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TIME-OPTIMAL TRAJECTORY
PLANNING IN DYNAMIC ENVIRONMENTS

Paoro FIORINI*, Zvi SHILLER**

This paper presents a direct method for computing the time-optimal trajecto-
ry for a robot among stationary and moving obstacles, subject to the robot’s
dynamics and actuator constraints. The motion planning problem is first formu-
lated as an optimization problem, and then solved numerically using a gradient
descent. The initial guess for the optimization is generated using a method
based on the concept of Velocity Obstacles. The method is demonstrated for a
2-DOF planar manipulator moving in static and dynamic environments.

1. Introduction

Motion planning is central to the operation of autonomous robots. It concerns the
generation of a trajectory from start to goal that satisfies objectives, such as minimiz-
ing path distance or motion time, while avoiding obstacles in the environment and
satisfying the robot mechanics (kinematics and dynamics). We distinguish between
planning and control in that the former generates a nominal trajectory, whereas the
latter tracks that trajectory. Robot motion planning is generally too complex to
be handled by on-line feedback controllers due to the nonlinear state constrains in-
troduced by the obstacles, and the highly nonlinear and coupled nature of robot
mechanics.

Traditionally, motion planning has been treated as a kinematic problem, i.e.
determining the path that avoids obstacles without concern to robot speeds. This was
first extensively addressed for articulated robots by transforming the problem into the
configuration space, in which the robot reduces to a point and the obstacles map into
C-space obstacles (Latombe, 1991; Lozano-Pérez and Wesley, 1979). The focus in this
body of work has centered on computational complexity and completeness (the ability
of the algorithm to find a path if one exists). More recently the kinematic problem was
extended to car-like robots, which are subject to non-holonomic kinematic constraints
due to the assumption of no slip between the wheels and ground. Here the focus
has centered on obstacle avoidance (Laumond et al., 1994) and on minimizing path
distance (Laumond, 1987).

While solving a problem fundamental to robotics, kinematic motion planning
ignores the important effects of robot dynamics which become significant at all but
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the lowest speeds. For example, non-holonomic motion planning of a car is useful
for parking (Murray and Sastry, 1993), which is usually done at very low speeds,
but is all but meaningless for high speed emergency maneuvers (Shiller and Sundar,
1996). Similarly, obstacle-free paths, computed using robot kinematics only may be
dynamically infeasible at even moderate speeds, causing the robot to deviate from
the kinematic path due to its dynamics and limited actuator efforts. This gave rise to
dynamic motion planning,! which produces a trajectory in the state space rather than
just a path in the configuration space. Planning in the state space, while computa-
tionally more extensive, allows one to minimize dynamic cost functions, such as time
or energy. These problems have been treated previously for both articulated (Shiller,
1996; Shiller and Dubowsky, 1989) and mobile robots (Shiller and Gwo, 1991).

We distinguish between motion planning in static and in dynemic environments.
In static environments, the obstacles are static, and the robot is the only one that
moves, whereas in dynamic environments, both the robot and obstacles move. Typ-
ical examples of dynamic environments include manufacturing tasks in which robot
manipulators track and retrieve parts from moving conveyers, and intelligent vehicles
negotiating freeway traffic.

Motion planning in dynamic environments was originally addressed by adding
the time dimension to the robot’s configuration space, assuming bounded velocity
and known trajectories of the obstacles. Reif and Sharir (1985) solved the planar
problem for a polygonal robot among many moving polygonal obstacles by searching
a visibility graph in the configuration-time space. Erdmann and Lozano-Pérez (1987)
discretized the configuration-time space to result in a sequence of configuration space
slices at successive time intervals. This method essentially solves the static planning
problem at every slice and joins adjacent solutions. Fujimura and Samet (1989a) used
cell decomposition to represent the configuration-time space, and joined empty cells
to connect start to goal.

