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DESIGN AND STABILITY OF FUZZY LOGIC
MULTI-REGIONAL OUTPUT CONTROLLERS

Pawsr DOMANSKI*, MiEczystaw A. BRDYS*,
PioTtr TATJEWSKI*

Design and stability analysis of fuzzy multi-regional digital controllers is consid-
ered in the paper. The controllers are based on a notion of NARMAX systems,
very similar to the Takagi-Sugeno fuzzy model. The nonlinear system is ap-
proximated by a number of linear subsystems. Linear controllers are designed
for all subsystems. It can be made in a classical way due to the subsystems
linearity. The controllers are blended into one controller by employing fuzzy
logic, the result being the fuzzy multi-regional controller (FuMR). The stability
analysis of nonlinear systems with FuMR controllers composed of dynamic out-
put feedback local linear controllers is provided. Examples illustrate the design
procedure and the meaning of the stability criterion.

Keywords: nonlinear output control, fuzzy logic, Takagi-Sugeno models,
stability conditions

1. Introduction

Nonlinear ARX or ARMAX models (called NARX or NARMAX (Johansen, 1994;
Johansen and Foss, 1993)) can be used to extend the piecewise linear system by
switching the subsystems in a fuzzy way. Such systems have the advantage of the
possibility to deal with nonlinear processes. Following the idea of gain scheduling one
can propose an algorithm which also switches different control actions in a similar way.
The problem lies in the way of extracting proper subregions. It is natural to choose
the construction of subsystems dividing the domains of input and output signals.

The idea of such controllers can be found in several papers (Cao et al., 1996; Ko-
rba and Frank, 1997; Tanaka and Sugeno, 1992; Wang et al., 1996; Zhao et al., 1996).
The authors consider processes and controllers in the form of Takagi-Sugeno fuzzy
systems. The processes are described by linear state equations and the controllers
are represented by a simple linear state-feedback law. In the paper, the idea of such
multi-regional controllers is extended to cover dynamic output controllers including
e.g. digital PID and predictive IMC structures that can be tuned in a standard way.
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Another problem lies in the approach to the stability analysis. In the literature
the Lyapunov function approach {Tanaka and Sugeno, 1992; Wang et al., 1996), the
uncertain linear system theory (Cao and Ress, 1996), quadratic stability (Marin and
Titli, 1997) and some others approaches (Georgieva, 1995) can be found. In the
present paper, the approach demonstrated in (Tanaka and Sugeno, 1992; Wang et al.,
1996) is applied.

The paper is constructed as follows. First, the idea of the proposed controller
is presented. Afterwards, the stability analysis for the system under consideration
is provided. The next section proposes a methodology for tuning FuMR. controllers.
Finally, examples illustrating the tuning methodology and the system performance
are presented. Conclusions and indications for further research complete the paper.
The idea of the paper was first presented at the European Control Conference in
Brussels in 1997.

2. Controller Design

Let us consider the SISO control system presented in Fig. 1, with a nonlinear process
G. For a large class of processes, an NARX input-output model of the process can be
built (Chen and Billings, 1989). We shall follow the approach presented in (Johansen,
1994; Johansen and Foss, 1993; Takagi and Sugeno, 1985), where the NARX model
is designed as a composition of local ARX models describing the process over certain
subregions.

y()(k) + e(k) . Lt(k) N

Y yk+l)

Gt >

Fig. 1. Closed-loop control structure.

The composition of the ARX models is performed by using fuzzy reasoning due
to Takagi and Sugeno (1985). In this approach, the fuzzy subregions Z* are defined
in the domains of input and output signals, see Fig. 2. Notice that the partitioning
of the overall operating region is designed in such a way that the adjacent subregions
overlap. This is an inherent feature of the fuzzy partitioning which enables us to
achieve a smooth transfer between the submodels. In each of the subregions the ARX
polynomial submodel G* describes the process as

IF z(k) is Z', THEN
v (k+1) = ag+aiy(k) + - +any(k—np +1) +biuk) + - +b u(k—mp+1). (1)

For the linear submodels digital linear controllers R? of the following form are pro-
posed:

IF z(k) is 27, THEN

W (k+1) = +cjek)+ -+ e(k—nc+1) +duk) + -+ & u(k—mo+1). (2)
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:

Fig. 2. Fuzzy clustering of the subregions.

