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This paper presents a solution to the problem of effective control of a system that is affected by both sensor faults and
disturbances (and noises). It is assumed that the model of the system is given in the form of a fuzzy Takagi—Sugeno system.
The main goals of the designed control scheme are: achieving a prescribed reference signal at the output, minimizing the
impact of disturbances and the ability to respond to faults affecting the system sensor. To achieve the assumed control goals
an Iterative Learning Control (ILC) scheme combined with the Fault Tolerant Control (FTC) approach is implemented.
Such a combination allows detecting and using information of the faults affecting the system as soon as these are estimated.
That in turns speeds up ILC with driving the system to the prescribed reference. Additionally, to determine the estimate
of the fault signal and the faulty-free state vector, the observer providing these is designed and implemented. To minimize
the impact of disturbances on the estimator, the ., methodology is used. The determined estimate of the fault-free state
signal is then introduced into the ILC scheme in order to improve its operation in the presence of fault. To determine
gains in the feedback loop of the ILC scheme, it is formulated in the form of a Discrete Linear Repetitive Process (DLRP),
and then a methodology designed for that subclass of 2D systems is applied to ensure the so-called stability along the
trial (which simultaneously means that the underlying ILC scheme tracking error converges to zero and, consequently, the
system considered is driven to the requested reference signal). In order to minimize the impact of disturbances and noises
on the designed ILC scheme, the H . methodology is used again. The obtained results are verified practically in the control

process of the two-tank system with the assumed scenarios of emerging faults.
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1. Introduction

Over the years Iterative Learning Control (ILC) became
one of the alternatives to the classical control schemes. It
is applied for plants where the control task is executed in
finite time horizon trials (or iterations). ILC assumes that
in order to improve the control performance and/or quality
in the current trial the information gathered from the past
is used (Bristow et al., 2006; Rogers et al., 2023; Dong,
2023; Liu et al., 2022). Hence the main idea here is the
sequential improvement of the control input defined as the
signal applied in the previous trial and the correction term
generated basing on the difference between the current
plant output and the required reference (so-called the
tracking error). The first application of ILC is commonly
credited to robotics area where it allowed to improve

*Corresponding author

the robot operation in consecutive executions (Arimoto
etal., 1984). Such a responsive control strategy was called
a robot learning and hence ILC fits into a wide range of
techniques generally called a machine learning (Pan and
Yang, 2010). Then, due to its potential ILC was used in
numerous applications. Among many, control schemes
for: robots performing the pick and place tasks (Paszke
et al., 2013), marine vibrators (Sornmo et al., 2016),
spatially interconnected systems (Sulikowski et al., 2020)
or batch processes (Tao et al., 2023), ILC proved its
applicability and high quality in various cases. Also, some
extensions to the basic ILC were proposed regarding, for
instance, the application for systems with varying trial
lengths (Li et al., 2014; Liu and Hou, 2024), control tasks
for systems with incomplete information (Shen, 2018)
or data-driven only approach (Janssens et al., 2013; Yu
et al.,2021; Dong, 2023).
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The main idea of ILC is to improve the control signal
across trials. The design process involves selecting past
information to generate correction terms and providing
appropriate gains to ensure ILC behaves as intended.
There are two approaches to determining the correct
gains. The first, based on designing L— and Q— filters
independently, simplifies the task by allowing separate
design procedures (Bristow et al., 2006; Bolder et al.,
2018). The second, the one-stage design, treats the
ILC as a subclass of 2D systems, specifically Discrete
Linear Repetitive Process (DLRP) (Rogers et al., 2007),
where the so called stability along the trial ensures the
convergence of tracking error to zero, driving the system
output to the reference signal. Feedback control gains
stabilizing the DLRP are then used to design the ILC
correction terms.

On the other hand, Fault Tolerant Control (FTC)
is a technique for dealing with faults in a system by
detecting, isolating, and identifying faults, and using
this information to mitigate their negative impact on
performance (Saif and Guan, 1993). There are two
main FTC approaches (Gao et al., 2015). The first
is model-based, where system outputs or states are
compared with model predictions to detect faults if
the residuum is significant. This signal is then used
in the feedback control (Witczak, 2007). The second
is model-free (data-based), where faults are detected
based on prior knowledge and system behavior without
a model (Wang and Yang, 2016;2022). Both approaches
have their pros and cons.