Another approach to dynamic motion planning is to decompose the problem into
smaller problems: path planning and velocity planning. This method first computes
a feasible path among the static obstacles, and represents it as a parametric curve
in the arc length. Then, the intersections of the moving obstacles with the path are
represented as forbidden regions in an arc length-time plane. The velocity along the
path is chosen to avoid the forbidden regions. Kant and Zucker (1986) selected both
the path and velocity profile using a visibility graph approach. Lee and Lee (1987)
developed independently a similar approach for two cooperating robots, and compared
the effects of delay and velocity reduction on motion time. Fraichard (1993) considered
acceleration bounds, and used a search in a state-time space (s,4,t) to compute the
velocity profile yielding a minimum-time trajectory. Fraichard and Laugier (1993)
considered adjacent paths that could be reached from the nominal path when the
nominal path becomes blocked by a moving obstacle. Fujimura (1995) considered the
case of a robot moving on a fixed time-dependent network, whose nodes could be
temporarily occluded by moving obstacles.

! Others use dynamic motion planning to denote motion planning in dynamic environments
(Latombe, 1991), which is a subset of our definition.
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A different approach consists in generating the accessibility graph of the envi-
ronment, which is an extension of the visibility graph (Fujimura and Samet, 1989b;
1990). Fujimura and Samet (1989b) defined it as the locus of points on the obstacles
which are reachable by the robot moving at maximum speed. These points form the
collision front, and can be linked together to construct a path from start to goal. The
accessibility graph has the property that, if the robot moves faster than the obstacles,
the path computed by searching the graph is time-minimal. This concept was extend-
ed in (Fujimura, 1994) to the case of slowly moving robots and transient obstacles,
i.e. obstacles that could appear and disappear in the environment.

None of the previous methods considered the non-linear robot dynamics, and
none produced time optimal motions. Time-optimal motions have obvious benefits in
industrial applications by reducing cycle times and thus increasing the productivity
of automated manufacturing systems. Other application domains, such as intelligent
vehicles and air traffic control, may benefit from time-optimal motions by minimizing
the recovery time from emergency situations.

The time-optimal motion planning problem in static environments has been treat-
ed previously, beginning with the work by Kahn and Roth (1971) who solved the prob-
lem for a linearized robot model, using the Pontryagin Minimum Principle (PMP).
The full robot model was used in (Meier, 1987), assuming bang-bang control and using
a steepest descent over the switching times. However, the most efficient methods to
date seem to consist of parameter optimizations over the trajectory (Bobrow, 1988;
Johnson and Gilbert, 1985; Shiller and Dubowsky, 1989), which are similar to the
Differential Inclusions introduced in (Seywald, 1994), and the Inverse Dynamic Opti-
mization introduced by Bryson (1995).

In this paper, we present a method for computing the time-optimal trajectories
of a robot moving in a dynamic environment. To make the problem computationally
tractable, we restrict the treatment to the plane and assume a point robot and circular
obstacles. We also assume full knowledge of the environment.

Central to this approach is the computation of the initial guess for the optimiza-
tion. This is done by utilizing the concept of Velocity Obstacle (Fiorini, 1995), which
maps the dynamic environment into the robot velocity space. The velocity obstacle
is the first-order approximation of the robot’s velocities that would cause a collision
with an obstacle at some future time, within a given time horizon. Feasible avoidance
maneuvers are computed simply by selecting velocities outside the velocity obstacle,
and satisfying additional velocity constraints computed from robot dynamics and ac-
tuator constraints. The initial guess of the optimal trajectory is computed by a global
search over a tree of feasible avoidance maneuvers, generated at discrete time intervals
so as to minimize time to the goal.

The optimal trajectory is computed using a steepest descent algorithm over the
admissible controls (Bryson and Denham, 1962; Bryson and Ho, 1975; Denham and
Bryson, 1964), modified to consider time varying state inequality constraints. The
state inequality constraints due to the moving obstacles are considered by transform-
ing them into state-dependent control constraints. The method was implemented for
intelligent vehicles negotiating freeway traffic (Shiller and Fiorini, 1995), and for a
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planar SCARA robot, considering its full nonlinear dynamics and moving circular
obstacles (Fiorini, 1995). Examples of the latter are presented in this paper.

The paper is organized as follows. Section 2 formulates the motion planning
problem as a minimum-time problem. It also presents the numerical method for com-
puting the optimal solution satisfying state inequality constraints and state-dependent
control constraints. Section 3 addresses the problem of generating the nominal tra-
jectory for the numerical optimization. Finally, examples of optimal trajectories of a
SCARA robot avoiding fixed and moving obstacles are presented in Section 4.

2. Dynamic Optimization

The dynamic motion planning problem in the context of this paper consists in de-
termining the trajectory between two specified boundary conditions that avoids all
static and moving obstacles and minimizes motion time. This is formulated as an
optimization problem with time-varying state constraints, and is solved numerically
using the steepest descent method (Denham and Bryson, 1964), as discussed next.

