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This paper proposes a novel autonomous underwater vehicle path planning algorithm in a cluttered underwater environment
based on the heat method. The algorithm calculates the isotropic and anisotropic geodesic distances by adding the direction
and magnitude of the currents to the heat method, which is named the anisotropy-based heat method. Taking account of the
relevant influence of the environment on the cost functions, such as currents, obstacles and turn of the vehicle, an efficient
collision-free and energy-optimized path solution can be obtained. Simulation results show that the anisotropy-based heat
method is able to find a good trajectory in both static and dynamic clutter fields (including uncertain obstacles and changing
currents). Compared with the fast marching (FM) algorithm, the anisotropy-based heat method is not only robust, flexible,
and simple to implement, but it also greatly saves time consumption and memory footprint in a time-variant environment.
Finally, the evaluation criteria of paths are proposed in terms of length, arrival time, energy consumption, and smoothness.
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1. Introduction

Autonomous underwater vehicles (AUVs) are defined
as a class of submerged marine robots using various
enabling technologies to navigate and perform numerous
tasks (Zeng et al., 2015). AUVs have numerous
applications including surveillance and reconnaissance,
anti-submarine assignment, water profile sampling and
littoral ocean floor mapping, etc. Many factors have a
great impact on the feasibility and energy requirements of
generating an underwater trajectory from the initial to the
destination position, such as obstacles, current direction
and velocity, time, terrain and performance of AUVs.

The level of autonomy achieved by AUVs is chiefly
determined by their performance in pre-generative path
planning and re-planning. The problem of pre-generative
AUV path planning in anisotropic environments
aims to optimize the various aspects of performance
comprehensively, such as safety, energy consumption,
travel time, etc. Based on these pre-generative algorithms,
path replanning for the time-vary ocean environment and
underwater terrain-aided navigation combines the terrain
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database with terrain contour matching, which improves
the accuracy and reliability of the final paths.

Traditionally, path planning for AUVs has been
related to safety conditions, and the path should be
devoid of known or unknown obstacles or hazardous
areas. Artificial potential field algorithms (Cheng et al.,
2015) generate safe paths by introducing an artificial
potential field around the obstacles preventing vehicles
from collision (Hedjar and Bounkhel, 2019). In graph
search methods, such as Dijkstra’s algorithm (Niu et al.,
2018; 2020), the A* algorithm (Koay and Chitre, 2013;
Singh et al., 2018) and the D* algorithm, a chart or
graph is produced to show free space where no collision
will occur, as well as forbidden areas. These methods
fast solve low-dimensional problems; however, they are
commonly criticized for their discrete state transitions,
which unnaturally constrain the motion of a vehicle to the
limited direction.

In the quasi-static current field or the time-varying
dynamic current field, optimizing the energy cost of
traveling in ocean environments is also an important
goal in AUV mission planning. Many of the developed
planning algorithms integrated the current map with an

liuxy@hhu.edu.cn


290 K. Sun and X. Liu

evolutionary path planner (Klaučo et al., 2016; Chen
et al., 2018; Makdah et al., 2019), providing an energy
efficient path with the limitation of monotonicity in one
coordinate of the path. Particle swarm optimization (Witt
and Dunbabin, 2008; Mahmoud Zadeh et al., 2017; Wu,
2019) was studied for energy conservation by taking
advantage of the time-varying ocean currents, which
does not incorporate survival of the fittest and has no
conventional evolutionary operators.

In a more common situation, when the thrust power
is kept constant during the mission, the optimization
of energy consumption agrees with the extraction of
the minimum-time path. A fast marching-based (FM)
approach was presented by Pêtrès et al. (2007) to obtain
the minimum time path in a given field, in which only
linear cost functions can be used. A novel multi-layered
fast marching method (Song et al., 2015; 2017) was
proposed for path planning in a time-variant maritime
environment, which concerned the surface current and
winds. Similar path planners that apply wavefront
methods (Soulignac et al., 2008; Soulignac, 2011) and
level set methods (Lolla et al., 2012) could obtain the
time-optimal paths by using the current fields.

Differing from the FM algorithm based on wave
propagation, this paper will use the heat method (Crane
et al., 2013; 2017) to calculate the shortest time path,
which finds the relationship between geodesic distance
and heat by diffusion. The heat method is more suitable
for high-dimensional problems, and is not constrained
to the need for non-obtuse triangulations or an iterative
unfolding procedure. In the following, we present
a novel anisotropy-based heat method to solve the
AUV path planning problem, while taking into account
various factors in the underwater environment, including
obstacles, currents, terrain, and energy consumption of
the vehicle. Since the algorithm on the surface itself
maintains the terrain features well, a three-dimensional
path adapted to the underwater environment and matching
the terrain can be obtained by detecting the navigation
height of the vehicle above the sea floor.