Additionally,  Leal-Leal and  Alcorta-Garcia
(2023) propose a fault-tolerant controller for nonlinear
Euler-Lagrange systems, while Witczak et al. (2024)
develop a sensor fault diagnosis scheme, and Kukurowski
et al. (2022) introduce FTC under ellipsoidal bounding.
Faults can affect actuators, processes, oOr sensors,
and different approaches are needed for each type.
Disturbances and noise, which can cause false alarms,
must also be addressed, often using H., methodology
to minimize their influence on the system (Doyle
etal., 1989).

One notable advantage of ILC is its ability to ensure
zero steady-state error. As a result, it can generally
be considered a fault-tolerant control scheme. This is
because a fault will cause an output deviation, and in
subsequent iterations, the control correction will drive
this deviation to zero (Rogers et al., 2023). However,
it is important to note that this property eliminates the
fault’s influence in future trials, not during the current one.
Additionally, while ILC is effective for abrupt faults, it is
less efficient for incipient faults. Incipient faults evolve
over time, and since ILC requires some trials to adapt
the control signal, it may not fully compensate for them.
This motivates the integration of ILC with FTC into a
single control scheme. The main control objectives are

to drive the system to the prescribed reference, minimize
or eliminate the effects of disturbances and noise, and
compensate for the influence of both abrupt and incipient
faults as quickly as possible.

As for the FTC, based on system input and output
information, a state and fault observer is implemented and
integrated with ILC defined in terms of DLRP. To mitigate
the influence of disturbances and noise on the designed
scheme, both the fault estimator and the resulting Fault
Tolerant Iterative Learning Control (FTILC) scheme
utilize the H, approach. Similar concepts can be found
in recent literature (see, e.g., Wang et al., 2018; Pazera
et al., 2021), where actuator faults are considered. In
contrast, this paper focuses on possible sensor faults
affecting the system.

In this paper, ILC combined with FTC design for
the vertical two tank system is developed. In the
literature one can find several references devoted to
solving problems of that specific class of dynamical
systems (Xu et al., 2020; Hedrea et al., 2019) or systems
somehow similar (Zhang et al., 2025). Here, in order to
model the dynamics, due to the non-linear characteristics
of two-tank system considered the Takagi—Sugeno (T-S)
system is applied (Takagi and Sugeno, 1985) .

Throughout this paper, M > 0 (M =< 0) denotes
a real symmetric positive (negative) definite matrix, I
and O denote, respectively, the identity and zero block
matrices of compatible dimensions and (%) denotes
symmetric block entries in symmetric matrices.

This paper is organized as follows. SectionPlpresents
preliminaries and defines the problem of an sensor fault
estimation and compensation for Takagi—Sugeno based
repetitive systems, Section [3] concerns a proposition for
detection and isolation of the sensor fault, while Section[d]
is focused on combining FTC and ILC in order to
deal with the faults that might appear in some iteration.
Section[3l provides the case study with the implementation
of the designed FTILC scheme to the two-tank system.
Finally, Section [6] provides the results discussion and
conclusions.

2. Preliminaries

Let us consider the following nonlinear discrete-time
system

Tik+1 = f (mi,k,ui,k), (D

where 7 stands for the trial (iteration) while k& denotes the
discrete-time of the i-th iteration. Moreover, f (-) stands
for an unknown nonlinear function which describes the
system with respect to the state and input.

