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This paper deals with the problem of joint state and unknown input estimation for stochastic discrete-time linear systems
subject to intermittent unknown inputs on measurements. A Kalman filter approach is proposed for state prediction and
intermittent unknown input reconstruction. The filter design is based on the minimization of the trace of the state estimation
error covariance matrix under the constraint that the state prediction error is decoupled from active unknown inputs corrupt-
ing measurements at the current time. When the system is not strongly detectable, a sufficient stochastic stability condition
on the mathematical expectation of the random state prediction errors covariance matrix is established in the case where
the arrival binary sequences of unknown inputs follow independent random Bernoulli processes. When the intermittent
unknown inputs on measurements represent intermittent observations, an illustrative example shows that the proposed filter
corresponds to a Kalman filter with intermittent observations having the ability to generate a minimum variance unbiased
prediction of measurement losses.
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1. Introduction

Since the Kalman filter (KF) was designed by Kalman
(1960), it has become the basis of different systems
theories (Nosrati and Shafiee, 2018; Ding and Fang,
2018; Tran et al., 2021). It plays an essential role in
many estimation processes in a wide range of applications
(Simon, 2006; Kailath et al., 2000; Sumithra and Vadivel,
2021).

The state filtering problem for discrete-time systems
in the presence of persistent unknown inputs has drawn
close attention. Friedland (1969) proposed the two-stage
Kalman filter in which the state estimation and unknown
input estimation are decoupled to reduce computation
requirements of the augmented state filter (see Alouani
et al., 1992; Keller and Darouach, 1997; Hsieh and Chen,
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1999; Ignagni, 2000; Kim et al., 2006). When there is
no prior information available about the unknown input,
an optimal recursive state filter by Kitanidis (1987) can be
applied so that the state estimation error is decoupled from
unknown inputs. Another approach which consists in
transforming a standard system with unknown inputs into
a singular system without unknown inputs was introduced
by Darouach et al. (1992). Other optimal filters closer
to the standard Kalman filter were derived by minimizing
the estimation error covariance matrix with respect to a
reduced state feedback gain. This represents the degrees
of freedom in the design of the unknown input Kalman
filter (UIKF) as observed by Chen and Patton (1996),
Darouach and Zasadzinski (1997), and Hou and Patton
(1998).

There has been a considerable amount of interest
in joint estimation of input and state by using the
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Kalman filter (Varshney et al., 2019; Zhang and Ding,
2020). An unbiased minimum-variance filter to estimate
the unknown input and the state for linear systems,
when the state and input estimation are performed in
two sequential and independent steps is proposed by
Gillijns and De Moor (2007). Joint state and input
estimation for linear discrete-time systems is of great
practical importance for fault tolerant control (FTC) and
fault diagnosis problems so that each component of the
unknown inputs vector has been represented as actuator
or component faults (Blanke et al., 2006; Hmida et al.,
2010; Fang et al., 2011).

In recent years, networks have attracted meticulous
attention with the rapid development of network
technologies and novel control strategies. Networked
control systems (NCSs) have been used in many industrial
fields such as electrical power systems, chemical industry,
manufacturing industry, natural gas systems, etc. (Yuan
et al., 2017; Zhang et al., 2017; Wang et al., 2020). The
NCS is an integration of actuators, sensors, and controllers
that exchange data through a communication network.
This may lead to packet losses, induced delays and
end-to-end communication jitters. Hespanha et al. (2007)
review several recent results on estimation, analysis, and
controller synthesis for NCSs and design control systems
that take into account of effects packet losses and packet
delays.

Another frequently included problem is intermittent
communication that may result from unreliable channels
or a stochastic manner of data transmission. This may
influence the performance of the NCS components. Sun
and Ma (2014) explain how the measurements could
be delayed or even lost due to transmission problems
and signal fluctuations of the sensor and estimator
communication channels. Therefore, the problem of
intermittent observations must be carefully considered (Li
et al., 2015; Jie et al., 2018).