1.1. Paper outline. This paper is organized as
follows. Section 2 introduces the underwater environment
settings and triangulation reconstruction, as well as the
framework of the heat method, including the main idea
and discretization of the gradient and Laplacian. Section 3
presents a novel heat method for the AUV path planning
problem, which considers the isotropy and anisotropy
of geodesic distance. Various factors of the underwater
environment are taken into account to obtain a feasible
and energy-optimized path solution, including obstacles,
current flows, smoothness and terrain. Section 4 shows
some simulated experimental results, including paths
generated on static and dynamic clutter fields. In
addition, we also compare the paths generated by the

anisotropy-based heat method and other algorithms in
terms of length, arrival time, energy consumption, and
smoothness. Section 5 provides some concluding remarks
and possible directions for future work.

2. Environment and the framework

2.1. Underwater environment. AUVs operating very
close to the sea floor are increasingly used in the oil and
gas market, or in close proximity to offshore industrial
structures. They also perform some scientific research
tasks, such as deep sea bottom flora and fauna image
acquisition. To plan a feasible underwater navigation path,
it is required to make full use of sampled data of an ocean
simulation. The ocean simulation data samples provide
information about the two-dimensional ocean current and
sea floor terrains, such as islands, reefs, corals, sand
banks.

Graph-based methods traditionally partition the
search space in a discrete representation of the
environment comprised of edges and nodes. However,
the discrete graph representation is extremely limited in
finding a continuous path on a continuous domain. Based
on the sampled data, we can obtain a continuous path on a
manifold discretized by the Delaunay triangulation (Peyré
et al., 2010), which is more useful in high-dimensional
settings. When S is a finite set of N starting points, one
defines a segmentation of the 2D manifold Ω into Voronoi
cells as

V(S) = {Ci}i∈I and Ω =
⋃

i∈I

Ci, (1)

where I = {0, . . . , N − 1}. It defines a triangle face
structure T (S) by looking at the intersection of three cells

T (S) = {(i, j, k) \ Ci ∩ Cj ∩ Ck �= ∅}. (2)

Figure 1(a) is a triangle mesh obtained by Voronoi cells.
It is worth mentioning that the path found is a

piecewise linear curve that is linear inside each triangle.
The path either follows an edge between two triangles, or
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(a) Delaunay triangulation
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(b) discrete path

Fig. 1. Path on a triangulation.
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is parallel to the gradient of the distance function inside
a triangle. Figure 1(b) shows an example of discrete
geodesic path linking starting point vs and ending point
ve on a triangle mesh, and the arrow points to the distance
gradient direction.

In the ocean environment, in addition to ensuring
continuity, an excellent path needs to meet the following
criteria:

• avoid and keep a safe distance to obstacles,

• guarantee less travel time at constant speed,

• reduce consumption utilizing a favourable current,

• maintain smoothness and follow terrain features.

Figure 2 is a simulation of a real three-dimensional marine
environment, where the black curve is the generated path.
The points marked as ‘×’ and ‘�’ represent the start
point and the end point, respectively. Since the calculation
of the geodesic distance is based on the surface, the
generated path can well maintain the characteristics of the
seabed terrain.

2.2. Heat framework of the method. The key idea
of the heat method is that distance computation can
be split into two stages: first computing approximate
gradients via heat diffusion, and then using them to
recover distance. Rather than obtaining the distance
function directly by Varadhan’s formula, the method first
evaluates a unit vector field that approximates its gradient
and then integrates distance by solving a Poisson equation.

The heat method can be applied in any setting where
one has a gradient operator (∇), divergence operator (∇·),
and Laplace operator (Δ = ∇ · ∇). Expressed in terms
of those operators, the heat method consists of three basic
steps, presented in Algorithm 1.

Fig. 2. Simulation of a real 3D marine environment.

Algorithm 1. Heat method.
1: Integrate the heat flow u̇ = Δu for some fixed time t.
2: Evaluate the vector field X = −∇ut/|∇ut|.
3: Solve the Poisson equation Δφ = ∇ ·X .

As shown in Fig. 3, heat u is allowed to diffuse for
a period of time in (a). The temperature gradient ∇u (b)
is normalized and negated to get a unit vector field X (c)
pointing along the geodesic. A function φ whose gradient
follows X recovers the final distance in (d). The heat
method requires only that the gradient ∇u point in the
right direction, that is , parallel to ∇φ. Since the gradient
of the true distance function has unit length (Eikonal
equation), the magnitude of u can be safely ignored.

In order to transform a continuous process into
a discrete algorithm, the core is to spatially discretize
the gradient and Laplacian. Here we only detail the
discretization on a triangular mesh, although this method
is also applicable to regular grids, point clouds, and
polygonal grids (Crane et al., 2013; 2017). A standard
discretization of the Laplacian at a vertex i is given by

(Lu)i =
1

2Ai

∑

j

(cotβij + cotγij)(uj − ui), (3)

where Ai is one third the area of all triangles incident
on vertex i, the sum is taken over all neighboring vertices
j, and βij , γij are the angles opposing the corresponding
edge in Fig. 4(a). The operation can also be expressed via
a matrix L = M−1LC , where M is a diagonal matrix
containing the vertex areas and LC is the cotan operator
representing the remaining sum. The gradient in a given
triangle can be expresses succinctly as

∇u =
1

2Af

∑

i

ui(N × ei), (4)

where Af is the area of the triangle, N is its outward unit
normal, ei is the i-th edge vector, and ui is the value of u
at the opposing vertex as in Fig. 4(b). The heat equation
and the Poisson equation in Algorithm 1 are discretized on
triangular meshes through (3) and (4), so that the geodesic
distance calculation can be transformed into solving two
sparse linear systems.