Numerous publications (Abonyi and Babuska, 2000;
Alexiev and Georgieva, 2004; Deng and Yang, 2016; Li
and Fu, 1997) have demonstrated that Takagi—Sugeno
models may effectively simulate the aforementioned
nonlinear system. The Takagi—Sugeno model can be
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reformulated as follows by adding potential sensor fault,
external exogenous disturbances, and an output equation:

Tigp+1 = A(vg) Xk + B(vp) ui g + Wiwy i,

M
= Z hj (’Uk) [Ajmi,k + Bjui,k] + Wlwl,k,
Jj=1
(2)
Yir =Cxip + Crfi )+ Wowap, 3)

with

M
hi(og) >0, Vji=1,...,M, > hj(vp)=1. (4

j=1

Moreover, u; . € R", y,, € R™, &), € X C
R™ signify input, output and state vectors, respectively.
Subsequently, the system matrices are known and given
with A, B and C, where the total amount of subsystems
is defined by M. Furthermore, a sensor fault vector is
defined as f,, € Fy, C R":. Additionally, W and
W 4 stand for the ellipsoidal bounded exogenous external
disturbances, which can model several uncertainties, e.g.
unmodeled system dynamics, whilst vectors of those
uncertainties are given with w1 j and wo j, respectively.
Furthermore, v, = [v}, v, ..., vg]T indicates a
vector, which contains premise variables as well as
depends on measurable variables (Takagi and Sugeno,
1985). Finally, hj() signifies the activation function,
which is depending on vy. The last fact implies that it
is impossible to estimate more faults than the measured
outputs.

Consequently, let us define the following notation
A (vg) = Zj\il hj (vi) A’ where h; (v),) A7 satisfy (@)
and describe an equivalent form of the system state
equation 2):

M
Ti 1 = Z hj (vg) [Ajiﬂi,k + Bjui,k] +Wiwy i,
j=1
(5)
Yik = Czx; i + Cffi)k + Wows k. (6)

For further derivations, let us recall the following
lemma (de Oliveira et al., 1999):

Lemma 1. For the matrices V; and U of appropriate
dimensions, the following statements are equivalent:

1. There exist X = 0 and W = 0 such that

VIXV,-W <o0. (7

2. There exist X = 0, W = 0 and U such that

-W viu”

vv, x-v-ur| *% ®)

3. Sensor fault estimation algorithm of
a local system

In order to estimate the state and possible sensor faults,
the following estimator is applied
Zig+1 = A(vk) &k + Bvg)ui
+ K, (yiJg - ngi,k - Cffz,k) )

firt1=Fir+Ks (yi,k —Cz; ) — Cffi,k) , (10)

9)

where &; and fi,k are state and fault estimates,
respectively.

The problem is to determine the gain matrices for the
state and fault estimates K, and K . To address this
problem note that using (2) and @) the state estimation
error can be defined as

€ikt1 = Tikt1 — Lipt1 = A(vk)Tik
+ B(vg)uik + Wiws g, — A(vg) & &
— B(vp)wir — Koy, + K. C2i
+ KICffi,k = [A(vx) — K, C] &1
- K,Cres i+ Wiwiy
- KxWQwQ,k7

(11)

~

where es ;. = f; . — f; is the fault estimation error.
Subsequently, using (@) and (I0), the fault estimation error
can be rewritten as follows

~

€siht1 = Fipr1 — Fippr = Finn  Fik
—fir— fi,k - Ky, + K;CZi g
+K.Cifi=en+ 1 - K.Cylesiq2)
- K,Cé; — K;Wawsy,

with € = f; 11 — fi» denoting the fault increment
over the following time steps. For the purpose of further
analysis it is assumed that €, € l5. Note that such an
assumption is a straightforward consequence of the fact
that f; ;1 €laand f; 1 € la.

Introduce now the following signals:

& rit W1,k
_ ik+ _
€ kt1 = wy = |w2r|. (13)
€s.i,k+1
3, e

Now, it is clear that both the state and fault estimation
errors can be presented in a compact form:

€iit1 = X (Vk)€i i + ZWy
= (A(Uk) — I_(C_’)éi,k + (V_V — I_(‘_/)’lf}k,

@amcs
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where
Av) = Ai;’“ 2] , C=[C 1],
V=W, 0 0], K*_[?”} (15)
)
Remark 1. Note that (I4)-({13) can be treated as