We are mainly concerned in our work by packet
losses that cause intermittent data transmission. Sinopoli
et al. (2004) and Fletcher et al. (2004) studied the
particular case when the Kalman filtering problem with a
random loss of observations is represented by Markovian
or Bernoulli processes. It was extended later to include
both random delay (Schenato et al., 2007; Shi et al., 2009)
and packet loses. Huang and Dey (2007) consider the
case where the availability of observations is regulated
by a Markov chain. More recently, Censi (2010)
tackled the case when the arrival of observations is
driven by a semi-Markov chain. Zhang et al. (2012)
derive a suboptimal Kalman filter with intermittent
observations by minimizing the mean squared estimation
error and the mean square stability has been analyzed.
The dual problem of state filtering with intermittent
unknown inputs on state equation is studied by Keller
and Sauter (2013). Instead of using the parameterized

approach proposed by Darouach and Zasadzinski (1997)
which requires to pre-compute off-line the structure
of the state feedback gain for each combinatorial
situation of the binary sequence, the intermittent unknown
input decoupling constraint was parameterized by two
fixed-size matrices, called the free and constrained parts
of the filter gain. The constrained gain structurally
dependent on the binary sequence was linked to estimator
of the intermittent unknown inputs. From a two-stage
optimization strategy very similar to that described by
Friedland (1969), the free and constrained gains were both
used to minimize the trace of the state estimation error
covariance matrix and the trace of the unknown input
estimation error covariance matrix.

Besides several network-induced effects, NCSs
become vulnerable to cyber physical attacks incorporating
cyber and physical activities into a malicious attack that
can lead to serious incidents. Recently, a sharp rise in the
number of cyber attacks has been reported. Consequently,
many researchers have shown a great concern for the
analysis of vulnerabilities of NCSs to external attacks
(Wang and Yang, 2019; Chang et al., 2018; Chabir et al.,
2018).

Attackers can generate various types of cyber attacks.
They can be categorized as deception attacks which
compromise the authenticity of the sensors and actuators’
data by injecting false data among them and DoS attacks
which affect the availability of the data. A deception
attack is generated by directly modifying the control or
measurement signal. It is classified into four classes:
false data injection attacks (Liang et al., 2015), covert
attacks (De Sá et al., 2017), replay attacks (Zhu and
Martinez, 2013) and stealthy attacks (Rhouma et al.,
2015; 2018; Dán and Sandberg, 2010). In turn, DoS
attacks are introduced to corrupt the sensor measurement
or the control command by affecting communication
channels of NCSs. These malicious acts may cause time
delays and packet dropouts as described by Huang et al.
(2011) as well as Yuan and Sun (2015). Since DoS attacks
require little prior knowledge on control systems, they are
easy to apply and the study of NCSs under DoS attacks
becomes of paramount importance.

Motivated by the aforementioned discussions, this
paper is devoted to handle the issue of joint state and
unknown input estimation for stochastic discrete-time
linear systems subject to intermittent unknown inputs on
measurements. We propose a Kalman filter approach
for state prediction and intermittent unknown input
reconstruction. The filter design is based on the
minimization of the trace of the state estimation error
covariance matrix under the constraint that the state
prediction error is decoupled from active unknown
inputs corrupting measurements at the current time.
When the system is not strongly detectable, this work
establishes a sufficient stochastic stability condition on the
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mathematical expectation of the random state prediction
errors covariance matrix when the arrival binary
sequences of unknown inputs follow independent random
Bernoulli processes. When the intermittent unknown
inputs on measurements are used to represent intermittent
observations, we show that the proposed filter coincides
with a Kalman filter with intermittent observation having
the ability the reconstruct measurement losses. We give
an illustrative example which presents the state filtering
results of the proposed Kalman filter for linear systems
subject to DoS attacks and we show the ability of this
strategy to reconstruct the measurement losses caused by
these malicious acts.

The paper is organized as follows. Section 2
explains the problem of joint state and unknown
input estimation with intermittent unknown inputs in
measurement equation. Section 3 solves the state filtering
problem and studies the stability of the stochastic filter.
An illustrative example, applied to the case of DoS
attacks, is given in Section 4 before conclusions in
Section 5.

2. Problem formulation

Consider the following linear discrete-time stochastic
systems:

xk+1 = Axk +Buk + wk, (1a)

yk = Cxk + Jdθk + vk, (1b)

where xk ∈ R
n, uk ∈ R

d, yk ∈ R
mand dθk ∈ R

q are the
state, control, measurement and unknown input vectors
with q ≤ m. Matrices A,B,C and J are of appropriate
dimensions. The process and sensor noises wk ∈ R

n and
vk ∈ R

m are zero mean uncorrelated Gaussian random
sequences with

E

{[
wk

vk

] [
wj

vj

]T}
=

[
W 0
0 I

]
δk,j , (2)

where W ≥ 0.
The initial state x0, assumed to be uncorrelated with

wk and vk, is a Gaussian random variable with E {x0} =
x̄0 and

P0 = E
{
(x0 − x̄0)(x0 − x̄0)

T
}
≥ 0.