We use the A* algorithm, the fast marching
algorithm and the heat method to calculate the geodesic
distance and backtracking path on the 200 × 200
surface, respectively (Fig. 5). For a more intuitive and
clear comparison, they are presented in two-dimensional
graphics, and Fig. 5(a) is a height map of this terrain area.
Relative to the graph-based method (A*), the paths on the
continuous surface reconstructed by the triangle meshes
are not only smoother and continuous, but also avoid steep
areas, and maintain the terrain features well.
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(a) u (b) ∇u (c) X (d) φ

Fig. 3. Three steps of the heat method in Algorithm 1.
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Fig. 4. Discretization of the Laplacian and gradient in a triangle
mesh.

Fast marching is a category of high accuracy
algorithms in the state-of-the-art methods for distances.
From Figs. 5(c) and (d), we can see that the heat
method has a comparable level of accuracy with FM
in calculating the geodesic distance, i.e., the minimum
arrival time. However, fast marching has an asymptotic
complexity ofO(n log n); Crane et al. (2017; 2013; 2012)
mentioned that since the heat method only involves two
sparse linear systems, which can be prefactored once and
solved in near-linear time, the amortized cost is thus
greatly reduced. Simultaneously, the heat method can
avoid the challenges of non-obtuse triangulations or an
iterative unfolding procedure, and meshes that are poorly
discretized or corrupted by a large amount of noise. In
the following, we will apply it more specifically to path
planning in an underwater environment.

3. Heat method-based path planning

FM provides numerical algorithms for solving the
non-liner equation on triangulated surfaces, while the
heat method explores the relationship between heat kernel
computation and distances on surfaces. Although these
two algorithms are based on different physical models for
wave propagation and heat diffusion, they both start from
the Eikonal equation.

3.1. Eikonal equation. The Eikonal equation

‖∇φ‖ = τ (5)

is subject to the boundary condition φ|γ = 0 over some
subset γ of the domain (like a point or a curve). The
partial differential equation (5) is nonlinear hyperbolic. In
interface evolution problems, the physical meaning of the
solution is the shortest time it takes from the curve to reach
each point in the computational domain at a speed of 1/τ .
Intuitively, given a source point, the distance function φ
must change at a rate of 1/τ (Pêtrès et al., 2007).

In the problem of underwater path planning, τ
is a cost function containing a set of internal and
external constraints (time, obstacles, currents or fuel
consumption). Given a configuration space Ω, which
is the set of all possible configuration vertices or faces,
containing all static obstacles and all regions free of
static obstacles, the cost function τ can be isotropic or
anisotropic:

• Isotropic case: the cost function τ depends only on
the face x,

τ : Ω→ R+, x �→ τ(x), τ(x) > 0.

• Anisotropic case: τ depends on the face x and a
vector �F of a field of force F ,

τ : Ω×F → R+, (x, �F ) �→ τ(x, �F ), τ(x, �F ) > 0.

In AUV path planning, F is the current force, and each
configuration face is assigned a 2D vector �F , which
contains the velocity and direction of the current. Note
that the heat method uses rules based on the face to
calculate gradient variables and other auxiliary variables,
which are three-dimensional vectors on the surface.

3.2. Isotropic and anisotropic geodesic distance.
From the heat equation u̇ = Δu, the heat method
derives a vector field −∇u to approximate the gradient
of the geodesic distance ∇φ. The magnitude can be
safely ignored since it is assumed in this method that
the gradient of the true distance function has unit length.
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(a) height map (b) A* on a graph

(c) FM on a triangular mesh
(d) heat method on
a triangular mesh

Fig. 5. Examples of distance maps and paths computed over a
200 × 200 surface (Fig. 2) reconstructed on a graph or
triangle mesh.

Utilizing a unit vector field to find the closest scalar
potential φ by solving the Euler–Lagrange equationΔφ =
∇ · X , we can only obtain geodesic distances on the
Riemannian manifold in the identity metric. However, in
most practical applications, such as AUV path planning,
computer vision and graphics, it is more necessary to
calculate the distance considering cost or in the weighted
metric. Following this approach, we use a vector field
B containing magnitude and direction to characterize the
isotropy and anisotropy of the geodesic distance. Instead
of directly normalizing the gradient field, the vector field
B is synthesized by adding the scalar cost (weighted
metric) and the external force vector to the gradient field.