a discrete system state space model with X (vy), Z
as the closed loop system and external input matrices,
respectively. Ensuring stability of that model is equivalent
to the convergence to zero (which in fact would denote
the correct fault estimation in disturbances present
environment) of the proposed scheme (I4). Hence the
basic idea here is to apply the control design strategy in
order to determine gain matrices K ,, K. Note also that
the “input” part in (I4) is fed by the disturbance / noise
signals and it is purposeful to apply the control scheme
allowing to mitigate the influence of that part onto the
model considered. Hence the ., technique is proposed
to be used in this case. Also, it is to underline that it
depends on the observability of @)—(). It is important to
notice that the possible appearance of sensors faults can
negatively influence this feature. What is more, the total
failure of ith sensor means that f, , = —y, ;. Insuch a
case the observation matrix C' has zero entries in ith row
and that in turns devastates the observability of the system.
Thus, the performance of the proposed scheme depends
on the fact if the system under consideration (2)—Q) is
observable even for the fault impaired observation matrix
C.

Taking into account the estimation error for both state
and fault, the following Theorem is proposed:

Theorem 1. Assume that the faulted system @)—@3) con-
sidered is observable. Hence, for a prescribed attenuation
level s of v, the Hoo estimator design problem for that
system is solvable if there exist matrices N, U and P > 0
of an appropriate dimensions such that the following LMI
is feasible:

I-P 0 P (vg)”
0  —2I  Pyw)” | <0, (16
Pi(v;) Py(vy) P-U-U"
where P (vy,) = UA(v,) — NC and Py(v,) = UW —

NV . If the LMI of (1) is feasible, the gain matrices can

be computed as

K = K.
Proof. The problem of designing the H., observer (Li
and Fu, 1997; Zemouche et al., 2008) is to obtain matrices

K [K$] U 'N. (17)

NN, U and P such that

lim €;, =0 for
k— o0

1€ klly, < psl@rll,, for @y #0,80=0. (19)

wy =0, (18)

In order to address this issue, it is required to define a
Lyapunov function V; j, such that

AV, + &€k — p2w} i < 0, (20)

where AV;,;C =Vikt1 —Vig, Vig = éz:kpéi,k and P >
0. If wy = 0, then the Lyapunov function (20) takes the
following simplified form

AV + €] 18, <0 (21)

and hence AV ;, < 0, which leads to (I8). If @) # 0 and
taking into account the fact that

o0

D (AVik) =Vieo = Vio, Vieo =Vig =0,
k=0

then 20) yields:

Z (AVig) + Z (&) r&ix) — 12 Z (wiwy) < 0=

k=0 k=0 k=0

— Vo + Z ;‘erz k z (’lf}f’lf}k) <0=

k=0

> o (ehein) — p > (wiw,) < 0=

k=0 k=0

Y (Elhein) <ud) (wfw) =

k=0 k=0

€kl < psllo i,

which leads to (I9). In what follows, by using (14} it is
straightforward to notice that

AV + ég:kéi,k — 2, Wy,
=é/, (X(vk)TPX(vk) +I—-P)é
+ &/} (X (vx)"PZ) wy

(22)
o7 (ZTPX " ) &k
(ZTPZ ;LQI) Wy < 0.
Now introduce B
Vi = [‘;:] : (23)

and it leads to the fact that (22)) can be rewritten as
oo [X(@)"PX(w)+1 - PX (1) PZ
bk ZTPX(v)ZTPZ — )21
X 05 <0, (24)
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which is equivalent to

[X(Z%)T] P[X(v) Z]
+ {IOP _331] <0. >

Applying Lemmal[Ilto (23)) provides

I-P 0 X (vp)TUT
0 — 12T z'u* <0  (26)
UX(v,) Uz P-U-UT

and then after applying the following

UX(Uk) = UA(Uk) — UI_(C_’
_ _ (27)
= UA(Uk) — NC,

UZ=UW —-UKV =UW - NV  (28)

leads to (I6), which completes the proof. [ |

4. Integrated fault-tolerant iterative
learning control design

The objective of this section is to utilize FTC and integrate
it with ILC. Therefore, let us define a fault-tolerant ILC
input as