2.1. Problem Formulation

The motion planning problem can be formulated as follows: Find the control
u*(t) € U in ty <t < ¢y, which minimizes the cost function J:

min J= min /"L(m(t),u(t)) dt = uin ((t)), t7) = t5 1)

u(t)eU u(t)eU Jy
where t; is free, subject to robot dynamics

¢ =F(x,u) = f(z) + g(x)u (2)
admissible controls

U={t|Unin €u < Umax} (3)

initial conditions

x(to) = xo (4)
terminal manifold
Q(m(tf),tf) =0 (5)

and state inequality constraints due to the moving obstacles:

¥ U[ (z(t),t >O] (6)

where S;(z(t),t) represents the time-varying boundaries of the moving obstacles.

The original problem calls for a fixed final point. However, we assume instead a
terminal manifold (a hyper-sphere around the final point) so that we can use influence
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functions to compute the initial conditions of the Lagrange multipliers, and thus avoid
using the more sensitive shooting method (Bryson, 1992).

State inequality constraints are generally difficult to satisfy although necessary
conditions for optimality have been developed for such problems (Jacobson et al.,
1971; Speyer and Bryson, 1968). One way to consider state inequality constraints is
to transform them into state-dependent control equality constraints, active only when
the robot slides along the obstacle boundary (Bryson and Ho, 1975; Denham and
Bryson, 1964).

To demonstrate the treatment of the state inequality constraints, we consider a
single obstacle:

¥ S(x(t),t) >0, S(z)eR™ (7

where m is the dimension of the position space. Differentiating (7) with respect
to time p times until it becomes explicit in the control =, and assuming an active
constraint, yields the state-dependent control constraint

SP) (z,u)=0 (8)

where S denotes the p-th derivative of S, with p being the order of the constraint.

A solution satisfying (8) does not necessarily satisfy (7), unless it passes through
at least one point satisfying (7) and all the derivatives of order less than p. We choose
this point to be the initial entry point of the constrained arc, at time ¢; > #o. The
inequality constraint (7) is thus replaced by the tangency point condition, ¥;, and
the state-dependent equality constraint, Wa:

S(z(t1),t1) =0
' t1) =0

SV (z(t1),t1) =0

Ty : 5@ (m(t),u(t),t) =0, ti<t<t (10)

where t; is the entry time, and #, is the exit time of the constrained arc. This also
modifies the admissible controls (3) to:

U:umin S u S Umax

(11)
S (x(t), u(t),t) =0 for t € (1,0
The addition of the tangency constraint, ¥, thus transforms the original Two-Point
Boundary-Value Problem (1) into a Three-Point Boundary-Value Problem (for a single
moving obstacle), which is solved numerically using the method discussed later.

Note that this treatment of the state inequality constraints may over-constrain
the problem since the trajectory is forced to satisfy the state constraint as an equality
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along a finite arc. Consequently, this approach cannot find solutions that touch the
state constraint at multiple isolated points (Jacobson et al, 1971). This, however,
has been shown to affect only constraints of order higher than two, and hence is not
an issue for the circular obstacles treated here (Jacobson et al., 1971).

2.2. Numerical Computation

We apply the steepest descent method which satisfies rigorously a set of necessary
optimality conditions. This method was originally developed in (Bryson and Denham,
1962), modified to include state dependent control inequality constraints in (Denham
and Bryson, 1964), and modified to consider bang-bang controls in (Meier, 1987).

The steepest descent method computes iteratively the optimal controls by follow-
ing the negative gradient of the augmented cost function with respect to the controls
and the final time. The gradient is derived by adjoining the differential of the cost
function with the differentials of the terminal manifold and the tangency-point con-
straint, as discussed below.

