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The paper concerns the properties of linear dynamical systems described by linear differential equations, excited by the
Dirac delta function. A differential equation of the form anx

(n)(t)+· · ·+a1x
′
(t)+a0x(t) = bmu(m)(t)+· · ·+b1u

′
(t)+

b0u(t) is considered with ai, bj > 0. In the paper we assume that the polynomials Mn(s) = ans
n + · · ·+ a1s+ a0 and

Lm(s) = bmsm + · · · + b1s + b0 partly interlace. The solution of the above equation is denoted by x(t, Lm,Mn). It is
proved that the function x(t, Lm,Mn) is nonnegative for t ∈ (0,∞), and does not have more than one local extremum in
the interval (0,∞) (Theorems 1, 3 and 4). Besides, certain relationships are proved which occur between local extrema of
the function x(t, Lm,Mn), depending on the degree of the polynomial Mn(s) or Lm(s) (Theorems 5 and 6).
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1. Introduction

One of the most important quality measures of dynamic
systems is the extremal value in the transient process.
In automatics it is the maximal value of the error. In
electrical systems, especially in long lines, it is the
value of the overvoltage. In economic systems it is the
determination of the maximal profit (Kaczorek, 2002;
2018). In the article we consider the conditions of
positive solutions, and in particular their maximal value
(Górecki, 2018).

It is proved that in the systems described by the
differential equation

n∑

i=0

aix
(i)(t) = δ(t)

controlled by Dirac’s impulse δ(t) the solutions of x(t)
are positive and have only one maximal value.

∗Corresponding author

We will use the solutions in the operator form,

X(s) =
L(s)

M(s)
δ(s),

or in the time domain,

x(t) =

n∑

i=1

L(si)

M (1)(si)
esit.

2. Notation

Consider real polynomials

Mn(s) = sn + a1s
n−1 + · · ·+ an−1s+ an

= (s− s1)(s− s2) . . . (s− sn),

Lm(s) = sm + b1s
m−1 + · · ·+ bm−1s+ bm

= (s− z1)(s− z2) . . . (s− zm),
(1)

where

n ≥ 2, 1 ≤ m ≤ n− 1, L0(s) = 1.
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Definition 1. We say that the polynomialsMn(s), Lm(s)
interlace (Górecki and Zaczyk, 2013) if 1 ≤ m ≤ n −
1 and sn < zn−1 < sn−1 < zn−2 < · · · < s2 < z1 <
s1 < 0. If 1 ≤ m < n− 1 and

sn < sn−1 < sn−2 < · · · < sm+2 < sm+1

< zm < sm < zm−1 < · · · < s2 < z1 < s1 < 0,

then the polynomials Mn(s), Lm(s) partly inter-
lace. Additionally we assume that the polynomials
Mn(s), L0(s) = 1 partly interlace.

Write
N = {1, 2, . . . , n} ,

f (k)(s) =
dkf(s)

dsk
, k = 1, 2, . . . ,

f ′(s) = f (1)(s), f ′′(s) = f (2)(s),

where degw(s) is the degree of a polynomial w(s).
For the polynomials Mn(s), Lm(s), which partly

interlace, we use the following notation:

Mn(j)(s) =
Mn(s)

s− sj
for j ∈ N,

Mn(0)(s) = Mn(s),

Ai(j) =
Lm(si)

M ′
n(j)(si)

for i ∈ N, j ∈ {0, 1, . . . , n},

x(t, Lm,Mn(j)) =
n∑

i=1,i�=j

Ai(j)e
sit, (2)

for i ∈ N, j ∈ {0, 1, 2, . . . , n}.
Instead ofAi(0) we shall writeAi, and x(t, Lm,Mn)

instead of x(t, Lm,Mn(0)).
We see that

Mn(s) = Mn(j)(s) (s− sj) for j ∈ N,
M ′(si) = M ′

n(j)(si) (si − sj) for i �= j,

deg Mn(j)(s) = n− 1.

⎫
⎬

⎭ (3)

In this paper we prove some properties of the
function x(t, Lm,Mn), in particular, the extremal ones.