The vector of intermittent unknown inputs

dθk =
[
ρ1kd

1
k . . . ρikd

i
k . . . ρqkd

q
k

]T
(3)

depends on the known binary variables

θk =
{
ρ1k, . . . , ρ

i
k, . . . , ρ

q
k

}
(4)

with ρik = 1 when the i-th component ρikd
i
k of dθk is active;

otherwise, ρik = 0. Here

sk =

q∑
i=1

ρik

represents the number of active unknown inputs. We
assume that rank(J) = q ≤ m with J =[
j1 . . . ji . . . jq

]
where ji is the unknown input

distribution vector of dik.
Consider the following linear state filter:

x̂θ
k+1/k = Ax̂θ

k/k +Buk, (5a)

P θ
k+1/k = AP θ

k/kA
T +W, (5b)

x̂θ
k/k = x̂θ

k/k−1 +Kθ
k(yk − Cx̂θ

k/k−1), (5c)

P θ
k/k = (I −Kθ

kC)P θ
k/k−1(I −Kθ

kC)T (5d)

+Kθ
kK

θT
k , (5e)

where x̂θ
k/k−1 is the state prediction with covariance

matrix

P θ
k/k−1 = E

{
(xk − x̂θ

k/k−1)( xk − x̂θ
k/k−1)

T
}

based on measurements available until time k − 1 and
θk−1 and where x̂θ

k/k is the state estimate with covariance
matrix

P θ
k/k = E

{
(xk − x̂θ

k/k)(xk − x̂θ
k/k)

T
}

based on measurements available until time k and θk.
From (1) and (5), the state prediction error eθk+1/k =

xk+1 − x̂θ
k+1/k and the state estimation error eθk/k =

xk − x̂θ
k/k propagate as

eθk+1/k = Aeθk/k + wk, (6a)

eθk/k = (I −Kθ
kC)eθk/k−1 −Kθ

kvk (6b)

−Kθ
kJd

θ
k. (6c)

Under E{eθk/k−1} = 0, we have E{eθk/k} =

−Kθ
kJd

θ
k = 0 and thus E{eθk+1/k} = 0 if and only if

the state feedback gain Kθ
k ∈ R

n,m satisfies the unknown
input decoupling constraint Kθ

kJd
θ
k = 0 so that it can be

equivalently rewritten under (3) as

Kθ
kJ

θ
k = 0 (7)

with Jθ
k =

[
ρ1kj

1 . . . ρikj
i . . . ρqkj

q
]
. Instead

of parameterizing the solution Kθ
k = Lθ

kΣ
θ
k to (7) as

in the work of Darouach and Zasadzinski (1997) by
one parameter Lθ

k ∈ R
n,m−sk , with Σθ

k = αk(I −
Jθ
k (J

θ
k )

+
) and αk ∈ R

m−sk,m so that rank(Σθ
k) =

m − sk, which requires pre-computing αk for each
combinatorial situation of the binary sequence θk, this
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paper parameterizes the solution Kθ
k = K0

k + μθ
kG

θ
k

to (7) as done by Keller and Sauter (2013) by two free
parameters K0

k ∈ R
n,m and Gθ

k ∈ R
q,m, where μθ

k =
−K0

kJ
θ
k can be easily computed on-line. The unknown

input decoupling constraint (7) can then be rewritten as

(K0
k + μθ

kG
θ
k)J

θ
k = 0 (8)

or
μθ
kG

θ
kJ

θ
k = μθ

k. (9)

From (9), we deduce that the state feedback gain (8)
satisfies (7) ∀θk and ∀K0

k if and only if Gθ
k satisfies

Gθ
kJ

θ
k = Iθk (10)

with Iθk = diag
[
ρ1k ρik ρqk

]
since μθ

kI
θ
k = μθ

k,
∀θk and ∀K0

k . The necessary and sufficient existence
condition

rank(

[
Jθ
k

Iθk

]
) = rank(Jθ

k ), ∀θk

for a solution to (10) is given by rank(J) = q. Suggested
by the structure of the state feedback gain (8), let us define

d̂θk/k = Gθ
k(yk − Cx̂θ

k/k−1), (11a)

Qθ
k/k = E

{
(d̂θk/k − dθk)(d̂

θ
k/k − dθk)

T
}
, (11b)

where E{d̂θk/k} = Gθ
kJ

θ
kd

θ
k = dθk under (7) and (10).