2.2.1. Differential of the Performance Index

Following the classic approach to constrained optimization (Bryson and Ho, 1975),
system dynamics and control constraints are adjoined to the performance index J
using two arrays of Lagrange functions, A4(t) € R* and u(t) € R*, where n is the
dimension of the state space, and k is the number of active state-dependent control
constraints. This leads to the performance index J:

T = ¢(alty)) + /t ' DT (Fl@,w) ~ &) + uTolw,u)] dr (12)

where

0 if t¢(t,t
0= (1 2) (13)
S(p) if te€(t1,ts2)

and p is a vector of Kuhn-Tucker multipliers (Bryson and Ho, 1975):

0 when ¢ =0
a —ATg(:c) (W) - otherwise (18
By defining the Hamiltonian as:
H(Ag,x,u) = A;{}"(az,u) + uTcp(a:, u) (15)

and by choosing:

Aot = - (Z—Z,;‘)T (16)
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d¢
M) = (52) (a7)
ox L
we reduce the differential dJ to:
12
dj = / ?ﬂa dr +(%Lf +H) ats (18)
ty

This establishes the relations between variations in the independent variables, u and
tf, and variations in the cost function for the unconstrained problem.

2.2.2. Differential of the Terminal Constraint

The differential of the terminal constraint € is:

. 98
(d) =( EAL P +——dt) (19)
7\ oz at ),

Following the derivation in Appendix A, and choosing multipliers Aq € R xR
(where [ is the number of terminal constraints) to satisfy:

, arF\"
o) = - (5] a0 (20)
o0
) = (), 1)
the differential dQ? (19) reduces to:
OF o o0
- T AL
(dﬂ)tf—/to Aq 25 6ud7’+<awm+ 3t>tfdtf (22)

2.2.3. Differential of the Point Constraint

Similarly, the differential of the intermediate tangency constraints, ¥, at time ¢, is:

NI TR
(dTy),, = ( et dt)h (23)

Following the derivation in Appendix A, and choosing the Lagrange functions
Av € R*xRF (where k is the number of constraints ¥;)

- (‘;—i)T Ao (t) (24)

(g_‘i) (25)

the differential d¥ (23) reduces to:

OF ov ., o¥
d\I’l)tl / AT (5 dr + (3 x + E) dtl (26)
to

5u1u (t)

i

Ay (t1)
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2.2.4. Discontinuity of the Lagrange Functions

The Lagrange functions, Ay and Aq, are integrated through the entry point of the
constrained arc at t;, where they are discontinuous. This discontinuity is computed
as a function of the jump in the acceleration (for a second-order system) across the
entry point to the constrained arc (Bryson et al., 1963) (see also Appendix B):

) (27)
) (28)

2.2.5. Differential of the Augmented Performance Index

a(t7) - &(tf) 95w
S(p)(tl) 633

M) = AT (z—

_#(ty) —2(tf) a5V
S(p)(tl) ox

AG(t)

X (8) (I

The differential of the augmented performance index dJ consists of the differentials
(22) and (26), appended to the differential dJ with constant multipliers 5 and v:

_[0¢  ,0Q (8¢ ,0Q). o
di——[at+v at+(5;+v 9 =+ po(z,u) tfdtf
0L+ vTAL + nTAD)F + uTo(z,u)
+ / 2 Sudr
to [ ou
N /tf AT +vTAD)F + pTo(z,u) Sudr (29)
&t Ou

Note that the multipliers Ay are defined only between t, to t;, since ¥; is not
affected by the states after ¢;. Setting Ay(¢) =0 for ¢ > ¢, we define an augmented
Lagrange function, A:

AT =27 + 0T +97AT (30)
which yields the Hamiltonian:

H(A, z,u) = ATF(z,u) + pTo(z,u) (31)
and reduces (29) to:

(8¢ p00 ¢
di—(at-l-u 8t+7-{)tfdtf+

to

1 ty
Hobudr + / Huéudr  (32)
&

This establishes the relations between variations in the independent variables, u© and
tf, and variations in the cost function for the constrained problem, including the
terminal manifold, the tangency point, and the state-dependent control constraint.
Assuming bang-bang control, we use these relations to compute the variations in the
switching times that would zero the differential of the augmented cost function.
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2.2.6. Bang-Bang Solution

It is easy to show that the solution for minimum-time problems for systems linear
in the controls consists of bang-bang controls, excluding singular arcs (Bryson and
Ho, 1975; Weinreb and Bryson, 1985). By assuming bang-bang control we reduce the
functional optimization to a parameter optimization over the switching times. The
number of switches is approximated from the initial guess, as discussed later, and the
singular arcs are approximated by a finite number of switches (Meier, 1987).