3. Statement of results

Lemma 1. If n ≥ 2, si ∈ R\{0} for i ∈ N, zi ∈
R\{0} for i = 1, 2, . . . ,m , si �= sj , zi �= zj then

x′(t, Lm,Mn) = sjx(t, Lm,Mn)

+ x(t, Lm,Mn(j)) for j ∈ N,
(4)

x(t, Lm,Mn) = x′(t, Lm−1,Mn)

− zmx(t, Lm−1,Mn),
(5)

for m ∈ {1, 2, . . . , n − 1} and for every t ∈ R , where
the functions x(t, Lm,Mn), x(t, Lm, Mn(j)), x(t, Lm−1,
Mn) are determined by (2).

Proof. From (2) we have

x(t, Lm,Mn) =
n∑

i=1

Lm(si)e
sit

M ′
n(si)

,

x(t, Lm,Mn)e
−sj t =

n∑

i=1

Lm(si)e
(si−sj)t

M ′
n(si)

.

We can differentiate both the sides of the last
relations with respect to t and obtain

x′(t, Lm,Mn)e
−sj t − sjx(t, Lm,Mn)e

−sjt

=

n∑

i=1,i�=j

(si − sj)
Lm(si)

M ′
n(si)

e(si−sj)t.

From this and (3) we have, for j ∈ N,

x′(t, Lm,Mn)− sjx(t, Lm,Mn)

=
n∑

i=1,i�=j

Lm(si)

M ′
n(j)(si)

esit

= x(t, Lm,Mn(j)).

This means that the relation (4) is true.
From the definition of the polynomial Lm(s) and (2)

we have

Lm(si) = (si − z1) (si − z2) . . . (si − zm)

= Lm−1(si) (si − zm) ,

x(t, Lm,Mn) =

n∑

i=1

Lm(si)e
sit

M ′
n(si)

=

n∑

i=1

Lm−1(si)

M ′
n(si)

(si − zm)esit

=

n∑

i=1

Lm−1(si)

M ′
n(si)

sie
sit

− zm

n∑

i=1

Lm−1(si)

M ′
n(si)

esit

= x′(t, Lm−1,Mn)− zmx(t, Lm−1,Mn).

This completes the proof. �

Remark 1. If s2 < s1 < 0 , then the function

x2(t) =
es1t − es2t

s1 − s2
(6)

has a unique local extremum-maximum in the interval
(0,∞) for

t2 =
ln

s2
s1

s1 − s2
.

The proof is straightforward.
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It is also known (Osiowski, 1965) that for the
polynomials Mn(s), L0(s) = 1 we have the following
initial conditions:

x (0, L0,Mn) = 0,

x(k) (0, L0,Mn) = 0 (k = 1, 2, . . . , n− 2),

x(n−1)(0, L0,Mn) = 1.

⎫
⎬

⎭ (7)

4. Extremal properties of the function
x(t, Lm,Mn)

Let us consider the polynomials Mn(s), Lm(s) (1) and
the function x(t, Lm,Mn), which is determined by the
formula (2). We investigate the properties of this function.

Theorem 1. If

deg Mn(s) = n ≥ 2,

deg Lm(s) = m = n− 1,

and the polynomials Mn(s), Lm(s) interlace, then the
function x(t, Lm,Mn), defined by the formula (2), sat-
isfies the following inequalities for each t ≥ 0:

x(t, Lm,Mn) =

n∑

i=1

Aie
sit > 0 ,

x′(t, Lm,Mn) < 0.

Proof. From the assumption that the polynomials
Mn(s), Lm(s) interlace, it follows that their coefficients
are positive. Therefore Mn(0) > 0, Lm(0) > 0 and

M ′
n(s1) > 0, M ′

n(s2) < 0,

M ′
n(s3) > 0, M ′

n(s4) < 0, . . .

Lm(s1) > 0, Lm(s2) < 0,

Lm(s3) > 0, Lm(s4) < 0, . . . .

Thus

Ai =
Lm(si)

M ′
n(si)

> 0 for i ∈ N,

x(0, Lm,Mn) > 0, lim
t→∞ x(t, Lm,Mn) = 0 ,

x′(t, Lm,Mn) < 0 for t ∈ R.