• Isotropic case: the vector field B is defined by the
product of the cost and the unit gradient vector field,

Bj = τj ·Xj . (6)

• Anisotropic case: B is defined by the product of the
cost and the synthetic unit vector field,

Bj = τj · X̃j , X̃ =
−∇u+ ε · �F
| − ∇u+ ε · �F |

. (7)

Here, τj is a scalar weight (cost) of triangle j, Xj is a unit
vector calculated by Step II of the heat method. In the case
of anisotropy, the gradient direction X̃ of the geodesic

ε ·
−→
F

−∇u

θ2

θ1θ3

(a) θ1, θ2, θ3

�F

(b) ˜F

X

(c) X

˜X

(d) ˜X

Fig. 6. Effects of different degrees of external forces on the gra-
dient direction of the geodesic distance.

distance is synthesized by the external force �F and the
opposite direction of heat diffusion −∇u. Also ε is a
control parameter that determines the effect of the external
force on the main direction of the distance increment. In
Fig. 6(a), θ1, θ2, θ3 represent the deviation angle of the
synthesized vector from the original gradient direction of
heat diffusion, which can indicate the strength of the effect
of external force. As the control parameter ε increases,
the gradient direction of the geodesic distance deviates
further from the direction of heat diffusion, obviously,
θ2 < θ1 < θ3. Figure 6(b) is a vortex-like current field,
and (c), (d) are isotropic and anisotropic unit gradient
fields.

The vector field B is defined, and the geodesic
distance can be recovered by solving the Poisson equation

Δφ = ∇ · B. (8)

Based on the discretization of the Laplacian and gradient
operators on the triangle mesh, if we let d = ∇ · B, the
Poisson equation is discretized into a linear system,

LCφ = d, (9)

where LC is the cotan operator representing the
remaining sum.

In the above idea, the heat equation is mainly used
to find the gradient direction of the distance without
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considering magnitude. Furthermore, equivalently, the
diffusion of heat flow on a non-uniform medium can also
characterize the isotropy and anisotropy of the geodesic
distance. The non-uniform medium means that different
areas on the object have different values of thermal
diffusivity, which depend on the material density of the
object itself and the external environmental cost. Define
diffusivity as

α(x) = D(material, τ(x)), (10)

where α(x) ≥ 0 and the function D is inversely
proportional to the cost τ , that is, the higher the cost on
each triangle x, the slower the heat diffusion. Here, the
morphology, density and heat conductivity of the material,
which depend on the difference in the internal molecular
weight, structure and distribution, also generate a great
impact on diffusivity.

With thermal diffusivity, the heat equation in Step I
of the heat method can be generalized to a more general
form (Yang and Cohen, 2016; Yang et al., 2018),

∂u

∂t
= div(α(x) · ∇u). (11)

By discretization in time using a single backward Euler
step for some fixed time t,

[id− t · div(α · ∇)]ut = u0, (12)

heat flow can then be computed by solving the symmetric
positive-definite system

[
M − t ·

3∑

i=1

Gi
N

T
(αMGi

N )

]
u = δγ , (13)

where δγ is the Kronecker delta (or an indicator function)
over γ, M is a diagonal matrix containing the vertex areas,
αM is a matrix containing the thermal diffusivity on each
triangle and Gi

N is the gradient operator obtained from the
normal. Also,

∑
represents the sum of the elements in the

matrix. Figure 7 present the geodesic distances calculated
by different thermal diffusivities.

3.3. Energy optimal path planning solution. Path
optimization can be a very complex problem depending
on whether the path solution space is constrained, as well
as the complexity of the environment and the performance
of autonomous underwater vehicles. The objectives of
the optimization take into account at least the following
aspects: travel time, safety and energy consumption.
Assuming that the speed of the vehicle is constant, the
minimum-time path can be found by the heat method,
which is significantly more effective in high-dimensional
settings. For safety, the path should avoid the known
forbidden zones, such as obstacles or hazardous areas.

(a) α = 1 (b) α = 20 (c) local unit vector field

Fig. 7. Geodesic distances with different thermal diffusivity.

End point
Start point

Obstacle

Fig. 8. Path generated by the heat method avoids the obstacle.

Forbidden zone. In the heat method, the calculation
of the gradient and Laplace operators is based on faces,
whose areas are used repeatedly in the process of solving
the heat equation. If we set the thermal diffusivity in (10),

αZ = 0,

the heat can be effectively prevented from diffusing on
the forbidden zone or obstacles Z , that is, the geodesic
distance is ∞, so the path found avoids collision. A
similar effect can be obtained by setting the cost function
(Fig. 8)

τobst =

{
∞, x ∈ Z ,
0, x /∈ Z .

