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STOCHASTIC NEURAL NETWORKS
FOR FEASIBILITY CHECKING

GYOraY STRAUSZ*

Complex diagnosis problems, defined by high-level models, often lead to
constraint-based discrete optimization tasks. A logical description of large, com-
plex systems usually contains numerous variables. The first test of the logical
description is typically to check the feasibility in order to know that there is no
contradiction in the model. This can be formulated as an optimization problem
and methods of discrete optimization theory can then be used. The purpose of
the paper is to show that stochastic neural networks can be applied to this type
of tasks and the networks are efficient tools for finding feasible or good-quality
configurations. Boltzmann and mean-field neural networks were tested on large-
sized complex problems. The paper presents simulation results obtained from
a real application task and compares the performance of the neural networks
being examined.

Keywords: optimization, neural networks, simulated annealing, mean-field
approximation

1. Introduction

Logical analyses of large-sized systems are usually complex tasks. Several application
problems can be described by constraints of discrete variables. Application tasks from
the field of production line design and control, resource management and control,
etc., belong to this class of problems. Feasibility tests of a constraint-based logical
description can be solved as an optimization problem, where the optimization criterion
is minimization of contradictions, in order to find a feasible configuration if it exists.

Hopfield-type neural networks were shown to be capable (Hopfield and Tank,
1984) of solving discrete optimization tasks. In the case of large-sized application
tasks, where modelling the system often leads to NP-complete optimization problems,
the deterministic Hopfield network gives poor results. However, stochastic extensions
of the network will be proved to be efficient tools for such complex tasks. Simulated
annealing can be used to avoid getting stuck in a local minimum. A stochastic ex-
tension of the original network is called the Boltzmann or simulated-annealing neural
network.
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The mean-field approximation is a powerful method for finding minimum points
of cost or energy functions. The method can be applied to Hopfield-structure simu-
lated annealing networks in order to speed up the slow convergence of the stochastic
system. The mean-field neural network is based on a deterministic method that uses
some results of spin-glass theory.

Section 2 briefly describes the neural network model that applied to solve the
problem. Section 3 introduces the application problem that was used to test network
performances. After this it will be shown how the problem can be mapped onto the
introduced neural networks. In Section 5 a detailed comparison of the two networks
is presented that examines the methods from both theoretical and practical points
of view. Section 6 shows the simulation results that were obtained on a test task.
Finally, the paper is complemented with conclusions.

2. Extensions of Hopfield-Type Neural Networks

The application task that will be presented in the following section can be considered
as a constraint satisfaction problem. In order to take advantage of the features of
connectionist machines, the problem is mapped onto a Hopfield-type neural network
model (Aarts and Korst, 1989).

The structure of the Hopfield network is a very simple, one-layer recurrent model.
Each unit in the layer is binary and fully connected to other units. It was shown that
the system is asymptotically stable if the matrix of connection strengths (weights) is
symmetric. The dynamic behaviour of the deterministic network can be described by
the states of the units:

ui = g(s;) = 9(2“’@'“1‘ - 91'), (1)

where u; is the value of unit I, w;; is the connection strength between units ¢ and
j,and g is the unit-step function:

+1 if u>0,
g(u) = (2)
0 if u<O.

The asynchronous unit updating method is used that corresponds to a local search
algorithm for a stable state in the state space. In this case, during the simulation we
choose randomly a unit and update its value according to eqn. (1).

In solving optimization problems the advantageous feature of the network can
be used, namely we can assign an energy function to the system. The important
property of this energy function (a Lyapunov function) is that it always decreases (or
it remains constant) as the system evolves according to its dynamic rule. So as it
was also shown in (Hopfield, 1982), the network converges to a local minimum of the
energy function. The energy function can be written as

E=— ZZwijuiuj. (3)
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Fig. 1. The structure of the Hopfield-type neural network.

Theoretically, it is equivalent to minimizing the energy function or to simulating
the processing of the network, but from the point of view of our application using the
energy function is more natural, so in what follows we will focus on this approach.