For bang-bang controls, the variations du; in (32) are replaced with:
bu; = (Qm — @) sgn(dt;;) (33)

where sgn is the signum function, and dt;; is the change of the j-th switching time
for control u;. Note that u; # 0 only at the switching times where u; switches
between the extremes. Therefore, du; is represented by

bu; = (—l)j—lAa dtij (34)
where
Ao =apy — on (35)

Using (34) we now discretize the augmented cost function dJ of (32) as a function
of the switching times:

m . m  S82,i
aJ = ZZ(HH, yDadti; + Y (Hu)u; Aadty
i=1 j=1 =1 j=1
m  $3,i a¢
+ D (Hu)u; Aadti; + ( o a 1o H) dt; (36)
i=1 j=1 ty

where s; represents the segment of the trajectory before the obstacle, s, represents
the constrained arc, sz is the segment of the trajectory from the obstacle to the
target, and m is the dimension of u. Since the second term in (36) corresponds
to the constrained arc, the corrections dt;; are computed only for the controls not
determined from S®)(x,u,t) =0

The objective now is to determine the variations dt;; that would minimize the
differential dJ. This can be done by following the negative gradient of dJ defined
by the coefficients of the dt;; in (36). The step size of each move is determined by
adding a quadratic term in dt;; and dt; to (36) (Meier, 1987):

m  Si,i

4T =" (Mu)u; A dti; + 'w”Aa dt%;

i=1 =1

m  52,i

+ 30N (Hu)e,; Dadtis + = w,,Aa dt;

=1 j=1
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+ZZ w )t Dadty; + w”Aa de2,
i=1 j=1
¢ 70 ) 1 5
+ ( +v +H dty + -b(dty) (37)
ot ot t 2

where b is a positive constant, and w;; are the elements of a diagonal positive definite
matrix.

. The step size that minimizes (37) is given by:

_ (Huz)f-i;j

dt” = —m (38)
1 o¢ . 709

dtf“—b(H+at+V Bt) (39)

The values of dt;; and dt; in eqns. (38) and (39) depend on the multipliers 7
and v which are computed by back-substituting (38) and (39) in (22) and (26), and by
multiplying d¥;(¢;) and dQ(tf) by —e, with € a being small positive constant. This
scales the improvements in 1 and v to satisfy the first-order necessary conditions of
optimality.

With this substitution, eqns. (22) and (26) yield:
7= I\I,\I,( €d¥y, + Iyqv + Iyy)

—1
dndn’
= lr MVagtIZitr o/ 3
v (QQ+ av gy lwa +“Igq + Ism+b & dr t
f

x (—edQy, + oy — 'Tau'Ig} (—€ d¥y, + yy)

dQ d¢
3
+ IQ¢+ In¢+b (dt dt) ) (40)

where the terms ‘I, are defined as:

m  Sli

Thi = ZZ ( Ta}- e 67.: k) (41)

tij
i=1 5=1 ’

with h=T,,0, k=9,,0,¢, | =1,2,3, representing before, on and after the state
constraint, and ¢ indicating the independent controls.
This procedure reduces the differential defined in (32) to zero, which also satisfies

the necessary conditions of optimality stated by the Pontryagin Minimum Principle,
as discussed in (Fiorini, 1995).
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3. Initial Guess

The dynamic optimization discussed earlier converges only to a local minimum, which
depends on the initial guess. Since the dynamic motion planning problem is generally
not convex, i.e. it has multiple local minima, selecting the appropriate initial guess
would determine the quality of the solution. While it is generally desirable to compute
the global minimal trajectory, it is equally important to obtain a trajectory specified
in terms of the sequence of avoidance and the side from which each obstacle is being
avoided. Selecting an initial guess in dynamic environments is in itself a dynamic
motion planning problem, as discussed earlier in the Introduction. Imposing a desired
structure makes the problem only harder.

An efficient method for solving both problems has been recently developed
(Fiorini and Shiller, 1995). It generates trajectories that are both collision-free and
dynamically feasible. Below, we first briefly summarize this approach, and then com-
pute a bang-bang approximation for the controls.

3.1. Generating the Trajectory

The method for generating feasible trajectories in dynamic environments is based on
the concept of velocity obstacles, which is a first-order approximation of the robot
velocities that would cause a collision with some obstacle at some future time (Fiorini,
1995; Fiorini and Shiller, 1995). Collision is avoided by selecting velocities outside
the union of the velocity obstacles due to all moving and static obstacles.