This completes the proof. �

Theorem 2. If deg Mn(s) = n ≥ 2, L0(s) = 1 and

sn < sn−1 < sn−2 < · · · < s2 < s1 < 0,

then the function x(t, L0,Mn), determined by (2), for
each t > 0 satisfies

x(t, L0,Mn) > 0. (8)

Proof. The proof will be by induction on n. For n = 2
the inequality (8) follows from Remark 1, because for
n = 2 the function x(t, L0, M2) = x2(t) , where x2(t)
is determined by the formula (6). We assume that the
inequality (8) is true for n− 1. From this assumption it is
evident that

x(t, L0,Mn(j)) > 0 (9)

for each t > 0, j ∈ N , because deg Mn(j)(s) = n− 1.
From Lemma 1 we have

x′(t, L0,Mn) = sjx(t, L0,Mn)

+ x(t, L0,Mn(j)) for j ∈ N.
(10)

We will prove the inequality (8) by reductio ad absur-
dum; we assume that there exists t1 ∈ (0,∞) such that
x(t1, L0,Mn) ≤ 0.

Consider the case where x(t1, L0,Mn) < 0. Then
(7) and the relation

lim
t→∞x(t, L0,Mn) = 0

imply that there exists t2 ∈ (0,∞) such that

x′(t2, L0,Mn) = 0, x(t2, L0,Mn) < 0.

Hence and from (10) it follows that x(t2, L0,Mn(j)) < 0.
This is a contradiction to (9). Similarly, we proceed in the
case where x(t1, L0,Mn) = 0. Therefore the inequality
(8) is true. �

Now we give some generalization of the last theorem.

Theorem 3. If deg Mn(s) = n ≥ 2, deg Lm(s) =
m ∈ {0, 1, 2, . . . , n− 1} and the polynomials Mn(s) and
Lm(s) partly interlace, then the function x(t, Lm,Mn),
determined by (2), for each t >0 satisfies the inequality

x(t, Lm,Mn) > 0. (11)

Proof. For m = n− 1 the inequality (11) follows from
Theorem 1. For m ∈ {0, 1, 2, . . . , n−2} the proof will be
by induction on m. For m = 0 the inequality (11) follows
from Theorem 2. We assume that the inequality (11) is
true for m − 1 ∈ {0, 1, 2, . . . , n − 2 }, and from this we
deduce that it is true for m ∈ {0, 1, 2, . . . , n− 2}.

The polynomials Lm−1(s) and Lm(s) have the form

Lm−1(s) = (s− z1)(s− z2) . . . (s− zm−1),

Lm(s) = Lm−1(s)(s − zm).

Hence, from (4) and (5) we have

x(t, Lm,Mn) = x′(t, Lm−1,Mn)−zmx(t, Lm−1,Mn) ,

x′(t, Lm−1,Mn) = sjx(t, Lm−1,Mn)

+ x(t, Lm−1,Mn(j)) for j ∈ N.
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Therefore

x(t, Lm,Mn) = sjx(t, Lm−1,Mn) + x(t, Lm−1,Mn(j))

− zmx(t, Lm−1,Mn)

= (sj − zm)x(t, Lm−1,Mn)

+ x(t, Lm−1,Mn(j)).

For j = m the polynomials Lm−1(s), Mn(s) and
Lm−1(s), Mn(j)(s) partly interlace and (sm − zm) > 0.
From this and the inductive hypothesis, we have

x(t, Lm−1,Mn) > 0 , x(t, Lm−1,Mn(m)) > 0

for each t > 0. Therefore the inequality (11) is true.
From the assumption that the polynomials Lm(s)

and Mn(s) (m = 0, 1, 2, . . . , n − 1) partly interlace it
follows that

lim
t→∞x(t, Lm,Mn) = 0 .

From (7) and the work of Osiowski (1965) we have
x(0, Lm,Mn) = 0 (m = 0, 1, . . . , n− 2) and Theorem 3
implies that x(t, Lm,Mn) > 0, (m = 0, 1, . . . , n − 1),
for each t > 0. Therefore, the following holds true. �

Remark 2. If for m ∈ {0, 1, 2, . . . , n − 2} the
polynomials Lm(s) and Mn(s) partly interlace, then
the function x(t, Lm,Mn) has a local maximum in the
interval (0,∞).

Now we will prove that this local maximum is unique
in the interval (0,∞).

Theorem 4. If deg Mn(s) = n ≥ 2, deg Lm(s) =
m ∈ {0, 1, 2, . . . , n− 2) and the polynomials Lm(s) and
Mn(s) partly interlace, then the function x(t, Lm,Mn),
determined by (2), has only one extremum in (0,∞)—a
local maximum. Moreover this function for m = n − 1
has no local extremum in the interval (0,∞).