The state estimator (5) and the intermittent unknown input
estimator (11) will be designed by minimizing the trace of
P θ
k/k and Qθ

k/k with respect to Kθ
k and Gθ

k under (7) and
(10).

3. Kalman filter with intermittent unknown
inputs on measurements

In this section we shall solve the problem of joint state
and unknown inputs estimation, presented in Section 2,
by designing a Kalman filter with intermittent unknown
inputs to measurements.

Theorem 1. The unbiased minimum variance (UMV)
state estimate is generated by the following modified
Kalman filter:

x̂θ
k/k = (I −K0

kC)x̂θ
k/k−1 +K0

kyk

+ μθ
kd̂

θ
k/k, (12a)

P θ
k/k = (I −K0

kC)P θ
k/k−1(I −K0

kC)T

+K0
kK

0T
k + μθ

kQ
θ
k/kμ

θT
k , (12b)

K0
k = P θ

k/k−1C
T (CP θ

k/k−1C
T + I)

−1
, (12c)

x̂θ
k+1/k = Ax̂θ

k/k +Buk, (12d)

P θ
k+1/k = AP θ

k/kA
T +W. (12e)
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Fig. 1. Generation of x̂θ
k+1/k and d̂θk/k by additive correction of

the standard Kalman filter.

At the estimation step, the additive quantities μθ
kd̂

θ
k/k and

μθ
kQ

θ
k/kμ

θT
k depend on the unknown input estimate d̂θk/k

with covariance Qθ
k/k given by

d̂θk/k = Gθ
k(yk − Cx̂θ

k/k−1), (13a)

Qθ
k/k = [JθT

k (CP θ
k/k−1C

T + I)−1Jθ
k ]

+ (13b)

with Gθ
k = Qθ

k/kJ
θT
k (CP θ

k/k−1C
T + I)

−1
. The i-th com-

ponent d̂θik/k of d̂θk/k represents the estimate of ρikd
i
k (with

d̂θik/k = 0 when ρik = 0). On the other hand, the i-th com-

ponent Qθi
k/k on the diagonal part of Qθ

k/k represents the

variance of d̂θik/k (with Qθi
k/k = 0 when ρik = 0). The inter-

mittent unknown input Kalman filter with unknown inputs
to measurements (IIKFM) is initialized by x̂θ

0/−1 = x̄0

and P θ
0/−1 = P0 ≥ 0.

Figure 1 illustrates the generation concept of the
estimates of x̂θ

k+1/k and d̂θk/k by using an additive
correction of the standard Kalman filter.

Proof. We assume that

Xθ
k =

[
xT
k dθTk

]T
,

X̂θ
k/k =

[
x̂θT
k/k d̂θTk/k

]T
,

Ωθ
k/k = E

⎧⎨
⎩
[
eθk/k
εθk/k

][
eθk/k
εθk/k

]T⎫⎬
⎭

Lθ
k =

[
KθT

k GθT
k

]T
.
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The state estimator (5) and the unknown input estimator
(11) can then be jointly expressed as

X̂θ
k/k =

[
I
0

]
x̂θ
k/k−1 + Lθ

k(yk − Cx̂θ
k/k−1), (14a)

Ωθ
k/k =

([
I
0

]
− Lθ

kC

)
P θ
k/k−1

([
I
0

]
− Lθ

kC

)T

+ Lθ
kL

θ
k

T
, (14b)

x̂θ
k+1/k =

[
A 0

]
X̂θ

k/k +Buk, (14c)

P θ
k+1/k =

[
A 0

]
Ωθ

k/k

[
A 0

]T
+W. (14d)

When tr(P θ
k/k−1) attains a minimum, X̂θ

k/k is the UMV

estimate of Xθ
k (and thus tr(P θ

k+1/k) is minimum) if and

only if the augmented gain Lθ
k =

[
KθT

k GθT
k

]T
is a

solution to

min
Lθ

k

tr(Ωθ
k/k)

subject to

Lθ
kJ

θ
k =

[
0
Iθk

]
.

