, he has been a PhD
student at the Research Center for Supervision, Safety and Automatic
Control (CS2AC) at UPC. His main research interests include artificial
intelligence, identification, fault detection and isolation (FDI) and fault
tolerant control (FTC) of non-linear dynamic systems.

Fatiha Nejjari is an associate professor with the Department of Au-
tomatic Control, Universitat Politècnica de Catalunya (UPC). She is
also a member of the Advanced Control Systems (SAC) research group
of the Research Center for Supervision, Safety and Automatic Control
(CS2AC) at UPC. Her main research areas include LPV control, fault
detection and isolation, and fault tolerant control of dynamic systems.
She has published various papers in journals and international confer-
ences, and has participated in several European projects and networks
related to these topics.

Ramon Sarrate received his MS and PhD degrees in industrial engineer-
ing from Universitat Politècnica de Catalunya (UPC), Terrassa, Spain, in
1994 and 2003, respectively. He is currently an assistant professor with
the Department of Automatic Control at UPC. His present research in-
terests include model-based fault diagnosis and hybrid systems. He has
been involved in several national and European research projects, and
has published several papers in scientific journals and international con-
ference proceedings.

Received: 30 December 2018
Revised: 21 October 2019
Accepted: 17 November 2019

	Introduction
	Octorotor dynamics
	Controller structure
	Cascade structure controller

	Control allocation loop
	Reliability modeling
	System reliability
	Reliability importance measure

	Health-aware control methodology
	Simulation results
	Simulation setup
	Fault-free scenario
	Faulty scenario

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