The energy surface of the network is usually a multimodal function containing
many local minima (Fig. 2.). The performance of the deterministic network is often
not sufficient as it often gets stuck in a local minimum that sometimes belongs to a
high-energy state. In order to find a global minimum or at least a ‘low-energy state’a
local minimum stochastic extension of the network is often used, called the Boltzmann
machine (Kanter and Sompolinsky, 1987). The idea is to get rid of spurious local min-
ima by using simulated annealing. The method is analogous to the annealing process
used in steel production. Thermal noise is added to the process that forces units to
change their values according to a probabilistic rule instead of the deterministic one.
Simulations of a high temperature compel the network to behave randomly and a
slow cooling process allows the system to settle down in a low energy state. A chosen
unit of the Boltzmann network changes its state with the probability

1

Plui=1-u)= 1+ exp(—AE/T)’ )

where (in the case of binary units)
AE = E(1 — u;) — E(u;) (5)

and T is the ‘temperature’ parameter that controls the cooling process.

The introduced simulated annealing results in a stochastic search process on
the energy surface, instead of the deterministic search carried out by the Hopfield
network. Applying the method means that the deterministic neurons of the original
network are replaced by stochastic units. The new stochastic network, called the
Boltzmann machine, has some new parameters that control the stochastic behaviour
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Fig. 2. Multidimensional energy surface.

of the system. Random changes were introduced to the system by the simulated
temperature parameter and the control algorithm of the temperature parameter is
called the cooling schedule.

The ultimate success of the simulation strongly depends on the parameters of the
annealing process. The most important parameters can be divided into three groups:

e starting temperature,
e annealing speed,

e stopping criterion.

The starting temperature should be chosen so that the network behave almost
randomly at the beginning. In the case of infinite-dimensional systems, the transition
to a random state happens at a given temperature that is called the critical temper-
ature. The parameter that is often referred to as the critical temperature for neural
networks t00, is determined by the magnitude of the coefficients (weight values) of
the simulated system.

The speed of the annealing process should be set as slow as possible. Theo-
retically, an infinitely slow annealing results in settling the system in the optimal
solution. An optimal cooling schedule is also known (Hajek, 1985), but this results
in prohibitively long simulations. From the application point of view, the annealing
speed is constrained by the time limit imposed by practical considerations. The speed
is controlled by two parameters: the number of iterations at a given temperature and
the temperature decay rate. There are several cooling functions that were tested to
control the cooling process (Hajek, 1988). The most popular method is to use an
exponential cooling schedule where the consecutive temperature values are calculated
by multiplication by a ¢ coefficient (¢ < 1) (Ingber, 1995).
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The stopping criterion is determined such that it is met when the network no
longer changes its state. In asynchronous simulations this parameter is usually set to
be 3N =+ 10N iterations, where N is the number of units.

Simulated annealing usually produces good results, but the process is very time-
consuming. As we do not have to know the actual values of the neurons during
simulation, it is possible to obtain a faster method: instead of using stochastic vari-
ables, we can calculate their average values. This leads to the application of mean-field
theory to the Hopfield model (Hertz et al., 1991).

The average value of a unit can be calculated as follows:

1
(ui) = P(u; = 1)(1) + P(u; = 0)(0) = g(2s;/T) = T oxp(=25.7T) (6)

Applying the mean-field approximation, we estimate the average of functions with
random variables by a function of the average of the variables. The input sum of the
neurons is substituted with their average values:

si = (si) = < Zwijw> = Zwij%),
J J

1
14 exp(—2 Zj wij<uj>) '
The algorithm uses an approximation where the true fluctuating units are re-

placed with their average values. So instead of using stochastic binary units, we
apply deterministic continuous-valued ones.

(7)

(u) = g(2(s:)/T)

The mean-field approximation is proved to be precise for large-sized, homoge-
neous systems. The method was successfully used to model the behaviour of magnetic
materials. For smaller systems the precision of the approximation is not known.

3. An Assignment Problem for Radio Link Frequencies

Several logical test problems can be described as optimization tasks. If the values of
the system variables are to be selected from a finite domain and the logical structure
of the problem is defined by constraints, the task becomes equivalent to a graph
colouring problem. In the graph coloring problems we should assign colours (values)
to the nodes (variables) of a graph such that the colouring satisfies the constraints
assigned to the edges of the graph. A typical graph colouring problem is the radio link
frequency assignment problem (RLFAP). The problem was introduced by a European
research project (Tiourine et al., 1995). Large-sized, real data bases are publicly
available for the problem to test the developed methods.