Current. How to utilize the current fields in an ocean
environment is a key issue of optimizing the energy cost of
AUV traveling. The current is highly anisotropic, which
not only affects the direction of navigation, but can also
greatly reduce energy consumption when used correctly.
According to the anisotropic case above, we can use the
gradient vector −∇u of heat diffusion and the current �F
to synthesize the gradient direction X̃ of the geodesic
distance. However, an apparently traversable path can
be unfeasible at certain times when strong currents flow
in the opposite direction. In order to make the gradient
direction of distance more consistent with the law, and
not to depend on the current excessively, we calculate the
control parameter in (7),
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ε = μ ·
(

1

|R|
∑

R

|�F |
|∇u|

)−1

, μ ∈ (0, 1). (14)

Here, the opposite direction refers to 〈−∇u, �F 〉 < 0,
R represents the set of all triangles whose angle between
−∇u and �F is greater than 90◦, and μ is the influence
factor of the current on the final path. Equation (14)
shows that, if there are more current directions opposite
to heat diffusion directions, the impact of the current on
the direction of the geodesic distance will be decreased.
Figure 9 shows the effect of the current direction on
underwater path planning. Obviously, the path generated
by our method (Fig. 9(b)) is more adapted to the behavior
of the current.

Energy consumption can be significantly reduced
when the current direction is similar to that of navigation
(heat diffusion), i.e., 〈−∇u, �F 〉 ≥ 0. Regardless
of the speed of the vehicle, a favourable current can
always speed up the vehicle motion, thereby reducing the
minimum arrival time. Here we ignore the resistance of
the current to the vehicle during travelling in a similar
direction, and define the cost of different current speeds
by

τspeed =
2

1 + exp(Υ · ω|�F |)
≥ 0, (15)

where

Υ =

{
1, 〈−∇u, �F 〉 ≥ 0,
−1, 〈−∇u, �F 〉 < 0

is a signum function, Υ · |�F | is a directional real
number representing the magnitude of the current and
ω is a control parameter of the current velocity, which
determines the degree of the influence of the current speed
on the path. Equation (15) accounts for the resistance
and boost effects of the flow velocity on the vehicle from
the two perspectives of reversal and the same direction
of the water flow. The greater the flow velocity in the
reverse direction, the greater the cost; the greater the flow
velocity in the same direction, the more energy will be
saved. The setting of the cost function can make the
planned path avoid the reverse current and maximize the
navigation with the assistance of the same current. Also,
τspeed can be turned into the isotropic version (6) or the
anisotropic version (7) of the heat method and calculate
geodesic distances.

Smoothness of turn. Optimizing energy consumption
also requires vehicles to avoid large-scale turns and
lifts as much as possible. The current opposite to the
vehicle will make the synthetic direction deviate greatly
from the navigation direction (the direction in which the
geodesic distance increases), thereby increasing energy

Start point

obstacle

End point

(a) heat method

End pointStart point

obstacle

direction of current

(b) anisotropic version
with currents

Fig. 9. Effect of the current direction on underwater path plan-
ning.

obstacle

(a) heat method
with an obstacle

obstacle
direction of current

(b) isotropic version
with τturn

obstacle

strong current driving

direction of current

(c) α = 20

obstacle

strong current driving

direction of current

(d) anisotropic version
with τturn

Fig. 10. Effect of the cost of turn on underwater path planning.

consumption. For this, we define the cost of turn,

τturn = κ ·
(
1− 〈−∇u,

�F 〉
|∇u| · |�F |

)
≥ 0, (16)

where κ is a positive gain. It is equivalent to saying that a
force favors the vehicle when both are pointing in a similar
direction.

Taking into account the cost of turning, the path not
only more adapts the behaviour of the current (Fig. 10(b)),
but it also becomes smoother and keeps a certain safety
distance from the obstacle (Fig. 10(d)). Since the vehicle
only needs smooth, rather than acute large-scale turns
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during navigation, a lower-performance robot, which has
poor hardware equipment and short life, can also perform
underwater tasks excellently. Note that the concept can be
generalized to path planning in any field of force, like path
planning for sailing applications, where F is a wind field,
for instance.

3.4. Algorithm. After calculating the geodesic
distance φ by the novel heat method, a geodesic curve γ∗

(shortest path or minimum time path) between end point
ve and start point vs can be computed by the gradient
descent. This means that γ∗ is the numerical solution of
the following ordinary differential equation (Cohen and
Kimmel, 1997; Peyré et al., 2010):

∀t > 0,
dγ∗(t)

dt
= −D−1∇φ, γ∗(0) = ve, (17)

where D is a metric tensor in the anisotropic case. For the
isotropic case, D = α2Id, (17) becomes dγ∗/dt = −∇φ.
This technique can be used for any geodesic distance
generated by various algorithms, including Dijkstra’s
method and the fast marching method (Mirebeau, 2014;
2018).