Proof. From Theorem 1 it follows that the function
x(t, Lm−1,Mn) has no local extrema in (0,∞). From
Remark 2 we have that for m ∈ {0, 1, 2, . . . , n − 2)
the function x(t, Lm,Mn) has a local extremum, namely,
a local maximum in (0,∞). We will prove that this
extremum is unique. The proof will be by induction on n.

For n = 2 and m ∈ {0, 1, 2, . . . , n − 2} we
have m = 0. For n = 2 and m = 0 the conclusion of
Theorem 4 follows from Remark 1. We assume that the
thesis of Theorem 4 is true for n− 1, and we prove that it
is true for n.

We see that for m ∈ {0, 1, . . . , (n − 1) − 2} =
{0, 1, . . . , n − 3} and for j ∈ {n − 2, n − 1}
degMn(j)(s) = n− 1 the polynomials Lm(s), Mn(j)(s)
partly interlace. Hence and from the induction assumption
it follows that for m ∈ {0, 1, . . . , n − 3}, j ∈ {n −
2, n − 1} the function x(t, Lm,Mn(j)) has one local

extremum in (0,∞) only. We will prove the thesis of
Theorem 4 by reductio ad absurdum. We assume that
deg Mn(s) = n > 2, m ∈ {0, 1, . . . , n − 2} and the
function x(t, Lm,Mn) has two local extrema in (0,∞);
this means that there are numbers t1, t2 ∈ (0,∞), t1 < t2
and such that

x′(t1, Lm,Mn) = 0, x′′(t1, Lm,Mn) �= 0,
x′(t2, Lm,Mn) = 0, x′′(t2, Lm,Mn) �= 0.

}
(12)

Without loss of generality we can assume that in
the intervals (0, t1), (t1, t2) this function has no local
extremum. From the work of Osiowski (1965) and
Theorem 3 we have

x(0, Lm,Mn) = 0, x(t, Lm,Mn) > 0 for t > 0.

Hence

x′′(t1, Lm,Mn) < 0 and x′′(t2, Lm,Mn) > 0.

From the relations

x′(t2, Lm,Mn) = 0, x′′(t2, Lm,Mn) > 0,

lim
t→∞x(t, Lm,Mn) = 0 ,

it follows that there exists a number t3 > t2 such that

x′(t3, Lm,Mn) = 0, x′′(t3, Lm,Mn) < 0;

this means that the function x(t, Lm,Mn) has local
extrema at three points t1 < t2 < t3. From Lemma 1
we have

x′′(t, Lm,Mn) = sjx
′(t, Lm,Mn) + x′(t, Lm,Mn(j))

for j ∈ {n− 2, n− 1}. Hence from (12) we obtain

x′′(t1, Lm,Mn) = x′(t1, Lm,Mn(j)) < 0,

x′′(t2, Lm,Mn) = x′(t2, Lm,Mn(j)) > 0,

x′′(t3, Lm,Mn) = x′(t3, Lm,Mn(j)) < 0,

for j ∈ {n− 2, n− 1}. It follows that there are numbers
t1 ∈ (t1, t2) and t2 ∈ (t2, t3) such that

x′(t1, Lm,Mn(j)) = 0, x′(t2, Lm,Mn(j)) = 0

for j ∈ {n − 2, n − 1}, and x′(t, Lm,Mn(j)) at the
points t1, t2 changes its sign. This means that the function
x(t, Lm,Mn(j)) has two local extrema in the interval
(0,∞). But this contradicts the induction hypothesis.
Therefore Theorem 4 holds true. �
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5. Comparison of the extremal values of the
function x(t, Lm,Mn) with respect to
degMn(s) and degLm(s)

Consider the polynomials Mn (s) , Lm(s),
given by (1), where degMn(s) = n ≥ 3,
degLm (s) = m ∈ {0, 1, . . . , n− 3} . Specifically,
consider the polynomials

M1 (s) = (s− s1) ,
Mi (s) = Mi−1 (s) (s− si) ,

(i = 2, 3, . . . , n)

⎫
⎬

⎭ (13)

and the function x(t, Lm,Mi) (i = m+1,m+2, . . . , n),
determined by (2). We give the extremal properties of the
function x(t, Lm,Mi) (i = m+ 2,m+ 3, . . . , n).