To ensure that the selected maneuver is also dynamically feasible, we impose ad-
ditional velocity constraints due to robot dynamics and actuator constraints, as shown
in Fig. 1. Figure 1 shows the velocity obstacle of B moving at some velocity vg, with
respect to a point robot, A. Also shown are the fea51ble velocities RAV, which for a
planar robot are represented by a parallelogram. The feasible avoidance velocities are
confined to the set defined by the difference between the feasible avoidance velocities
and the velocity obstacle.

An avoidance maneuver consists of a velocity vector and a time interval over
which that velocity is applied. Maneuvers can be selected to minimize a global cost
function, such as motion time, or to satisfy local objectives, such as passing an obstacle
from the front rather than from the rear.

A trajectory consists of a sequence of avoidance maneuvers. A trajectory that
minimizes motion time can be generated by searching over a tree of feasible avoidance
maneuvers, generated at discrete time intervals. Figure 2 shows two branches of the
tree, rooted in node n; at time ¢ and reaching nodes n;y,. The feasible avoidance
velocities at times 7 and i+ 1 are represented by RAV* and RAV**!. A trajectory
generated by this search is a good initial guess for the dynamic optimization, since
it is quasi optimal, and it has the desired topological properties (i.e. a sequence of
avoidance and type of maneuvers). A drawback of this trajectory is that its velocity
profile is discontinuous, and hence cannot be differentiated to compute the nominal
controls. This is resolved by first smoothing the trajectory using Hermite splines, as
discussed next.
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Fig. 2. Tree representation for the global search.

3.2. Generating the Controls

To compute the controls, we first smooth the trajectory, consisting of a sequence of
avoidance maneuvers, using a spline interpolation. First, the path is smoothed by
joining the mid-points of every consecutive path segment with a third order Hermite
spline that matches the slopes of the path segments (Foley et al., 1990). Then, the
velocity profile along the resulting path is smoothed using a cycloid between the
mid-points of consecutive velocity segments, given by:

o(t) = W_‘_Z?w (42)

where w = 27/T', and T is the motion time between the two mid-points.
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)

Fig. 3. Planar 2-DOF manipulator: (a) top view, (b) side view.

Using inverse dynamics, we now compute the controls associated with the
smoothed trajectory. The resulting actuator efforts are approximated by bang-bang
controls by choosing the switching times at the zero crossings of the smooth controls,
with a dead-band to avoid chatter (Fiorini, 1995; Fiorini and Shiller, 1995).

4. Examples

Here we present examples for the two degree-of-freedom planar manipulator shown
in Fig. 3. The problem is greatly simplified by assuming a planar SCARA manip-
ulator with two uniform links and with only the end-effector reaching the plane of
the obstacles. Then, only the end-effector trajectory among the obstacles needs to be
computed. The parameters of the arm are: [; = 1.5m, ls = 1.3m, m; = 10.0Kg,
me = 10.0Kg, 1 = 10.0Nm, 7 = 3.0Nm.

4.1. Single Obstacle

The objective in the following examples is to move the end-effector from rest at the s-
tarting position = (—.15 m, .55 m), to rest at the goal position = (1.5m, —.5m),
in minimum time.

First, the optimal path, computed with no obstacles, is shown in Fig. 4. The
actuator torques for this solution are shown in Fig. 5. For this case, the second joint
has one switch, whereas the first joint has two switches and a possible singular arc
(multiple switches) near the start point. This singular arc may be explained by the
smaller angular rotation of the first joint compared with the rotation of the second
joint. This solution closely satisfies the necessary conditions of optimality, and is
similar to the solution computed by the parameter optimization presented in (Shiller
and Dubowsky, 1989). The optimal time for this case is 3.59 s.

The second case considers a static obstacle, represented by a circle of radius
r = .4 m, centered at C = (.6 m, —.2 m). The constraints ¥; and ¥y due to this
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obstacle are:

T-3,)2 4+ (y—9,)2 —72=0
T, ( ) (y yO) , t=1

(w—xo)vz+(y—yo)vy =0
Uo: 0] +(2—Zo)as + 02+ (¥ —yo)ay =0, t; <t <ty

The optimal path for this case is shown in Fig. 6, and the actuator torques are shown
in Fig. 7. Here the path grazes the obstacle at one point, but does not follow the
obstacle because of its high curvature. The optimal time for this case is 5.17s.