From Section 3.3, in order to obtain an
energy-optimized path solution, it is necessary to

Algorithm 2. Anisotropy-based heat method.
Require: Triangular mesh (V , F ), source vertex v0, heat
diffusion time t, field of force F , thermal diffusivity α,
obstacle area Z , parameters ω, κ
Precompute:

1: unit normal field N ;
2: triangle area matrix A;
3: vertex areas matrix M ;
4: gradient operator G computed by (4);
5: Laplace operator L =

∑
GiT (αGi);

Compute Distance:
d : V → R

1: u⇐ (M + t ∗ L)\δ � Heat diffusion from v0
δi=v0 ⇐ 1, δi�=v0 ⇐ 0

2: S ⇐ −∇u+ ε ∗ F � Synthesis vector field
ε⇐ test (μ)

3: H ⇐ S/ |S| � Unit vector field
4: τ ⇐ τobst + τspeed + τturn � Cost function

τobst ⇐ obstacle : Z
τspeed ⇐ costspeed (ω)
τturn ⇐ costturn (κ)

5: B ⇐ τ ·H � Gradient vector with cost
6: d⇐ L\div(B) � Recover geodesic distance

Generate Path:
Input: Distance map d; Goal vertex ve; Height Δz
Output: Final path γ∗

γ∗ ← Eqn. (17) � Path on surface

comprehensively consider various factors such as
obstacles, current, smoothness, etc. The total cost
function on each triangle face can be expressed as

τ = τobst + τspeed + τturn. (18)

Algorithm 2 shows the pipeline of the proposed
anisotropy-based heat method for AUV path planning,
which mainly contains three steps: pre-calculation,
distance computation and path generation. The significant
benefit of our approach is that it takes into account
the isotropy and anisotropy of geodesic distances, and
reduces energy consumption in navigation procedures by
considering the marine environment. Furthermore, taking
advantage of the sea floor terrain information and current
makes the generated path more feasible and accurate in a
real three-dimensional underwater environment. The heat
method itself is more robust and easier to operate, making
the algorithm suitable for more complex scenes.

4. Experimental results and a discussion

In this part, we first show the impact of various parameter
changes in the algorithm on the final path. Then,
the simulation results obtained for the underwater path
planning problem through scenarios of different sizes with
a static current are shown and analyzed. In the dynamic
current field, a path more adapting the behaviour of the
current can be re-planned in real time at the rendezvous
points. Finally, a comparison of our algorithm with other
methods is presented.

4.1. Parameter evaluation. Anisotropic and isotropic
heat methods with varying parameters generate different
geodesic distance maps and underwater navigation paths.
In the following, the results of the path planning for
autonomous underwater vehicles using different values
of heat diffusivity α in (10), current direction control
parameter μ in (14), current flow speed control parameters
ω in (15), and turning cost parameter κ in (16) will be
presented.

As shown in Fig. 11, the currents in the light
grey area represent strong currents with high speed
flowing in the direction of the arrow. Here, μ can
be used to determine the degree of the effect of the
current on the synthesis of the new gradient direction of
geodesic distance. As μ continues increasing in Fig. 11,
paths generated by the anisotropic version of the heat
method avoid more severely adverse current flows, and,
simultaneously, the favorable currents are utilized to speed
up the vehicle motion. The geodesic distance is larger
where the current flow direction significantly deviates
from the original heat diffusion direction.

Here, in order to separately show the effect of the
cost function on the isotropic version, we set μ = 0. The
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parameter ω controlling the current speed continues to
rise, increasing the cost gap between navigating upstream
and downstream, making the path to make full use of the
favorable water flow and reducing consumption. Also, κ
can represent the proportion of turning cost to total cost
τ = τspeed+τturn in a non-forbidden area, i.e., τobst = 0. In
order to show the effect of τturn in the anisotropic version
of the heat method, we set μ = 0.1, ω = 0.1. The
turning cost can be used not only to calculate the isotropic
or anisotropic geodesic distances, but also to ensure that
the path is sufficiently smooth. From Fig. 11, the geodesic
distance recovered from the unit vector field X or X̃ in the
heat method is uniform, while the contours calculated by
using the cost function τ are obviously non-uniform.

4.2. Experimental simulation. To investigate the
performance of the proposed isotropic and anisotropic
versions of the heat method, the underwater environment
is modeled as a three dimensional surface covered by
obstacles and ocean currents. In the N × M operating
field, the three-dimensional coordinate values of all points
can be used for the Delaunay triangulation. We habitually
present a two-dimensional projection map for seeing and
comparing the calculated minimum path more clearly,
where the dark grey areas and the arrows represent
obstacles and water flows, respectively. In the following
experiment, all the constant driving speeds are s = 1.

Static operating field. Figures 12(a) and (b) present 3D
simulated underwater navigation routes in a 100 × 100
underwater area obtained by the original heat method
and our approach taking into account the current field,
respectively. Figures 12(c) and (d) show respectively
the geodesic distance contour maps calculated by the
heat method and the anisotropic version, and the arrows
indicate the current field. It is a two-dimensional or
three-dimensional vector field, and the average flow
velocity is |�F | = 1. The parameter values are set to
μ = 0.8, ω = 0.5, and κ = 0.5. It is apparent that the
path generated by our anisotropic algorithm between the
starting point (×) and the ending point (�) adapts more
the behaviour of the current. This path avoids severely
adverse current flows and takes advantage of favourable
ones to speed up the vehicle motion and nose dive the
energy expenditure.