Theorem 5. Let the polynomials Mn (s) , Lm(s)
have the form (1) and the polynomial Mn−1(s)
have the form (13), where degMn (s) = n ≥ 3,
degLm (s) = m ∈ {0, 1, . . . , n− 3} . If the polynomials
Lm (s) and Mn(s) partly interlace, then there exist only
two numbers tn−1, tn ∈ (0,∞), such that

max
t>0

x (t, Lm,Mn) = x (tn, Lm,Mn) ,

max
t>0

x (t, Lm,Mn−1) = x (tn−1, Lm,Mn−1)

}

(14)
and

tn−1 < tn,

x (tn, Lm,Mn) <
1

|sn|x(tn−1, Lm,Mn−1).

⎫
⎬

⎭ (15)

This means that

max
t>0

x (t, Lm,Mn) <
1

|sn|max
t>0

x(t, Lm,Mn−1) .

Proof. It is evident that, if the polynomials Lm (s) and
Mn(s) partly interlace, then so do Lm (s) and Mn−1(s).
Hence, by Theorem 1, the function x (t, Lm,Mn+1) in
the interval (0,∞) has no local extrema. From Theorem 4
it follows that the function x(t, Lm,Mi) (i = m +
2,m + 3, . . ., n) in the interval (0,∞) has precisely one
local extremum, which means that there are precisely two
numbers tn−1, tn ∈ (0,∞), which satisfy the relation
(14). Moreover,

x (0, Lm,Mn) = lim
t→∞ x (t, Lm,Mn)

= lim
t→∞ x (t, Lm,Mn−1)

= x (0, Lm,Mn−1) = 0

and, by Theorem 3, we have

x (t, Lm,Mn) > 0, x (t, Lm,Mn−1) > 0

for t > 0.

Hence and from (14) we get

x′ (t, Lm,Mn) > 0 for 0 < t < tn,
x′ (t, Lm,Mn) = 0 for t = tn,
x′ (t, Lm,Mn) < 0 for t > tn,

x′ (t, Lm,Mn−1) > 0 for 0 < t < tn−1,
x′ (t, Lm,Mn−1) = 0 for t = tn−1,
x′ (t, Lm,Mn−1) < 0 for t > tn−1.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(16)

From Lemma 1 we have

x′′ (t, Lm,Mn) = snx
′ (t, Lm,Mn)

+ x′(t, Lm,Mn−1),

x′′ (tn, Lm,Mn) = snx
′ (tn, Lm,Mn)

+ x′(tn, Lm,Mn−1),

and from (16) it follows that

x′ (tn, Lm,Mn) = 0,

x′′ (tn, Lm,Mn−1) < 0.

Hence x′ (tn, Lm,Mn−1) < 0 and x′ (t, Lm,Mn−1) < 0
only for t > tn−1. Therefore tn > tn−1.

Now we prove (15). From Lemma 1 we obtain

x′ (tn, Lm,Mn) = snx (tn, Lm,Mn)

+ x(tn, Lm,Mn−1),

and from (16) it follows that

x′ (tn, Lm,Mn) = 0.

This means that

x (tn, Lm,Mn) =
1

|sn|x (tn, Lm,Mn−1) .

From this and the inequality tn−1 < tn we have

x (tn, Lm,Mn) <
1

|sn|x (tn−1, Lm,Mn−1) ,

and this means that the inequalities (15) are true. �

Let the polynomials Mn (s) , Lm(s) have the form
(1) and the polynomial Mn−1(s) have the form (13).
Consider the polynomialMn (s) = Mn−1(s)(s−s), with
s satisfying the inequality s < sn. It can be seen that if the
polynomials Lm (s) and Mn(s) satisfy the assumptions
of Theorem 5, then the polynomials Lm (s) and Mn(s)
satisfy these assumptions, too.

From Theorem 5 we have the following.
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Corollary 1. If the polynomials Lm (s) and Mn(s) have
the form (1) and satisfy the assumptions of Theorem 5,
then for every number s < sn

max
t>0

x
(
t, Lm,Mn

)
<

1

|s|max
t>0

x(t, Lm,Mn−1)

lim
sn→−∞

[
max
t>0

x(t, Lm,Mn)

]
= 0 .