Uil = Uik + AUiL1 g, (29)

where Awu,, 1 represents a correction term. It is clear
now that the control signal in the following trial is defined
as a control input from the current trial improved by a part
that is related to the current trial difference between the
output and the prescribed reference. Since the application
of ILC provides the ability to get rid of the steady state
error in general, it might be treated as a fault tolerant
control scheme. However, it needs to be underlined that
this property will allow to eliminate the influence of the
fault in following trials. Also, it will work efficiently
for the abrupt faults, however not so successfully for
the incipient ones. Nevertheless, ILC does not ensure
compensation for the sensor fault in the ith iteration.
Furthermore, if the sensor fault remains uncompensated
in the current iteration, the deviation between the current
and expected signals will be utilized to calculate control
for future trials. To prevent this scenario, the FTC scheme
is merged with ILC. The goal is to minimize the tracking
error over the trials

€itlhk = Yrk — Yit1,h (30)

where y,. ;. stands for a reference signal. The tracking
error can also be perceived as

€it1k =Y~ Cxit1 5 —Crfip1,—Woway. (31)

We shall introduce

Nit1,k = Litl,k—1 — LTik—1, (32)

standing for an error of the consecutive iterations. Next,

by substituting @)-@) and @29) into @0, we can
demonstrate that

eivik — €k =—Cxit1p—Crfii1y
—Wows +Cxip +Cyrf, ) (33)
+ Wows i

Assuming that the measurement uncertainty vector ws
is constant at ¢, then (33)) reduces to

eitih — €k = —CTiy1x —Crf, 1)+ Cxig (34)
+Crfik
Thus,
i1k =€ —Cxip1p—Csfir1+Cxig
+Csfir=eir—CA(vp)Tit1 k1
— CB (v) Wit1,k—1 — Cffi+1,k (35)
+ CA (vi) xik—1 + CB (vg) U -1
+ Cffi,k'
From (29) it is evident that
AUip1 ks = Uit1 kb — Ui k- (36)
Similarly, we propose
Afiviwg=Fiv1i6— Fig (37)
Applying @9) and (32) as well as (36)-(37) yields

eir1k =¢€ir— CA(vg) g1,k
— CB (vg) Uit1,6-1 + CB (v) Wi -1
—Cifinp+Csfir=¢eik
— CA (Vi) niv1k — CrAFfi1 (38)
— CB (vg) Auiyq j—1-
Let us establish
Awip1 = Kinig1 k41 + Koeg gy (39)

In addition, the subsequent dynamics can be formulated
as

Nit1 k1l = Tit1h — Tik = A (VE) Dit1k
+ B (vi) At = H(vg)nig1,e  (40)
+ B (v;) K€ i,

where H (vy,) = (A (vg) + B (vi) K1).
We introduce

Cit1,k+1 = Tix1,k — Ti k- (41)

aamcs
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Remark 2. Please note that this is the climax of
the paper, namely the combination of the ILC and FTC
strategies. This is accomplished in such a way that the
control is based on the state estimate, which is fault-free
(due to the specific structure of the estimator), rather than
the actual state, or more specifically, the output signal
containing the sensor faults.

Taking into account that &; ;, = ;1 — €;} hence,
T = &4k + €, it can be shown that

Cit1,k+1 = Tix1k T €it1,6 — Tik — €ik
= A (vg) &Bit1,k—1 + B (Vk) Wit1 k-1
+ K, (yi+17k_1 - C-'%ijtl,kfl
_Cffi—i-l,k—l) + €11,k

- K, (yi,kfl —CZj -1 — Cffi,kfl)

— A (vi)&ijg—1 — B (vg) k-1 + €
= A (vg) Gk + B (vr) Atiy1 k-1

+ K,Cé€i11 -1 — K;CE&; 1

+ K. Cresit10-1 — K. Creg;p,

(42)
which brings
Citthor1 = A (V) Gk + B (v) K1Cigk
+ B ('Uk) K26i)k + KzCéile)k,l (43)
-K.,Cé; 1+ K, Cresit1r-1
- chfes,i,k—l-
Hence,
eir1.k = €k — G (Vi) Gy — G (Vk) €y k1
— M (vi) Awit1 -1+ G (vg) € p1
—CyAf, =e;ir— G (Vi) Cit1k
f +1,k ( ) +1 (44)