Dynamic operating field. In a highly uncertain dynamic
operating field, the anisotropy-based heat method can still
well be used to generate paths based on variable dynamic
current fields and real-time updates of detected uncertain
obstacles. The key points in the dynamic current field are
these rendez-vous points of currents. A key idea for the
path planning problem of the dynamic current field can
be split into two stages: first find rendez-vous points of
currents, and then re-plan the path with our anisotropic

α = 2 α = 5 α = 20

μ = 0.4 μ = 0.7 μ = 1

ω = 1 ω = 2 ω = 3

κ = 0 κ = 2 κ = 5

Fig. 11. Underwater paths with varying parameters.

(a) (b)

(c) (d)

Fig. 12. Paths generated in a simulated 100 × 100 underwater
area with or without a current.
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heat method. We define all points i that meet the condition

1

|Ni|
∑

m,n∈Ni

〈 �Fm, �Fn〉
| �Fm|| �Fn|

< ρ (19)

as rendez-vous points. Here, Ni denotes the set of all
neighboring faces of vertex i, �Fm, �Fn are current flows
on triangles m and n, and ρ is the threshold, here set
to 0.75. On these rendez-vous points, based on the
real-time updated current vector field, we can re-plan a
path that utilizes favorable currents to reduce the energy
expenditure. The arrows in Figs. 13(a) and (b) indicate the
current fields before and after updating, where points in
the light grey area are all rendez-vous points of the current
field. The average speed of the current is |�F | = 1, and
μ = 0.5, ω = 0.5, κ = 2. A complete route is obtained as
in Fig. 13(b) by splicing the initial path (thin curve) with
the re-planned path (thick curve).

Then, in an operating field with uncertain obstacles,
since the gradient descent method used for path
backtracking is based on triangular faces to perform
iterative operations, a safe and collision-free path can be
found successfully by just setting a pass step Ns (number
of faces) in real time. The pass step Ns (> 1) can also
be set to a small constant, and the smaller the value, the
more excellent the result. Assuming that the operating

(a) before update (b) after update

Fig. 13. Path generated in the dynamic current field.

Table 1. Comparison of the execution time of FM and the heat
method.

Time [s] Fast marching Heat method
Exaction Distance Path Distance Path

Initialization 0.26 s 0.87 s
0.16 s

0.64 s
0.09 s

First update 0.26 s 0.34 s 0.11 s 0.15 s
Second update 0.28 s 0.40 s 0.11 s 0.14 s
Third update 0.29 s 0.47 s 0.13 s 0.18 s
Fourth update 0.32 s 0.49 s 0.14 s 0.18 s

Total time 1.41 s 2.57 s 0.74 s 1.29 s

field does not consider the influencing factors of currents
in Fig. 14, we updated obstacles four times and calculated
the geodesic distance using the heat method to come up
with the paths in Figs. 14(a)–(e).

During the four backtracking processes, we set the
pass step length to Ns1 = 43, Ns2 = 80, Ns3 =
45, Ns4 = 80 until we return to the target point. Note that
� is the corresponding point after each step. Using the
fast marching algorithm to calculate the geodetic distance
in real time in the same discrete operating field, and
setting the same pass step Ns four times to backtrack
and updating the paths, we can get the comparison of
the execution times as shown in Table 1. The overall
execution time of the algorithm includes the time it takes
to calculate the geodesic distance and generate the path.
Since a large amount of information (such as the gradient
operator) in the pre-calculation of the heat method can be
reused, the time can be greatly saved when recalculating
the geodesic distance in the continuously updated obstacle
field.

4.3. Comparison with others. Figure 15 shows a
harbor simulation in which the main exit is obstructed by
a net. Naturally, the vehicle must pass through the little
back exit to reach the target from the starting point. The
simulated current field of the harbor has two different flow
directions, the internal current flows clockwise and the
external current flows counterclockwise. The whole area
consists of 100× 100 points, and the dark grey and black
areas are walls and nets, respectively.

Figure 16 show the paths generated respectively by
the A * algorithm, fast marching, the heat method, and our
anisotropic version of the heat method. In the anisotropic
experiment, we considered the current field, where the
flow velocity |�F | is different at each point and the average
value is 1. The parameters in the cost function are μ = 1,
ω = 0.1, κ = 0.1. The A* algorithm is based on
the nodes in the domain, and the latter three methods
all calculate the geodesic distance in the same discrete
environment constructed by the triangle meshes. Since
the A * algorithm is a type of graph search algorithm
based on nodes and edges, the path generated by it must
be discontinuous. Relative to the fast marching algorithm,
the path generated by the heat method can maintain a
certain safety distance from obstacles and be smoother.
Adding the direction and velocity of the current to the heat
method makes the path shown in Fig. 16(d) avoid severely
adverse current flows and utilize the favorable ones. In
the following, we will evaluate the paths generated from
four aspects: length, arrival time, energy consumption and
smoothness.

The length of the path can be expressed as the sum
of the local Euclidean distances

�total =
∑

j∈fpath

�j, �j = |Pj − Pj+1|, (20)
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(a) initialization (b) first update (c) second update (d) third update (e) fourth update

Fig. 14. Real-time path in a cluttered field with updated uncertain/moving obstacles.