Consider the polynomials M2 (s) , M3 (s) , . . . ,Mn(s) of
the form (13), the polynomial L0 (s) = 1 and the func-
tions x(t, L0,Mi) (i = 2, 3, . . . , n) of the form (2). It is
easy to see that, if the polynomials L0 (s) and Mn(s) sat-
isfy the assumptions of Theorem 5, then the polynomials
L0 (s) and Mi (s) (i = 3, 4, . . . , n) satisfy these assump-
tions, too. Hence, by Theorem 5, it follows that there exist
numbers ti ∈ (0,∞) (i = 2, 3, . . ., n) such that

max
t>0

x (t, L0,Mi) = x(ti, L0,Mi)

(i = 2, 3, . . . , n) . (17)

Hence, by Theorem 5 and Remark 1, we have the
following result:

Corollary 2. If the polynomials L0 (s) and Mn(s) have
the form (1) and satisfy the assumptions of Theorem 5,
and the numbers ti (i = 2, 3, . . . , n) are defined by the
relation (17), then

t2 < t3 < · · · < tn,

where t2 = ln (s2/s1) /(s1−s2) is determined in Remark
1.

Theorem 6. Let the polynomials Mn (s) , Lm (s),

Lm−1 (s) =
Lm(s)

s− zm

have the form (1), where degMn (s) = n ≥ 2 ,
degLm (s) = m ∈ {1, 2, . . . , n− 2) . If the polyno-
mials Lm (s) and Mn(s) partly interlace, then there exist
precisely two numbers Tm−1, Tm ∈ (0,∞) such that

max
t>0

x (t, Lm,Mn) = x(Tm, Lm,Mn) ,

max
t>0

x (t, Lm−1,Mn) = x(Tm−1, Lm,Mn) ,

and
Tm < Tm−1,

x (Tm−1, Lm−1,Mn) <
1

|zm|x(Tm, Lm,Mn),

which means that

max
t>0

x (t, Lm−1,Mn) <
1

|zm|max
t>0

x(t, Lm,Mn).

Proof. The proof is analogous to that of Theorem 5, when
using the relation (5) instead of (4) from Lemma 1. �
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Fig. 1. Time response of the system for s1 = −1, s2 =
−3, s3 = −5, s4 = −7.

Fig. 2. Time response of the system for s1 = −1, s2 =
−2, s3 = −3, z1 = −1.5.
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Fig. 3. Time response of the system for s1 = −1, s2 =
−2, s3 = −3, z1 = −1.5, z2 = −2.5.
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6. Numerical examples

In Fig. 1 the time response of the system is shown for
s1 = −1, s2 = −3, s3 = −5, s4 = −7. The
numerical solution yields τe = (0, 0, 0.973) and xe =
0.0049587176.

In Fig. 2 the time response of the system is shown
for s1 = −1, s2 = −2, s3 = −3, z1 = −1.5.
The numerical solution yields τe = 0.473 and xe =
0.16846125.

In Fig. 3 the time response of the system is shown for
s1 = −1, s2 = −2, s3 = −3, z1 = −1.5, z2 = −2.5.
No extremum exists.

7. Conclusion

In the paper, certain properties of solutions to differential
equations of the form

anx
(n)(t) + · · ·+ a1x

′(t) + a0x(t)

= bmu(m)(t) + · · ·+ b1u
′(t) + b0u(t)

(18)

were proved, under the assumption that ai, bj > 0. These
equations are mathematical models of linear dynamical
systems excited by Dirac’s impulse δ(t). The solution
of Eqn. (18) is denoted by x(t, Lm,Mn), where the
polynomials Lm(s) and Mn(s) have the form (1),
deg Lm(s) = m and deg Mn(s) = n. Throughout
the paper, it was assumed that the polynomials Mn(s)
and Lm(s) partly interlace. It was proved that, if
deg Mn(s) = n ≥ 2 and deg Lm(s) = m = n− 1 , then
the function x(t, Lm,Mn) is positive and decreasing for
every t ≥ 0 (Theorem 1). In the case where degMn(s) =
n ≥ 2 and deg Lm(s) = m ∈ {0, 1, . . . , n− 1}, we have
x(t, Lm,Mn) > 0 for every t > 0 (Theorem 3). Besides,
it was proved that, in the case where deg Mn(s) = n ≥ 2
and deg Lm(s) = m ∈ {0, 1, . . . , n − 2}, the function
considered has exactly one local extremum in the interval
(0,∞) (Theorem 4). In Theorem 5, certain relationships
between the extrema of the function x(t, Lm,Mn) were
shown, depending on the degree of the polynomialMn(s),
and in Theorem 6, analogous relationships were proved
depending on the degree of the polynomial Lm(s).
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