— G (vg) €t k-1 — CfAfi+1,k
— M (vy) K1Gip1,0 — M (v) Koe g
+ G (vk) € k1,

where G (vi,) = CA (vy) and M (vy,) = CB (vy,).
Thus, the controlled sensor FTILC dynamics can be

written as
{Ci-i—l,k-‘rl} Al (vk) : A2 (vk)
I C5 = L0 I I R — e —
€11k T I ox
Ein As (vr) | Ay (vr)
[ C1+1,k 0 0
) e . 0 o (45)
€i11,k-1 Z 0
€ k-1 0 Z

where
A (vp) = :i; iy EZZ%] ’
A (vy,) = ﬁEZ,’jﬁ 555’;3}
Awo=o o
Ay (vg) = :X E,vk) X?vk)}’

In this instance, Eqn. (#3) can be thought of as an
upper block triangular matrix, in which the blocks on
the diagonal alone define the eigenvalues of the extended
system. It follows that separate design of the fault
estimator and ILC controller is possible. In light of this,
the ILC dynamics can be recast as the subsequent iterative
process:

|:Ci+1,k+1:| _ [Al (vk)

€tk As(vg) As(ve)| | €k

A, <vk>] [Cm»k] . @6

Consequently, it was shown that the discrete linear
repetitive process can be used to characterize the FTILC
scheme (see the work of Rogers er al. (2007) and the
references therein). Furthermore, for such a system,
proving stability along the trial also demonstrates that the
underlying ILC converges to zero and that the intended
reference is reached.

Theorem 2. (Rogers et al., 2007) The sensor FTILC
scheme defined in terms of the discrete linear repeti-
tive process (@0, is stable along the trial if there exist
dimension-compatible matrices P = diag(P1, P3) > 0
and N1, Ny such that the following LMI is feasible

_p Pr (v,)" + NTQ (vk)T} ~0
PT (vk) +Q (’Uk)N —-P ’
(47)
where
[ A(vi) O
F('Uk) = _7CA (k,vk) I] )
[N; N
N= v Nj’
_ [B(vy) 0
Q(vg) = o g _CB (vk)} .

If the LMI {7) is feasible, the gain matrices for the
FTILC controller are given by

K, =N,P;',

(48)
Ky, = N,P;".
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Y

System Yi

Fault and state
estimator

I

Fig. 1. Block diagram of the proposed sensor fault-tolerant iter-
ative learning control.

Remark 3. Please take note that the controller design
procedure (@7) and the estimation design procedure (I6)
can be expressed simply as suitable sets of M LMIs
corresponding to all vertices shaping (&). Therefore, the
problem reduces to solving the set of LMIs (@7) and (16)
for the controller and estimator, respectively, and then
utilizing (I7) and @8) to determine the appropriate gain
matrices.

It is worth to highlighting that, in the case of a DLRP,
when the required property is guaranteed by appropriate
feedback-based control, an examination of @6) would
lead to an approaching zero tracking output error e; j
in terms of ILC. As a result, this would suggest that the
reference signal y,. . is reached by the system output, @.

The proposed FTILC approach capable of
compensating sensor faults can be summarized using
the block diagram presented in Fig. [l It should be
pointed out that in this scheme the sensor fault estimate
is included in the state estimate, which results with the
state estimate free from sensor faults. That scheme
clearly illustrates the flow of the signals in the proposed
approach.

5. Case study

Examining a two-tank system (shown in Fig. 2) can help
to demonstrate how successful the designed methodology
is. The two separate tanks that make up this system are
stacked vertically, one on the top of the other. It also has
two pumps; the upper pump fills the upper tank and the
lower pump fills the lower tank with water. Gravity pulls
the water out of these tanks and the fluid pulled out from
the higher tank supplies the lower one simultaneously
with the pump. In the state-space representation, the
mathematical model of the system takes the specific form

Fig. 2. Two-tank system.

of (I) and is given as

Tipr1 = Acif + Bt + Wiw g, (49)
Yir = Cxi + Crf, ) + Waway, (50)
where
K
3 /hr 0 7 0
A= , Be= , (51
K —K 0 1
2Fmvh1  2FnVha F

and z = [hq, ho]” stands for the state composing of the
liquid levels in the respective tanks. Since both states are
measured, C' is an identity matrix. The rest of matrices
and signals have the meaning defined for (3)—(@). The
flow constantis K = 0.85 [v/m?/s] and the cross-section
area is F,,, = 3.6 [m?]. It is to be noted that due to the
structure of A, @93)—(G0) is nonlinear.