As a matter of fact, there are several kinds of RLFAP according to the kinds
of constraints that have to be taken into account and to the optimization criteria (if
any).

The basic problem is only a constraint satisfaction problem. Let L be a set of
radio links (I3,l2,...,Ip) and F; be a set of frequencies (f},..., fF) which can be
assigned to I; given a kind of devices which provide the radio link ;.
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The frequencies assigned to the links must meet mainly two kinds of constraints:

(i) Equality constraints:
;i —1l=d

This kind of constraints has to be met for two links providing a two-way radio
contact.

(ii) Binary inequalities constraints:
|l — 1] > di

The constraints of this kind come from the computation of the electromagnetic
wave propagation according to the landscape of the area where the related links
have to be established.

The RLFAP can be described in a very general way as follows: Find a solution
meeting all the constraints and minimizing the number of different frequency values
used, and if there is no feasible solution, minimize a criterion based on the violation
of the constraints.

The problem is considered to be difficult, and also good as a test problem for
validating our method, because it is a large-sized NP complete one. It can be shown
that the application problem is identical with the graph colouring problem that is a
well-known and popular problem to test stochastic methods for finding approximate
solutions of NP complete tasks.

There are numerous test problems and in all problems frequencies should be
assigned to several hundreds of links (200-900). The frequency value for each link
should be chosen from a given set of possible values. The number of different frequency
values is 23 or 24, and the number of constraints that should be met is over a thousand
in each test data base.

4. Mapping the Problem to Neural Networks

The RLFAP constraint satisfaction problem is formulated here as an optimization
problem, where the primary aim of the optimization is to meet all the constraints.
Let us consider first the basic problem where the optimization criterion is to minimize
the number of violated constraints. In this case, we can use the number of violated
constraints as the cost function of the problem. The solution can be characterized
by a finite set of discrete variables (radio links) L = {l1,...,la} and each of them
should take a value from a finite domain (frequencies) F = {f1,..., fp}.

A general approach to map a discrete optimization problem onto a neural network
can be summarized by the following steps (Aarts and Korst, 1989):

o Formulate the optimization problem as a 0-1 programming problem by intro-
ducing new binary variables.
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o Define a neural network such that the state of each neuron determines the value
of the introduced binary variables.

e Define the connections and the corresponding weights of the neural network such
that the energy function of the neural network is feasible and order-preserving
with the cost function of the original optimization problem. Feasibility and
order-preserving features apply here to the coherent corresponding states of the
original optimization problem and the neural network.

The RLFAP is mapped onto a network such that a neuron being ‘on’ corresponds
to a certain decision. Each unit indicates whether a variable of the problem takes a
given value. A neuron indicates if a frequency value fy, is assigned to a given link I;.
(Two indices will be used for the neurons to indicate that each neuron belongs to a
given link-frequency pair.) Thus we have

1 if li = fk7
Ui = (8)
0 if I; # fi.

Constraints are embedded in the connection weights such that the global mini-
mum of the network’s energy function is characterized by a state where no constraint
is violated. In order to restrict the space of allowed states, the so-called graded units
(Peterson and Soderberg, 1989) were used that force exactly one unit to be active in
each group. It automatically guarantees that each variable takes exactly one value in
the solution.

In the case of a Boltzmann machine, forming groups of neurons can solve the
problem of introducing graded units. For mean-field networks this leads to the Potts
glass model (Peterson and Soderberg, 1989), where the nonlinear transfer function is
modified by a vector generalization of the sigmoid function:

l
! eXp(“ij)
g(ui ) = e N ) (9)
? >k eXp(“i’”j)
where [ and % are the neuron indices in a group and
0F 1

Consequently, uf; € {0,1} and Y, uf, =

To find solutions that meet all the constraints of the RLFAP, we should choose
the appropriate weights of the networks. An appropriate selection of the weights (for
both Boltzmann and mean-field neural networks) can be described in the following
way:

1 if ;fk’—f”(dij
Wik, jl = and wig, = 0.
0 otherwise
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It can then be easily seen that the energy function

E= Zzwik,jluikuﬂ (11)

Lk gl

is appropriate to solve the original problem, as it exactly gives the number of violated
constaints.