Tt should be noticed that different orders of the process and controller submodels in
each of the subregions were assumed (np, mp and nc, mc, respectively). One-step-
delay PID or IMC controller structures fall into this class. The delay is necessary
to avoid the so-called ‘logical inconsistency’ (Zhao et al., 1996) in operation of the
resulting global controller, which occurs if the control signal appears in the premises of
the controller rules (2), i.e. it is a component of the vector z(t). Bearing in mind the
potential of available microprocessors allowing for a high sampling frequency which
is needed due to process nonlinearities, this is not a limitation.

The composite (global, non-linear) controller will be constructed by using fuzzy
reasoning due to Takagi and Sugeno, in the same way as the composite model is
built (Takagi and Sugeno, 1985). It will be called the ‘fuzzy multi-regional controller’
(FuMR). The structure of the resulting control system with FuMR controller is shown
in Fig. 3.

Using directly the input and output variables, the process model expressions (1)
may be rewritten as

IF y(k) is P* AND wu(k) is Q* THEN

np mp
yi(k+1):ag+za;y(k—p+1)+Zbgu(k—q+1) (3)
p=1 g=1

and the controller expressions (2) as

IF y(k) is P AND u(k) is Q° THEN
. > T,’C . mc .
u’(k+1)=c6+zc§,e(k—~p+1)+Zd{1u(k—q+1), (4)
p=1

7=1
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Fig. 3. Structure of the control system with the FuMR controller.

where
y(k) = [y(k),y(k - 1),...,y(k —n+ 1),
w(k) = [u(k),u(k—1),...,u(k —m+1)]",

e(k) = yo(k) — y(k),

PETAL.. AL, Q'2[Bi,...,B.], i=1,....L, j=1,...,L,
and the meaning of the composite sets is explained on the P* example:

y(k) is P' <= y(k) is A} AND ... AND y(k—n+1) is A%,

The same partitions of the output and control spaces have been assumed in (3) and (4)
for the fuzzy rules determining the choices of both the local process models and
local controllers. However, the lengths n and m of the vectors y(k) and w(k),
respectively, may be different than the corresponding orders np, mp and ng, mg
of the process submodels and local controllers.

Applying fuzzy reasoning due to Takagi-Sugeno yields the overall process model
and controller outputs as

SF  wiyi(k+1)

y(k+1) = r (5)
and B
L iud
w4 1) = 2= Wk + (6)

L .
Zj:l w!
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where
dw'>0, w0 for i=1,..,L,
and the firing strengths of the rules are

w—HA* (k—-p+1) ><1_‘[BZ k—q+1)). (7)

g=1

Note that the above fuzzy blending of local models and controllers consists in
taking weighted sums of their outputs. The weights depend on the current operating
point z(k) = (y(k),u(k)) promoting contribution of the outputs associated with the
subregions to which the operating point belongs with a high grade of membership.
Also notice that the weights are the same in both the formulae (5) and (6), due to
the same fuzzy clustering of the process output y(k) and input u(k) signal spaces
for both the process model and controller design.

A natural approach to the control design is to employ good approximations to
the process input-output mapping over the subregions by linear submodels and to
design linear controllers using classical design techniques. In this way, good dynamic
performance of the overall controller is achieved if the control system operates well
within one of the subregions. The remaining problem is to achieve equally good
dynamic performance when the operating point moves between subregions. Stability
is the very first problem to be investigated.