Net

Walls

Start point

Target

Fig. 15. Simulated current field of a harbor obstructed by a net.

where fpath represents the set of all triangles that the path
passes through, while Pj , Pj+1 are the intersections of the
path and the edges of the triangle j, as show below.

Vj

Pj

Pj+1
�j

θj

�Fj

Given the average speed of the vehicle s, the arrival time
can be calculated by

Tarrival =
∑

j∈fpath

�j

s+ cos θj | �Fj |
, (21)

cos θj =
〈Vj , �Fj〉
|Vj ||�Fj |

,

with Vj , �Fj representing the gradient vector and the
current on the triangle j. Since the path is backtracked
by the gradient descent method according to the geodesic
distance, the gradient direction of the point on the path
can be regarded as the navigation direction of the vehicle.
The current in a similar direction as the gradient speeds
up the motion of the vehicle, but it takes more time to
sail along the flow of the current in the opposite direction.
Severely adverse current flows not only result in longer

Table 2. Comparison with other methods and an anisotropy-
based version.

Algorithm �total Tarrival Epath Θmean

A* 0.7860 1.3005 - -
Fast marching 0.4657 1.1013 3.8003 0.9764
Heat method 0.5015 1.1688 4.0474 0.9942
Aniso-based
heat method

0.5428 0.9221 2.8092 0.9963

arrival times, but also consume more energy. The energy
consumption of a path can be calculated by

Epath =
∑

j∈fpath

�j ·
(
τ speed
j + τ turn

j

)
, (22)

where τ speed and τ turn stand respectively for the cost of the
current speed and turn. The product of the local Euclidean
distance and the cost of each triangle represents the energy
consumption on that face. In addition, we use the cosine
of the average turn angle between faces to characterize the
smoothness of the path,

Θmean =
1

|fpath|
∑

j∈fpath

〈Vj , Vj+1〉
|Vj ||Vj+1|

. (23)

Figure 17 shows a path on a triangular mesh, where Vj

is the new vector synthesized by the current vector �Fj

and gradient vector −∇u obtained by the original heat
method, which is used to recover the geodesic distance.

Table 2 presents the comparison results of the four
paths in Fig. 16 for the length, arrival time, energy
consumption, and smoothness, respectively. When
calculating the local Euclidean distance (20) of the paths,
in order to adapt to the unitized height value on the terrain,
both the x and y coordinates of points are multiplied by
a ratio of 0.003. The average speed of the vehicle and
the velocity of the current flows are set to s = 5 and
|�F | = 1, respectively, for calculating the arrival time
(21). As shown in Fig. 17, the angle between the gradient
vector on the previous Vj and the next triangle Vj+1 also
describes the steering of the vehicle in (22). Since the A*
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(a) A* (b) fast marching

(c) heat method
(d) anisotropy-based heat
method with current field

Fig. 16. Comparison with other methods for path planning and
an anisotropy-based version.

Vj

Vend
V1

Vj+1

�Fj
�Fj+1

�Fend

�F1

Fig. 17. Path considering current on a triangular mesh.

algorithm is based on discrete nodes and edges, the path
obtained has a longer local Euclidean distance and arrival
time. Without considering the current flows, although the
short length of the path generated by fast marching causes
slightly smaller arrival time and energy consumption, the
heat method guarantees the safety and smoothness of
the path, which is more suitable for 3D space and poor
discrete meshes. A large amount of information in the
pre-calculation of the heat method can be reused, which
can greatly reduce the memory footprint when applied to
a dynamic environment. The diffusion time t in the heat
method also ensures the flexibility of the algorithm. We
set t = 0.1 in Figs. 16(c) and (d).

5. Conclusions

The underwater world is a very demanding environment
for path planning. This paper proposes a novel
non-uniform heat method to calculate an isotropic

and anisotropic geodesic distance, and further generate
a safe and energy-optimized path in the underwater
environment. The path planning algorithm that takes into
account the direction of the current and cost function is
called the anisotropy-based heat method. Various factors
in the underwater environment are used to calculate the
cost function, including obstacles, direction and speed of
currents, and smoothness of turn. The anisotropy-based
heat method is suitable for a wide range of scenarios, such
as static current fields, continuously updated dynamic
current fields and various uncertain obstacles. Since
a good deal of pre-calculated information in the heat
method can be reused, path planning on a dynamic current
field requires less memory consumption.

Although the heat method and fast marching have
similar geodesic distance calculation accuracy, the former
is simple to implement and requires only a small execution
time. Compared with other similar algorithms, the
heat method also can maintain stronger continuity and
smoothness of the path. Four indicators for evaluating
the AUV path on a triangular mesh are proposed,
including length, arrival time, energy consumption and
smoothness. The final experimental results show that
the anisotropy-based heat method greatly reduces energy
consumption of the generated path, and ensures sufficient
safety and smoothness.

It is should be mentioned that more complex factors
of the underwater environment need to be considered in
our future work, including the speed, steering and diving
dynamics of the automatic underwater vehicle. Path
planning problems in a highly uncertain cluttered field
with moving obstacles also need to be solved.
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