So far it has been shown how to map the basic RLFAP to a neural network.
In our case we had to complete another task as well. Among the possible solutions
an optimal one should be found, where the optimization criterion is to minimize
the number of used different values (frequencies). The difficulty of this optimization
problem comes from the fact that there is a large number of different configurations
(solutions) that belongs to the same frequency usage distribution. This results in
large (horizontal) plateaux of the energy surface, which makes the search ineffective.

To accomplish this task, the model has been extended with new neuron-like
elements and the energy function has also been completed with a second term. For
each frequency value in the domain there is an integer element (¢,) in the energy
function that outputs the number of variables currently taking the value. An efficient
energy function term has been found for this problem as

D D .
By=—cY > tyts, (12)

where D is the number of values in the domain and c¢ is a sufficiently small factor
to keep the magnitude of this term less than unity. (The reason to use c¢ is that the
primary criterion is still not to violate the constraints.)

Extending the energy function with this new term changes the energy function
such that the gradient of the function is non-zero at each point. This makes even
the stochastic search much more effective. It can be proved that the optimum of the
energy function is not changed by the new term, but its real strength is that it gives a
gradient that is proportional to the distance between the current and optimal states.

This term is feasible and, although not order preserving in a general case (if we
consider the cost function to be the number of used values), it keeps the local order
preserving feature for all possible consecutive states, which is sufficient when we use
asynchronous updating.

5. Comparison of the Boltzmann and Mean-Field Approaches

Boltzmann and mean-field neural networks were introduced as possible tools for dis-
crete optimization. Both the methods are extensions of the Hopfield neural networks
that apply a stochastic search in order to avoid getting stuck in local minima. The
tested methods are alternatives to each other, so it is an important question to an-
swer which approach is more efficient. It is a hard task to give a clear answer to this
guestion, even in the case of the example problem under consideration. There are
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only a few papers which deal with this problem, and some of them arrive at contro-
versial results (Elmohamed et al., 1997). Therefore it is useful to present a detailed
comparison that evaluates both the approaches using many points of view.

In the following, we shall examine and compare the theoretical background, pre-
cision, quality of the results, speed, convergence time and applicability of the neural
networks in question. The statements are partly based on well-known, analytically
proved features of the two neural networks and partly on the results of experiments
that were carried out on the introduced large-sized, difficult problem instances.

Theoretical background of the methods. Although both the approaches contain
heuristic elements, it is important to summarize what features of the algorithms are
analytically proved. The Boltzmann machine that uses simulated annealing converges
asymptotically to an optimal solution and even an optimal cooling schedule is known
(Hajek, 1988). An algorithm is available that is able to give a limit of the precision for
the results as a function of the executed iteration. Although the complexity of such
algorithms is so high (they are usually exponential-time methods) that the implemen-
tation is impractical for real problems, these theoretical results provide guidelines for
determining the values of the heuristic parameters of the methods.

In the case of the mean-field approach such analytical results are not available.
The reason for this is that the precision of the mean-field estimation for finite-sized
systems is not known. The applicability of the mean-field approximation depends not
only on the size of the problem, but also on its homogeneity. The applicability of the
approach is deduced from the results of the successive models built for large-sized,
homogeneous systems in statistical physics.

The quality of the results. Boltzmann machines are capable of finding low-cost
solutions, by a temperature controlled stochastic search on the cost function. Exper-
iments show that it is very often sufficient to choose a cooling schedule that is faster
in a magnitude than a theoretically necessary cooling schedule. In the case of the
mean-field method we lose information with averaging and inaccurate determination
of the average values. Therefore the search process is less sensitive to the details of
the search process, which results in a decrease in the probability of finding low-cost
solutions. It is especially true when the energy or cost surface contains many deep
valleys of small diameters.

The speed of the search process. It is useful to check the speed of the methods
from two points of view. First, it is reasonable to compare how long simulations
are necessary at a given temperature to estimate the equilibrium state, and then, of
course, it is important to see how long the whole search process is.