3. Stability Analysis

In order to perform the stability analysis of the presented control system with the
FuMR controller, the reasoning scheme will first be reformulated to obtain suitable
formulae for the closed-loop system. Inserting local model equations into the reasoning
scheme (5), we get the process description in the following form:

Syt {ob + X2 aby(k —p+1) + 05 bulk~ g+ 1)}
ZL—1 w' ‘

Analogously, inserting local controller equations into the controller reasoning
scheme (6), we arrive at the controller description

S wl {ch+ 20g delk—r +1) + D0 diulk— s +1) }
i wl '

After inserting the control error formula into the control algorithm (9), we obtain

y(k+1) = (8)

u(k+1) =

(9)

EL: {c +Z ci'[yg(k r+1)—y(k— r+1)]+%: diu(k— 5+1)}
w(k+1)=2=2 =

7 (10)
> w

i=1
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Inserting now the control rule (10) into the process description (8), we obtain the
closed-loop system description in the form

y(k+1) Zwaj[anL Zb’Jr%anb (k—r—q+1)

i=1 j=1 g=1r=1
mp np
—I-Zb’Zdj —s—q+l)+2a;y(k—p+1)
p=1
mp ng
—ZZb Ty(k—r—q+1) /ZwaJ (11)
g=1r=1 =1 j=1

Let us define the augmented state vector (k) € R tmrine—1 where ny =
max(np,mp + nc), as follows:

- T

C(k) = [y(k), o y(k—ny+1),u(k-1),... ,u(k-—mp—mc-kl)] . (12)
Consequently, the closed-loop reasoning scheme (11) takes the form
Yiey Yger wiwd [ + AUL(k) + Biiy, (k)]

22:1 Zj:l wiwd

where @ = ai +c) PO b} and A% B are appropriate vectors resulting from the

equivalence between (13) and (11).

yk+1)=

; (13)

For stability analysis only the internal dynamics of the augmented state vector is
important, so we can investigate the autonomous fuzzy system in the following form:

Zz 121 l'ww]A”C(k).

y(k+1) = 14)
Zz‘:l Ej:l wiw? (
Since wiw’ = wiw?, significant simplification of (14) can be obtained as
E w uﬂA” + Z wiw’ At Z w wZA“ + Z Z w' j.gi""-g;ji
i=1 ] 1,i#j . =1 ]—1,+1
- =
3 Z wiw’ E whw? + E Z 2wiwd
=1 j=1 i=1j=itl
L - K ~ K ~
SwAl+ 3wl S A
=1 1=L+1 =1
- K - TK , (15)

> w! > !
=1

where the definition of El, {=12,....K; K = Zle k is obvious from the deriva-
tion presented above in (15).
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The obtained simplification is important from a practical point of view, since all
the matrices A' will have to be checked to satisfy a certain condition in order to
guarantee the control system stability (the criterion to be further developed).

In this way the autonomous system (14) has been transformed into the form
1% - =
S wt (A-T)
ZIK:I w!

where 2{-{_—1 w! > 0; w' >0 for [ =1,..., K. Further, the following state space form
of the closed-loop system (16) will be used:

£ (3w
Sy u!

~1
where A € R tmetme=1y gry tmetmc—1 are the appropriate matrices containing
vectors A' as the first rows,

yk+1)= : (16)

Ck+1) = , ' : (17)

& @ - agw+mp+mc—‘2 aimv+mp+m'3—l 1
1 0 0 0
~1 0 1 0 0
=10 o 0 0 18)
L 0 0 1 0 ]

] =l _
Also notice that Cl(k +1) = A - {(k) can be defined as the state vectors resulting
from the subsystems, [ =1,..., K.

Finally, we arrived at the system description (17) to which the stability criterion
proposed by Tanaka and Sugeno (1992) can be applied. From this criterion it follows
that it is sufficient for the stability that there exists a positive definite matriz P
satisfying the Lyapunov inequalities for all the local subsystems, i.e. the sufficient
stability conditions are as follows:

~N\T ~1
(A) P-4 -P<0, forI=1,... K. (19)

4. Design Methodology

The design methodology for FuMR controllers is as follows:

1. Create an NARX model of the process, e.g. by performing a fuzzy clustering of
the inputs and outputs to determine fuzzy regions and then the LS estimation of
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local ARX models. There is also a possibility to apply the fuzzy neural network
approach (Ishigami et al., 1995).