(15)

The solution of (15) is difficult to obtain since Kθ
k

depends on Gθ
k through Kθ

k = K0
k + μθ

kG
θ
k. Assume that

X̄θ
k = TkX

θ
k , ˆ̄Xθ

k/k = TkX̂
θ
k/k, Ω̄θ

k/k = TkΩ
θ
k/kT

T
k and

L̄θ
k = TkL

θ
k. The matrix Tk is an arbitrary non-singular

transformation matrix of appropriate dimensions. The
filter (14) can then be equivalently rewritten as

ˆ̄Xθ
k/k = Tk

[
I
0

]
x̂θ
k/k−1 + L̄θ

k(yk − Cx̂θ
k/k−1), (16a)

Ω̄θ
k/k = (Tk

[
I
0

]
− L̄θ

kC)P θ
k/k−1(Tk

[
I
0

]
− L̄θ

kC)
T

+ L̄θ
kL̄

θ
k

T
, (16b)

x̂θ
k+1/k =

[
A 0

]
T−1
k

ˆ̄Xθ
k/k +Buk, (16c)

P θ
k+1/k =

[
A 0

]
T−1
k Ω̄θ

k/kT
−T
k

[
A 0

]T
+W. (16d)

Once tr(P θ
k/k−1) attains its minimum, ˆ̄Xθ

k/k is the UMV

estimate of X̄θ
k (and thus tr(P θ

k+1/k) minimum) if and

only if the transformed gain L̄θ
k is a solution to

min
L̄θ

k

tr(Ω̄θ
k/k)

subject to

L̄θ
kJ

θ
k = Tk

[
0
Iθk

]
.

(17)

With

Tk =

[
I −μθ

k

0 I

]

determined so that

L̄θ
k = Tk

[
KθT

k GθT
k

]T
=
[
K0T

k GθT
k

]T
,

where K0
k is now decoupled from Gθ

k, we can also verify
that the transformed algebraic constraints in (17) reduce
to Gθ

kJ
θ
k = Iθk .

After straightforward manipulations, (17) becomes

min
K0

k

Gθ
k

tr(Ω̄θ
k/k)

subject to

Gθ
kJ

θ
k = Iθk

(18)

with

Ω̄θ
k/k =

[
P 0
k/k Ω12

Ω21 Qθ
k/k

]
, (19)

where

Ω12 = [P θ
k/k−1C

T −K0
k(CP θ

k/k−1C
T + I)]GθT

k ,

Ω21 = Gθ
k[P

θ
k/k−1C

T −K0
k(CP θ

k/k−1C
T + I)]

T
.

We have

P 0
k/k = (I −K0

kC)P θ
k/k−1(I −K0

kC)
T

+K0
kK

0T
k , (20a)

Qθ
k/k = Gθ

kHkG
θT
k . (20b)

with Hk = CP θ
k/k−1C

T + I .

From tr(Ω̄θ
k/k) = tr(P 0

k/k) + tr(Qθ
k/k) which is

deduced from (19), we can conclude that the global
solution to (18) coincides with the local solutions of the
following decoupled optimization problems:

min
K0

k

tr(P 0
k/k) (21)

with
min
Gθ

k

tr(Qθ
k/k) (22)

subject to

Gθ
kJ

θi
k = Iθik for i = 1, . . . , q,

where Jθi
k and Iθik represent the i-th columns of Jθ

k and
Iθk .

The unique solution to (21) coincides with the
Kalman filter gain

K0
k = P θ

k/k−1C
T (CP θ

k/k−1C
T + I)

−1
.

The existence of the i-th constraint in (22) is conditioned
by ρik = 1. The solution to (22) can then be derived by
minimizing

Φθ
k =

1

2
tr(Gθ

kHkG
θT
k ) +

q∑
i=1

λθiT
k (Gθ

kJ
θi
k ,−Iθik ), (23)
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where λθi
k ∈ R

q,1 is the Lagrange multiplier vector
satisfying λθi

k = 0 when ρik = 0 and λθi
k �= 0 when

ρik = 1. The optimality conditions for Φθ
k are

∂Φθ
k

∂Gθ
k

= Gθ
kHk +

q∑
i=1

λθi
k (Jθi

k )
T
= 0, (24a)

∂Φθ
k

∂λi
k

= Gθ
kJ

θi
k − Iθik = 0

if ρik = 1 , ∀i = 1, . . . , q. (24b)

The solution

Gθ
k = −

{
q∑

i=1

λθi
k JθiT

k

}
H−1

k

to (24a) substituted in (24b) gives

− λθ
kJ

θT
k H−1

k Jθ
k = Iθk , (25)

where λθ
k =

[
λθ1
k λθi

k λθq
k

] ∈ R
q,q represents

the Lagrange multiplier matrix. The solution to (25)
expressed as λθ

k = −Iθk [J
θT
k H−1

k Jθ
k ]

+
= [JθT

k H−1
k Jθ

k ]
+

from Jθ
kI

θ
k = Jθ

k and substituted in Gθ
k = −λθ

kJ
θT
k H−1

k

gives
Gθ

k = [JθT
k H−1

k Jθ
k ]