The mean-field network converges to a thermal equilibrium at a given temper-
ature much faster, because this method does not follow each state change of the
stochastic system. The mean-field network is still significantly faster if we take into
account the fact that each iteration needs more calculations (in the case of software
simulations) for this network.
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Experiments show that the mean-field method is less sensitive to the choice of
the parameters of the cooling schedule and the effectiveness of the mean-field net-
work decreases less with the speed up of the cooling. This difference between the
performances of the networks can be explained by examining the shapes of the energy
surfaces of the two neural systems. The mean-field method leads to a continuos-valued
Hopfield neural network and this type of network has a smoother energy surface than
the discrete network containing the same weights. This results in faster convergence
to minima of the energy surface.

It is worth noticing that there is a possibility to skip the slow annealing process
if we apply the mean-field method. An alternative is to calculate the values of the
mean-field variables for a well-chosen temperature and then to use a heuristic search
method to find a low-cost solution close to the state that was provided by the neural
network. This approach could be a very fast method if we were able to find an efficient
heuristic algorithm for the given problem. Unfortunately, there is no general guideline
as for how this algorithm should be constructed. The theoretical background for this
approach is also unclear, i.e. it is not known what temperature to choose for the
simulation and how to interpret the values of the neurons after the simulation.

Applicability of the methods. The Boltzmann neural network can be applied
to both smaller and larger problems, and also to problems that can be considered
as simpler or harder. Of course, the characteristics of the problem influence the
simulation time and the ultimate success of the process. On the other hand, the
mean-field method is based on the assumption that we can estimate the average
values of the parameters of a large-sized, homogeneous system. Therefore, in the case
of small-sized problems or if the foregoing assumptions do not hold, the mean-field
approximation can result in solutions that are far from the optimal ones.

The invoked arguments should be considered differently according to a given
application or circumstances. It is hard to give a general summary, because there
are several contradictory arguments. For example, if we consider only the speed and
precision as criteria, we can mention that the exactness of the more precise Boltzmann
machine can be much worse if we should speed up the cooling. On the other hand,
the speed of the faster mean-field method could be slowed down if we should apply
a slower cooling schedule in order to find acceptable quality solutions. The question
which method is faster if the criterion is a given precision «r the question which method
gives solutions of better quality in a given time interval usually can be answered only
on the basis of simulations.

Among the above-mentioned problems regarding the mean-field neural network,
those are of little importance which regard the applicability of the method for small-
sized problems, because this kind of problems can be solved by several algorithms
using a deterministic, exhaustive search. However, those disadvantages of the mean-
field approach that pertain to the homogeneity of the problem have a significant effect
on applications.

The reasoning has not led so far to a clear conclusion, but it can give arguments
to consider selected methods or they can help us to design tests and experiments to
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Fig. 3. Typical cooling curves for Boltzmann and mean-field
networks: for simple (a) and difficult problems (b).

make the selection between the two networks easier in the case of a given application
task.

As a summary of the above reasoning that contains several heuristic arguments,
two pairs of curves can be seen in Fig. 3 that demonstrate a typical behaviour of the
networks on problems with different difficulties. It can be seen that in the case of a
large-sized but relatively simpler problems a higher speed of the mean-field networks
can result in a better performance. Meanwhile, for more difficult problems the Boltz-

mann machine can give better-quality results, although there also exists a time limit
till the mean-field approach provides better solutions.

If we have the possibility of choosing between the introduced two neural networks,
then both of the following two approaches can be used. Tests can be started with

the mean-field network and if acceptable quality results are not obtained, then it is

reasonable to apply Boltzmann neural networks. The other possibility is to check first
the results of the Boltzmann networlk and pass to the mean-field approach if we cannot
get satisfying solutions in an acceptable time. Anyway, if we apply methods in which

the theoretical background and the evaluation of the results contain several heuristic
elements, then simulations are necessary for building heuristic rules for setting the
parameters of the methods and for evaluating the performance of the systems. The

following part of the paper presents a summary of the simulations that were carried
out in order to support the statements of this part of the paper.

6. Simulation Results

Simulations were carried out on instances of the radio link frequency assignment
problem. These problems are appropriate tests of the demonstrated methods, be-
cause these are large-sized, difficult constraint-based optimization problems. These
problems are publicly available, so researchers working in different fields can compare
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the efficiency of their methods. Unfortunately, there is no generally defined crite-
rion that would help the evaluation of the results. Therefore we shall present several
characteristics of the simulations and show the best currently known results.