2. Design linear controllers for each local model using standard methods, e.g.
Ziegler-Nichols tuning for PID-type controllers.

3. Compose the overall controller forming the fuzzy multi-regional controller.

4. Check on stability. Inequalities (19) fall into a class of Linear Matrix Inequalities
(LMI). The MATLAB LMI toolbox can be used to verify the existence of a
solution and to calculate it.

5. Iterate the design if the sufficient condition for stability is not satisfied.

5. Examples

In this section, two examples will be presented. They illustrate the design methodol-
ogy and the stability analysis.

Example 1. The process is modelled by two simple fuzzy rules:

IF y(k) is A THEN y'(k+1) = 0.7y(k) + 0.75u(k) (20)

IF y(k) is B THEN y?(k +1) = 0.4y (k) + 0.1u(k). (21)
Fuzzy clusters for the process are presented in Fig. (4). The PI controllers designed

in a standard way for the linear models are as follows (notice that the one-step-delay
control rules are used although it is not necessary):

IF y(k) is A THEN u!(k+ 1) = u(k) + e(k) + 0.75e(k — 1), (22)

IF y(k) is B THEN v?(k + 1) = u(k) + 2.8e(k) + 2.6e(k — 1).  (23)

Examplary step responses of these controllers are shown in Fig. 5. After closing
the control loop we obtain the Takagi-Sugeno NARX system consisting of three rules:

IF y(k) is A THEN Zl(k+1) :ilf(k) + Blyo(k),

IF y(k) is B THEN C (k+1) :ff(k) + B?yo(k),

IF y(k) is (A and B) THEN

~12

Cl+1)=C2(k+1)=A4 (k) + B2yo(k).
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with the following state space matrices:

0.7 —0.75 —0.56 0.75 04 -0.28 —0.26 0.1
=t |1 0 0 0 ~2 |1 0 0o 0
A = , A = ,
0 1 0 0 0o 1 0 0
0o 0 1 0 0 0 1 0

055 -11 -1.01 0.43

~12 1 0 0 0
A =
0 1 0 0
0 0 1 0

For these three subsystems a positive matrix P which satisfies all the three local
Lyapunov inequalities was found. The step response of the stable control system with

the designed multi-regional fuzzy controller is presented in Fig. 5. ¢
Ay
A B
+1
> < »
-1 +1 y(k)

Fig. 4. Fuzzy clustering.
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Fig. 5. Performance of local PI controllers.
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Fig. 6. Performance of the FuMR. system.

Example 2. The nonlinear pH control continuous stirred tank chemical reactor (see
Fig. 7) is now considered, with the dynamics described by the following equations:

% = K Cy — (F1 + )¢,
El-a‘{ti = FQCQ - (Fl ‘l—Fz)’l,Z),
(il_{; =F +F —F,
[H]? + (Ko + @) [HT? + (Ko(¢ — €) — Ku) [HY] — K. K,
where
E = [HAC) + [AC],
1 2 [Nat],

pH = —log;, [H+]’

Cy = 0.32[mol/]] is the acid concentration in F; (flow rate of acid),

(24)

(25)

(26)

Cs = 0.05005 [mol/1] is the acid concentration in F» (flow rate of base),

V =1000[]] is the volume of the tank,

K, and K, are acid and water equilibrium constants, respectively,

K, =18x107%, K,y = 1.0x107', and F}(0) = 81[l/ min], F3(0) = 512 [1/ min].

There are two control loops: a level (volume V') control loop and a pH control loop. A
standard linear controller turned out to be sufficient for the volume control. However,
the pH behaviour versus the flow F; is very nonlinear as we can see from the steady-
state characteristics depicted in Fig. 8.
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Fig‘. 8. Static pH curve.