In what follows (@9)—(30) has been modeled in the
form of a T-S system given by (3)—(8), with the following
matrices (provided upon considered system’s rank and its
nonlinear behavior)

A17_0.8397 0.0000] A27_0.8397 0.0000]
~|-0.0318 0.8397|" ~|-0.0318 1.0264]
A3:'0.8397 0.0000 A4:'0.8397 0.0000
0.1549  0.8397|” 10.1549  1.0264°
A5:'1.0264 0.0000] AG:'1.0264 0.0000]
|—0.0318 0.8397] |—0.0318  1.0264]
A7:'1.0264 0.0000 AS:'1.0264 0.0000
0.1549  0.8397)" 10.1549  1.0264"
- [0.2534 0.0000 .
J — _
B"=10.0220 0.2534]’ j=1...8
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Table 1. Fault scenario F-Sc-1 performed during the experi-

ment.
Fault | Magnitude Time of fault occurrence
Fiik -0.15 k > 40
foik -0.25 60 > k > 80

fori = 12.

Table 2. Fault scenario F-Sc-2 performed during the experi-

ment.

Fault | Magnitude Time of fault occurrence
Fiik -0.14 40 > k > 60
Fiik -0.12 61 >k >80
Fiik -0.1 81>k > 100

Lik -0.08 101 > k£ > 120
Fiik -0.06 121 > k > 140
Fiik -0.04 141 > k£ > 160
Fiik -0.02 161 > k£ > 180
Fiik 0 otherwise
Foink 0

for: = 12.

It’s also critical to remember that during the experiments,
all outputs were measured, yielding the finding C =
Ixm, m=2.

Disturbance and noise distribution matrices have
been assumed as W; = diag(0.1,0.1), Wy =
diag(0.01,0.01), and finally, the fault influence matrix
C; = C. The vectors wy and wy ) are generated
according to the truncated normal distribution with the
expected value equal to O, standard deviation o,, =
0.0577 and o, = 0.1030 and the truncation level equal
to4-10*and 2 - 10~%, respectively.

A fault scenario was studied in order to assess the
efficacy of the suggested approach with regard to fault
estimation and fault-tolerant control. Table [2] contains the
details of that fault scenario.

It is evident from the table that faults of different
sizes were taken into account. A sensor malfunction of
0 denotes a situation in which there are no defects. Any
other value indicates the opposite. These numbers, which
are given in [m], represent the offset of the liquid level
in the tanks from their actual value. Measured from the
beginning of the experiment, the faults were introduced at
a predetermined time of 40[s] for the first sensor and 60[s]
for the second. It can also be noticed that the fault of the
first sensor has a constant nature, which means that once it
occurs, it remains until the end of the repetition. However,
the fault of the second sensor is temporary and lasts only
for 20 seconds. Reaching and maintaining predetermined
water levels in each tank was the control’s goal during
these testing; the target levels were established as the
control aim, which can be observed in Fig. 3] for the top
tank and the lower tank, respectively.

0.2r 1
301 / \
0 ‘ . ‘
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Discrete time
0.3
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Fig. 3. References for each tank.
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Fig. 4. State evolution over the trials.

After solving the set of LMIs responsible for
designing the state and fault estimator (I6) as well as
the controller (@7), the following gain matrices have been
obtained:

K. — | 00385 —0.0028]

* = |-0.0605 0.0047 |’
K. — [0:9356 0.0010

°~ 0.0753 0.9779]

- ; (52)

K. — [73:059 02171

' [-0.0952  —3.0523]°
K, — | 20763 0.0247

>~ |-0.1554 2.0820] -

Figure [ presents the state evolution over the
repetitions for both the upper and lower tanks. It can
be easily seen that the states tend to the references,
reducing the error with each repetition. The tracking error
converges to the reference within 5 and 4 repetitions for
the upper and lower tanks, respectively, with the error
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Fig. 6. Results for 7 = 11.

being less than 3%. The root mean square error for each
repetition is portrayed in Fig.[3l It clearly shows that the
outputis getting closer to the reference with each iteration.