First, we shall present optimization results of the examined problem instances.
After a summary of the results obtained, the effects of the settings of the cooling
parameters that will show an efficient strategy for the selection of these parameters
are discussed.

In the EUCLID CALMA project eleven problem instances of the radio link fre-
quency assignment problem were introduced. The main characteristics of the problem
instances are summarized in Table 1. The size of the problems and the number of
constraints defined for the problem are important parameters to describe the difficul-
ties encountered, but it is not possible to define which problem should be considered
harder or simpler based only on these parameters. Therefore, the selection of hard
problems has been carried out by using simulation experiments. The best results
presented in the table have been obtained with a tailored constraint-programming
method by long simulations (Tiourine et al., 1995). The presented results based on
neural networks have been calculated within several minutes.

There are different optimization criteria for the different instances, but 10 of them
are equivalent to the graph colouring problem, so they represent an important class
of discrete optimization problems. For all the problems, the primary criterion was to
satisfy the constraints of the problem or, if no feasible solution exists, to minimize
the number of violated constraints. There were problem instances where the weights
were defined for each constraint and the minimization criterion was a weighted sum
of the violated constraints. In the case of feasible instances, the minimization of the
number of different used frequencies is the optimization criterion.

Several simulations were carried out on each instance of the problem. The per-
formance of the Boltzmann neural network and the mean-field neural network were
tested. A summary of the results is presented in Table 2. The result data of the table
were obtained via 1-2 minute long simulations on a Sun SparcStation 20 workstation.
It can be seen from the table that the simulations with the applied relatively fast
cooling schedules resulted in optimal or low-cost, good-quality sub-optimal solutions.
Besides the best results, the average cost values of the solution after 10 experiments
are also shown.

Both the Boltmann and mean-field neural networks were able to produce good-
quality results, but the results obtained from the Boltzmann network were in most
cases somewhat closer to the optimum. This difference was more significant in the
case of more complex problem instances. As the simulations were not able to find
optimal solutions for each problem instance, longer experiments were also carried
out. The quality of the results was improved, but significantly better results were
obtained only by significantly longer simulations (many hours). The experience fits
to the known characteristics of this approach. Stochastic neural networks are efficient
methods to find low-cost solutions fast, but they are not the best choice if we should
find an optimal solution.
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The success of the optimization depends on the appropriate settings of the parame-
ters of the cooling schedule. A typical cooling process starts from a high temperature,
where the network behaves stochastically, and with decreasing the temperature pa-
rameter the system converges to a deterministic network. Figure 4 shows typical
characteristics of the simulated annealing. The acceptation rate shows the probabil-
ity that the network behaves in an iteration in the same manner as a deterministic
system would do. Thus the 0.5 acceptation rate belongs to a random state and the
1 value shows a deterministic behaviour. It can be seen that above the so-called criti-
cal temperature the system behaves randomly (the average cost of the visited solutions
is constant). Close to the zero temperature the system behaves like a deterministic
one and converges to a stable state.

Table 1. Characteristics of the CALMA data-bases.}

Number of | Number Number of | Number of | Number of | Best |Feasible
the problem | of variables | values (radio | constrains | neurons in | known |solution
instance | (radio link) | frequencies) the network | solution | exists?

1 916 24 5548 21984 8 Yes

2 200 23 1235 4600 7 Yes

3 400 23 2760 9200 7 Yes

4 680 24 3967 16320 23 Yes

6 200 23 1322 4600 3437 No

7 400 23 2865 9200 343594 No

8 916 24 5744 21984 262 No

9 680 24 4103 16320 15571 No

10 680 24 4103 16320 31516 No

11 680 24 4103 16320 11 Yes

As was discussed in the first part of the paper, simulated annealing is used to
avoid the poor behaviour of the deterministic Hopfield network. The main problem
with the original deterministic system is that it realizes a local search on the energy
surface that converges to a closest local minimum. Table 3 compares the behaviour
of the deterministic and stochastic networks. It can be seen that even with the ap-
plied fast cooling schedule the performances of the stochastic systems are significantly
better.