This case was repeated with a larger obstacle, as shown in Fig. 8, where the path
follows the obstacle boundary. Here, the obstacle is of radius r = .6 m, located at
C = (.8 m, —.15 m). The optimal time for this case is 5.38 s, and the controls are
shown in Fig. 9.

Finally, the third case considers a moving obstacle, as shown in Fig. 10. The
constraints ¥; and ¥, are now:

(@ — (Vout + 20))? + (¥ — (Voyt +10))2 —72 =0
Ui | (@ = (oot + 20)) (Vg — Vo) , t=1t
+ (y — (voyt + Yo))(vy — Voy) =0

P, : ((vx —Voe)? + (z — (Vozt + mo)>az
(00 = 00) + (4 = (Woyt +30) )y =0, h<t<t

The optimal path for this case, shown in Fig. 10, slides along the moving obstacle.
The actuator torques for this case are shown in Fig. 11. The motion time for this
case is ¢ = 4.36 s, which is longer than the unconstrained time, but shorter than the
time with a fixed obstacle.

4.2. Multiple Obstacles

In this example, the optimal trajectory is computed for two moving obstacles,
using the SCARA manipulator as in the previous examples. The obstacles are
moving at constant velocities: Obstacle 1 at (.045,.045)m/s and obstacle 2 at
(—-007,~-.03) m/s, starting at time ¢, from the positions (.1,—.5)m and (1.15,.7) m,
respectively. The end-effector starts at rest from (.3, .2)m, and ends at rest at
(1.5,—.5) m.

The initial guess for this case is shown in Fig. 12, with the motion time of
4.81s. The bang-bang controls approximated for this trajectory are shown in Fig. 13.
Optimizing from this initial guess resulted in the path shown in Fig. 12, and the
actuator torques shown in Fig. 14. The optimal motion time for this case is 2.6s.
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Fig. 4. Optimal trajectory in the free environment.

Fig. 5. Optimal controls in the free environment.

The improvement in motion time of the optimal trajectory compared to the initial
guess is due to the fact that avoiding the velocity obstacles produces conservative tra-
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Goal

Fig. 7. Optimal controls with a static obstacle.

jectories, i.e. trajectories consisting of velocity segments that are guaranteed to avoid
both obstacles at all times (Fiorini and Shiller, 1993). For this reason, the initial guess
passes both obstacles from behind. The optimal trajectory, on the other hand, passes
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449

Fig. 8. Optimal trajectory with a large static obstacle.

ul —

Fig. 9. Optimal controls for a large static obstacle.
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Obstacle direction

Fig. 10. Optimal trajectory with a moving obstacle.

1.5 T T T T T T T T
1 Optimal u 1 — |

Fig. 11. Optimal controls with a moving obstacle.

both obstacles from the front, which explains the significant reduction in motion time.
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Y
X
Fig. 12. Optimal trajectory with two moving obstacles.
1.5 T T T T T T T T T
1 Bang-Bang ul — |
0.5 e
oboe b4 L -
0.5 i
-1 4
1.5 1 1 1 1 1 1 1 1 1
0 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
t
1.5 T T T T T T T T T
B
“1.5 L ' i 1 1 1 1 1 1
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 13. Bang-bang controls for the initial guess shown in Fig. 12.

5. Summary

This paper presented a method for computing the time-optimal trajectories of a ma-
nipulator moving in dynamic environments, subject to system dynamics and actuator
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uz —

Fig. 14. Bang-bang controls for the optimal path shown in Fig. 12.

constraints. While formulating the problem as a time-minimization, the state inequal-
1ty constraints due to the moving obstacles are transformed to state-dependent control
constraints and a tangency point constraint at the entry point of the constrained arc.
Assuming bang-bang controls, this optimization problem is solved numerically as a
parameter optimization over the switching times and the final time, using a steep-
est descent algorithm. The initial guess for the optimization is computed using the
previously developed concept of the Velocity Obstacle (Fiorini, 1995). The velocity
obstacles allow one to select an initial guess that has a desirable structure, i.e. a de-
sirable sequence of avoidance and a desirable side from which each obstacle should
be avoided. The method is demonstrated in several examples for a 2-DOF planar
manipulator moving amongst static and moving circular obstacles.