During the experiments, it was assumed that the
sensor faults in the upper and lower tanks occur in
the repetition ¢+ = 12. For clarity of presentation
and to demonstrate that the proposed FTILC strategy
compensates for the occurring sensor faults in the current
iteration, furthermore, the impact of the faults is not
considered when calculating control for subsequent trials.
Taking this into account, Figs. [(H8] show the system’s
responses for three consecutive repetitions, starting from
i = 11 and continuing through ¢ = 13.  From these
figures, it is evident that the proposed strategy meets
the aforementioned assumptions. The state has been
following the reference despite the sensor faults. This
situation arises because the state estimates follow the
actual states, regardless of faulty output.

The quality of the sensor FTILC control is strongly
associated with the quality of the sensor fault estimate.
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Fig. 8. Results for ; = 13.

Figures[OHI0l present the sensor fault estimate for both the
upper and lower tank in the faulty repetition as well as in
the one fault-free arbitrarily selected iteration.

From these figures it can be noticed that the sensor
faults were reconstructed with a very good precision.

The last but not least it is worth to mention of the
control inputs calculated within the proposed approach.
The evolution of the control for both pumps along all the
trials is presented in Fig. [Tl It can be easily noticed that
in each trial the control has been adapted to the initial
conditions being the control from previous trial which
results with increasing the quality of control over the
trials.

To verify to which fault magnitude the proposed
algorithm is able to isolate the sensor fault properly, the
fault scenario F-Sc-2 (see Table 2) has been provided.

In this scenario, the fault appears in time instance
k = 20 with magnitude —0.14, which means that the
sensor measures the water level 14 [cm] less then it
actually is. Then the sensor fault increases every 20
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Fig. 9. Sensor faults and their estimates in a faulty trial, ¢ = 12
for the fault scenario F-Sc-1.
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Fig. 10. Sensor faults and their estimates in a fault-free trial,
1= 13.

discrete-time steps with magnitude 0.02 and stops with
value 0 at & = 180. The results obtained with this scenario
are presented in Fig. In such a case, the fault estimate
identify the real fault with a quite well accuracy which
confirm the efficiency of the proposed approach.

6. Concluding remarks

This paper presents a solution to the problem of control
design for a system modeled using a fuzzy Takagi—Sugeno
framework. The main issue addressed was the impact of
potential sensor faults on the designed control scheme.
Additionally, it was assumed that the considered system
is influenced by disturbances and noises. Several goals
were set when designing the control scheme. The first
goal was to achieve a prescribed reference signal at the
system output, which was accomplished by implementing
Iterative Learning Control. This was achieved by defining
an additional signal, the so-called tracking error, i.e., the
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Fig. 11. Control inputs for both pumps along all the trails.
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Fig. 12. Real sensor faults with their estimates provided with
the fault scenario F-Sc-2.

difference between the reference and the current system
output. In the next step, the ILC scheme was introduced in
the form of a Discrete Linear Repeatable Process, where
the output of this model was the tracking error. For
the obtained DLRP, the research results related to the
so-called stability along the trial in a closed feedback loop
were applied. Importantly, stability along the trial ensures
the convergence of the tracking error to zero (therefore,
the output of the original considered system aligns with
a predefined reference signal). The second objective of
the designed control scheme was the ability to respond to
potential sensors faults. Due to the fact that the actual
faults signals are not available to be measured, the fault
estimator was designed and implemented. Additionally, it
was assumed that the operating system may be disturbed
and noised. In order to minimize this influence on
both the estimator and the resulting ILC control scheme,
the H., methodology was used. The effectiveness of
the obtained results was tested and verified in practice
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during the process of controlling a two-tank system with
predefined fault scenarios. As a future work, the problem
of simultaneous actuator/process and sensor faults acting
on the considered system can be pointed out.
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