The best choice for the starting temperature is the critical temperature where
the system ignores the gradient information during the search and behaves perfectly
randomly. Figure 5 shows the effects of different choices of the starting temperature.
The figure contains three curves, one belonging to an annealing started from the

1 In the column of the best known solutions, the number of used frequencies is shown in the case
of feasible instances and the weighted sum of the violated constrains is shown for the other
instances.
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critical temperature, the second representing a simulation started from a significantly
higher temperature and the third started from a significantly lower temperature than
the critical one. It can be seen that there is no reason to initialize the temperature
parameter higher than the critical value, because the performance of the network
does not become better, but the simulation time is increased. The reason behind
this is that the search process does not have any correlation with the structure of
the problem over the critical temperature, therefore the iterations executed in this
temperature region do not increase the probability of finding optimal solutions. The
figure also demonstrates that if one starts the simulation from a low temperature, the
final result will be poorer, because the system will not be able to search the whole
energy surface, but just its small part.

6000 . . .
Cost 4000} :
2000} :
10° 10° 10’ 10’ 10™
temperature
1 rrr
0.9}

Acceptance gl
ratio

0.7F

0.6}

0. L i - i
5 3 2 1 0 -1

10 10 10 10 10
temperature

Fig. 4. Characteristics of the simulated annealing.

No algorithm for constructing an optimal finite-time cooling schedule is known.
There are several heuristically built cooling schedules to determine the best speed
of the cooling, but generally no proof is known to determine which one is the best.
Experience shows that the shape of the cooling curve has a small effect on the perfor-
mance of the search, therefore the simplest method (that was introduced in the first
part of the paper), the exponential (also called geometrical) cooling is usually used
in applications. Figure 6 shows the effect of the cooling speed. After the experiments
that are represented by the curves of the figure, it can be concluded that a very fast
cooling schedule deteriorates the performance of the search process. The expected
cost of the solution increases with the slow-down of the cooling process, but this im-
provement is not significant over a given speed. Unfortunately, there is no general
method to determine what cooling parameters refer to a ‘very fast’ cooling, so only
previous experiences and experiments made it possible to find good settings.
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Table 2. Simulation results on the CALMA data-base.’
Number of | Best Difference Average Best Difference Average
the problem |solution| from the best |cost solution |solution| from the best |cost solution
instance known solution known solution
Boltzmann network MFT network
1 9 1 10.5 11 3 11.5
2 7 0 7.1 7 0 7.3
3 8 1 8.7 9 2 9.5
4 23 0 23 23 0 23
6 4278 24% 5120 5961 73% 6315
7 487547 1% 553468 573234 66% 591344
8 282 ™% 328 363 38% 393
9 15951 2% 16121 17342 11% 16789
10 31516 0 31588 34234 8% 33124
11 14 3 16 16 5 17

Table 3. Comparison of the deterministic and stochastic networks.

Number of Best/average Best/average Best/average
the problem | solution with the solution with the solution with the
instance Hopfield network | Boltzmann network | mean-field network
1 15/17 9/10.5 11/11.5
2 9/10 7/7.1 7/7.3
8 555/839 282/328 363/393

7. Conclusions

Some effors towards testing the efficiency of stochastic neural networks for large-sized
discrete-type optimization problems have been presented. The Boltzmann and mean-
field networks have been used to solve large-sized, difficult problems. For all the tested
problems the quality of the solution is good.

The results achieved are similar for both the types of networks, but the Boltzmann
machines give more precise solutions. Boltzmann machines are also proved to provide

2 In the column of the best known solutions, the number of frequencies used is shown in the
case of feasible instances and the weighted sum of the violated constrains is given for the other

instances.
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more robust methods that can be applied to a wide variety of problems. On the other
hand, the mean-field approach offers the possibility of speeding up the simulations
with little loss of the attainable quality.

One of the most important advantages of the methods is the possibility of a
- parallel implementation. Simulations could be executed significantly faster if the
networks were implemented on a dedicated hardware or on a general, massive parallel
structure.

The tested methods contain several heuristic elements. An important point is
the selection of cooling parameters. It is a theoretically difficult task to define an
optimal, finite-time cooling schedule for a given problem. It is planned to continue
conducting research to build cooling schedules such that they take the complexity of
a given problem into account. Such an algorithm could help us to avoid too long
simulations for simpler problems and to avoid poor results obtained from too short
simulations of hard tasks.
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