+JθT
k H−1

k (26)

leading to Qθ
k/k = Gθ

kHkG
θT
k = [JθT

k H−1
k Jθ

k ]
+

via

X+XX+ = X+ (X+ is the unique Moore-Penrose
generalized inverse of X). The optimal gain K0

k

substituted in (19) yields the covariance

Ω̄θ
k/k = diag

[
P 0
k/k Qθ

k/k

]
of

ˆ̄Xθ
k/k =

[
x̂0T
k/k d̂θTk/k

]T
where x̂0

k/k = (I − K0
kC)x̂θ

k/k−1 + K0
kyk derives from

(16a). The optimized filter (16) recovers the IIKFM of
Theorem 1 via

T−1
k =

[
I μθ

k

0 I

]
in (16c). �

We are now going to study the stochastic stability
conditions of the IIKFM.

From Σθ
k = αk(I − Jθ

k (J
θ
k )

+
), where αk is a matrix

of dimension (m − sk,m) so that rank(Σθ
k) = m − sk,

the system (1) can be transformed into a free intermittent
unknown input system

xk+1 = Axk +Buk + wk, (27a)

yθk = Cθ
kxk + vθk. (27b)

with yθk = Σθ
kyk ∈ R

m−sk , Cθ
k = Σθ

kC ∈ vm−sk,n and
vθk = Σθ

kvk ∈ R
m−sk .

When designed for (27), the time-varying Kalman
filter

x̂θ
k+1/k = (A− Lθ

kC
θ
k)x̂

θ
k/k−1 + Lθ

ky
θ
k, (28a)

P θ
k+1/k = (A− Lθ

kC
θ
k)P

θ
k/k−1(A− Lθ

kC
θ
k)

T

+ Lθ
kV

θ
k L

θT
k +W, (28b)

with Lθ
k = AP θ

k/k−1C
θT
k (Cθ

kP
θ
k/k−1C

θ
k + V θ

k )
−1 ∈

R
n,m−sk , where V θ

k = Σθ
kΣ

θT
k > 0, ∀θk ={

ρ1k, . . . , ρ
i
k, . . . , ρ

q
k

}
recovers the state prediction and

covariance given by the IIKFM of Theorem 1.
When the arrival binary sequence of unknown inputs

follows independent random Bernoulli processes with
λ = Pr[ρik = 1] ∈ [0 1] for i ∈ {1, . . . , q}, let λc be
the critical arrival rate so that

lim
k→∞

E
{
P θ
k+1/k

}
< ∞

when λ ≤ λc and

lim
k→∞

E
{
P θ
k+1/k

}
→ ∞

when λ > λc. We denote by E{P θ
k+1/k} the

mathematical expectation of the random covariance
P θ
k+1/k taken with respect to {θi}k0 and λc is the critical

unknown input occurrence rate. The sufficient conditions
under which

lim
k→∞

E
{
P θ
k+1/k

}
< ∞, ∀λ ∈ [0,

�

λc]

will be established with
�

λc as the lower bound of λc.
Define

ϑ = {θ0, θ1, . . . , θN−2, θN−1}

as the set of N = 2q different binary situations of

θk =
{
ρ1k, . . . , ρ

i
k, . . . , ρ

q
k

}
described by

θ0 = {0, 0, . . . , 0, 0} ,
θ1 = {1, 0, 0, 0, 0} ,

...,

θN−2 = {1, 1, 0, 1, 0} ,
θN−1 = {1, 1, . . . , 1, 1} .

Let
σk =

{
σ0
k, . . . , σ

j
k, . . . , σ

N−1
k

}
be the set of binary variables defined by σj

k = 1 when
θk = θj or σj

k = 0 when θk �= θj .
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Theorem 2. If there exist Lj ∈ R
n,m−rj for j ∈

{0, . . . , N − 1} and Y ∈ R
n,n with 0 < Y ≤ I such

that
Ψλ(Y, L0, L1, . . . , LN−1) > 0 (29)

with

Ψλ(Y, L0, L1, . . . , LN−1)

=

⎡
⎢⎢⎢⎢⎢⎣

Y
√
p0Ω0

√
p1Ω1√

p0Ω
T
0 Y 0√

p1Ω
T
1 0 Y

...
...

...√
pN−1Ω

T
N−1 0 0

. . .
√
pN−1ΩN−1

. . . 0

. . . 0
...