This method is meant for off-line computations, and is thus applicable to repeti-
tive tasks, such as manipulators operating between moving conveyor belts, or manip-
ulators operating off moving platforms. A more efficient method for on-line planning
(with no guarantee of optimality) in dynamic environments has been presented in
(Fiorini and Shiller, 1995).
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Appendices

A. Derivation of the Terminal Differential

The differential of the terminal constraint  can be computed using (Bryson and
Denham, 1962):

a0
d = —dt 43
(Q)tj (a de +at )tf ( )
Using dx = éx + ©dt it follows that
(dQ)s, = (6Q);, + Qu,dts _ (44)
The variation §x satisfies the first-order perturbation equation:
. OF OF
bi = -6z + S—bu (45)

Therefore, there exists a state transition matrix ®(t,7) expressing the variation
(6z);, (Bryson and Ho, 1975). The variation 6 is then:

o0

(6Q)tf = a—m

(25, ws0ttn) + [ #0tr. 5 buiryar) a0

to

This expression can be simplified by defining a multiplier Ao € R* xR as:

NE(t) = (ZZ ) B(t,1) (47)

where n is the dimension of = and [ is the number of terminal constraints. Taking
advantage of the properties of the state transition matrix @ (Bryson and Ho, 1975),
a set of adjoint equations for Aq can be written as:

- oF\"

alt) = - (5;) Aa(®) (48)
o0

altr) = (5 (49)
ox ¢

Therefore, using

ty

(69Q):, = / Aq %—-Eu dr + 6 (50)
to

n (44), and assuming fixed initial conditions, the total differential of ) becomes:

oF 0. o9
T
dQ(ty) = | Mg 2 sudr +<awm+ 8t)t, dt (51)
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B. Effect of the Point Constraint on the Multipliers

The co-state equations for Ayn;, Aq used in the previous sections do not take into
account the effects of the constraints ¥y, given by:

- 00,
ox(t) |,

AT_:A;";++77

v (52)

This discontinuity affects the co-state equations, as illustrated in the following using
multipliers Ag (Denham and Bryson, 1964).

The unknown 7 is computed by relating the value of Aq at ¢, i.e. just before
reaching the constraint ¥y, to its value at t], i.e. just after reaching ®¥;. To do this,
Aa(t]) and Mq(t7) are first computed independently, using the expressions for df2
at tf and t1.

The value of Aq(¢]) is computed from the expression of the changes in dQ(tf)
due to the variation of z, §z(t]):

dQ(ty) = \Lox(t}) = A} (de — & dt1) 4 (53)

that can be rewritten as:

dQ(ty) = (-‘;—de + %—?dt) ; (54)
from which:

5, = e (55)

5|, = D) (56)

The value of dQ at tT is computed using:
d(ty) = (60),- + Q- dty (57)

where:

L OF
(69);- = (Nab),, + / bYA 55 0wdr

to

Since dS®~1(x) = 0, the value of dt; is:

1 T “.r  OF
dh = =y [- (A S(p_l)am)to - /t 0 N o1 g0 dt (58)
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By replacing dt; in dQ of (57) with (58), and since $(®=1) and Q are both inde-
pendent of the integration variable, d§2(¢;") becomes:

to

- T I OF
dﬂ(tl ) = ()\Qéa:)to +/ )\Q S(P D )\S(p 1) 6_11,6“ dr

0
S(p—1)

()\g(p_l)&n) . (59)
-

1

The desired expression of A\q at t;, satisfying dS®=1) =0 is then:

Q
T —v_ [T T
/\Q,S(”‘l)(tl )= (AQ - S(p—l)AS(P‘l)) (60)
-

1

This equation can be further simplified by replacing Q(t_1) with:

) = 50| an) - EE)a() (61)

Since the differentials dz(t,) and d¢; are the same at t] and t], eqn. (55) gives:

=25 (tF) (62)

and similarly

85(p—1)

No(p-1y(t1) = e (63)

31

By using eqns. (62), (63), and (61) in (60), the discontinuity of Ao at ¢; becomes:

) @

which is equivalent to the necessary condition (52) if the multiplier 7 is equal to:

T -\ T4+ _a(ty) — () ase—1)
)\9,5(17—1)(h )= Aqa(t]) (I St 5

T _ T4+ ®(ty) — x(¢7)
= An(tl)(—-————( = ) (65)
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