. . . Y

⎤
⎥⎥⎥⎥⎥⎦ ,

Ωj = Y A + LjCj , so that Cj is the value of Cθ
k when

σj
k = 1 and pj = λrj (1− λ)

q−rj , where rj is the number
of ones in θj , then

lim
k→∞

E
{
P θ
k/k−1

}
< ∞ ∀λ ∈ [0

�

λc] (30)

with
�

λc as the solution to the LMI feasibility problem

�

λc = arg

{
max
λ

Ψλ(Y, L0, L1, . . . , LN−1) > 0

}
.

If the system under permanent unknown inputs is
strongly detectable with

rank

[ −Iz +A 0
C J

]
= n+ q, ∀ |z| ≥ 1, (31)

then

lim
k→∞

E
{
P θ
k/k−1

}
< ∞, ∀λ ∈ [0, 1].

Proof. Relation (28b) can be expressed as a switching
standard Riccati difference equation (RDE)

P θ
k+1/k =

N−1∑
j=0

σj
kfj(P

θ
k/k−1), (32)

where fj(X) is the Riccati operator that can be defined as
follows:

fj(X) = AXAT +W

−AXCT
j (CjXCT

j + Vj)
−1CjXAT

(33)

and Vj is the value of V θ
k when σj

k = 1. The mathematical
expectationE{P θ

k+1/k} of the random covarianceP θ
k+1/k

can then be expressed as

E
{
P θ
k+1/k

}
=

N−1∑
j=0

pjE
{
fj(P

θ
k/k−1)

}
. (34)

The Riccati operator fj(X) is concave and
increasing with X . Jensen’s inequality gives

E
{
P θ
k+1/k

}
≤

N−1∑
j=0

pjfj(E
{
P θ
k/k−1

}
)

and the deterministic upper bounded Sk+1 of E{P θ
k+1/k}

so that E{P θ
k+1/k} ≤ Sk+1 is generated by the following

modified RDE:

Sk+1 =
N−1∑
j=0

pjfj(Sk), (35)

with S0 = P0 ≥ 0.
Define

S =
N−1∑
j=0

pjfj(S)

as the modified algebraic Riccati difference equation
(ARDE) associated with the modified RDE (35).
Theorem 2 directly yields the stochastic stability of the
Kalman filter with intermittent observations. For a given
λ, there exists S ≥ 0, a solution to S = gλ(S) so that

lim
k→∞

E
{
P θ
k/k−1

}
≤ S < ∞

if there exists Lj ∈ R
n,m−rj for j ∈ {0, 1, . . . , N − 1}

and 0 < Y ≤ I so that Ψλ(Y, L0, . . . , LN−1) > 0. The
solution to the LMI feasibility problem

�

λc = arg

{
max
λ

Ψλ(Y, L0, L1, . . . , LN−1) > 0

}

gives the lower bound
�

λc of λc (Sinopoli et al., 2004).
In the permanent unknown inputs case, when λ = 1, the
modified ARDE

S =
N−1∑
j=0

pjfj(S)

can be rewritten as a standard ARDE,

Sk+1 = ASkA
T +W

−ASkC
T
N−1(CN−1SkC

T
N−1 + VN−1)

−1

× CN−1SkA
T ,

(36)

with CN−1 = ΣN−1C ∈ R
m−q,m and VN−1 =

ΣN−1Σ
T
N−1 ∈ R

m−q,m−q where α ∈ R
m−q,m in
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Fig. 2. IIKFM used as a KF with intermittent observations and
data losses reconstruction.

ΣN−1 = α(I − JJ+) is so that rank(ΣN−1) =
m − q. Under (31), the pair (A,CN−1) is detectable
and there exists a strong solution to the ARDE (36)
(all the modes of A − LN−1CN−1 with LN−1 =

ASCT
N−1(CN−1SC

T
N−1 + VN−1)

−1 ∈ R
n,m−q are

inside or on the unique circle). When q = m, the results
given in this theorem remain valid with CN−1 = 0 and
LN−1 = 0. �

With J = I , dk = −yk and the known
binary variables in θk generated by communication
protocols (TCP) (see, e.g., Sinopoli et al., 2004), the
IIKFM of Theorem 1 can be viewed as a Kalman
filter with intermittent observation based on data losses
reconstruction as explained in Fig. 2.

Compared with the Kalman filter with intermittent
observation (28a) and (28b) which needs time-varying
size matrices Cθ

k and V θ
k computed for the 2q binary

situation of θk with q = m, the IIKFM which is
computationally more efficient just updates its fixed
structure from the binary sequence θk.

4. Illustrative example

In this section we illustrate the feasibility and
effectiveness of our proposed Kalman filtering approach
for state prediction and data losses reconstruction via a
numerical example applied to the case of denial-of-service
attacks on measurements. We assume the following
matrix parameters for the linear stochastic discrete-time
system (1):

A =

⎡
⎢⎢⎣

0.4 1 0 0
0 0.3 1 0
0 0 1.3 0
0 0 0 0.8

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 1

⎤
⎥⎥⎦ ,

C =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 0 1

⎤
⎦ ,

W = 0.01

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

and J =
[
j1 j2 j3

]
, where

j1 =

⎡
⎣ 1

0
0

⎤
⎦

is the fault distribution vector of the intermittent unknown
input ρ1kd

1
k affecting the first measurement,

j2 =

⎡
⎣ 0

1
0

⎤
⎦

the fault distribution vector of the intermittent unknown
input ρ2kd

2
k affecting the second measurement, and

j3 =

⎡
⎣ 0

0
1

⎤
⎦

the fault distribution vector of the intermittent unknown
input ρ3kd

3
k affecting the third measurement.

The plant (A,C, J) with J = I and A unstable
cannot be strongly detectable, which means that any
unknown input observers or unknown input Kalman filters
designed under permanent unknown inputs will become
unstable. We use here the IIKFM of Theorem 1 as a
Kalman filter with intermittent observations, where the
first measurement y1k is lost on unreliable communication
channels with y1k = 0 when ρ1k = 1, where the second
measurement y2k is lost with y2k = 0 when ρ2k = 1 and
where the third measurement y3k is lost with y3k = 0 when
ρ3k = 1. The binary sequence θk = { ρ1k ρ2k ρ3k }
is known and assumed to follow independent random
Bernoulli processes with λ = Pr(ρ1k = 1) = Pr(ρ2k =
1) = Pr(ρ3k = 1).

The stabilizing controller is of the LQG type, where
the standard Kalman filter is replaced by the IIKFM of
Theorem 1. In order to use the IIKFM as a Kalman filter
with intermittent observations caused, e.g., by random
DoS attacks on measurements transmitted by the plant to
the controller, its design model is modified so that ρ1kd

1
k,

ρ2kd
2
k and ρ3kd

3
k with d1k = −y1k, d2k = −y2k and d3k = −y3k

represent intermittent measurement losses. The IIKFM
can then be viewed as a special structure of the Kalman
filter with intermittent observation allowing measurement
losses reconstruction.

Figures 3–14 illustrate the obtained results when the
rate λ = 0.5 of DoS attacks is less than the lower bound
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Fig. 3. Number s(k) = ρ1k+ρ2k+ρ3k of DoS attacks on received
measurements.
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Fig. 4. First information about measurement before transmis-
sion and after reception.

�

λc = 0, 66 of λc generated by the LMI of Theorem 2.
The random numbers of denial-of-service attacks are

plotted in Fig. 3.

The measurements transmitted from the plant to
the LQG controller via communication networks are
plotted in Figs. 4–6, respectively. Information about
measurements received by the LQG controller is also
plotted in the same figures. Figures 7–10 present
the state filtering results of the IIKFM. Figures 11–13
show the ability of the proposed filter to reconstruct the
measurement losses caused by DoS attacks. Figure 14
shows that the trace of the IIKFM’s state prediction
error covariance matrix coincides with those given by the
Kalman filter with intermittent observation.
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Fig. 5. Second information about measurement before transmis-
sion and after reception.
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Fig. 6. Third information about measurement before transmis-
sion and after reception.

5. Conclusion

This paper has presented a Kalman filter for joint
state prediction and unknown input estimation in linear
stochastic discrete-time stochastic systems subject to
intermittent unknown inputs to measurements. The
presented linear state filter works in closed loop with a
hybrid unknown input estimation and has the ability to
recover the standard Kalman filter when the unknown
inputs are zero. This fundamental structural property has
been exploited to derive a Kalman filter with intermittent
observations allowing intermittent reconstruction of
measurement losses. When the system is not strongly
detectable, we have established a necessary condition
under which the mathematical expectation of the random
state prediction errors covariance matrix is upper bounded
when the arrival binary sequences of unknown inputs
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Fig. 7. First state of the plant x1
k and its estimate x̂θ1

k/k generated
by the IIKFM.
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Fig. 8. Second state of the plant x2
k and its estimate x̂θ2

k/k gener-
ated by the IIKFM.

follow independent random Bernoulli processes.
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