The behaviour of the pH control loop with a single PI controller designed for
average process dynamics is presented in Fig. 9. There are high oscillations of pH and
V (not shown) in the region of the high gain. This is caused by the unstable controller
performance in this subregion of a moderate pH. So it would be very reasonable to
use another, nonlinear controller with its action dependent on the actual conditions.
The fuzzy multi-regional controller possesses such an ability.

The pH dynamics model with three inputs pH(k — 1), pH(k —2) and Fi(k) and
one output pH(k) was assumed. After fuzzy modelling the system, we obtained three
local models in the domain of the pH signal (see Fig. 10).

The three local PI controllers were tuned using the standard Ziegler-Nichols
procedure. As there is no control signal present in the fuzzy rule premises, no delay
was needed. The closed-loop system (17) has six regions with the corresponding
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state-space matrices:

[ 0.70 —0.26 0.17 —0.002 0.92 —0.03 —051 —0.14
~1 1 0 0 0 ~2 1 0 0 0
A fomad N A = R ®
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0

[ 149 —0.56 —0.001 0.002

~3 1 0 0 0
A = ,
0 1 0 0
L 0 0 1 0
[ 0.81 -22.11 6.35 -0.07 1.09 -0.41 0.08 -0.002
~12 1 0 0 0 ~13 1 0 0 0
A = 5 A = 3
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0

[ 1.21 -0.24 —0.01 0.07

~23 1 0 0 0
A =
0 1 0 0
0 0 1 0

200

150

= 100

50

(=]

0 5 10 15 ]

Fig. 9. Behaviour of the reactor system with a single PID controller.
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For the above six subsystems the positive matrix

7.6855  10.6140 2.1428 7.3875
-1.6072  11.3143 —4.3821 —7.9680
-10.2279 —18.6881 6.2252 —22.0545
8.5359  16.0419 —11.1131  29.2533

which satisfies all the six local Lyapunov inequalities was found.

The performance of the fuzzy multi-regional PI controller (FuMR.
in Fig. 11. As we can see, the controller allows us to obtain a satisfy
with no oscillations in a wide area of possible set-points and thus p
FuMR controller is globally stable with a good dynamic response.

-PI) is presented
ing performance
H changes. The
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Fig. 11. Behaviour of the reactor system with FuMR PI controller.
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The design methodology was also tried with predictive local controllers of IMC
structure (Domanski, 1996). Again, the performance of a single IMC controller with
fixed parameters was not acceptable. On the other hand, the FuMR IMC controller
revealed a good dynamic performance over the whole range of set-point changes,
although it was slightly worse than for the presented FuMR PI controller.

6. Conclusions

The idea of fuzzy multi-regional controllers has been pursued in the paper. The
controller is composed of a number of local linear controllers blended by using fuzzy
logic. The description of the composite fuzzy control system in the augmented state-
space domain has been derived that enabled the stability analysis on the basis of the
Lyapunov function approach. The original idea of state augmentation has allowed
us to extend the Takagi-Sugeno type stability analysis valid for local controllers of
state feedback type to cover the dynamic output feedback controllers. The important
class of such controllers including PID and predictive IMC ones can now be used in
multi-regional controller design.

The sufficient criterion for the stability of the closed-loop system with the plant
represented by its fuzzy model has been derived in the LMI form. Thus, the stability
criterion can be checked efficiently using e.g. the MATLAB LMI toolbox. Hence the
fuzzy multi-regional controller is an attractive option in a non-linear control design.
Its design makes use of the well-developed linear dynamic output control technology
and involves the efficient LMI technique.

Of course, the approach also has disadvantages. It leads only to a sufficient
stability criterion. Using LMI methods we can quickly solve the Lyapunov inequalities,
but if a solution does not exist, finding a right direction of the design modifications
is not supported.

There is a noticeable conservatism in the derived stability criterion. Namely, the
membership functions of the fuzzy sets used in the design do not affect the criterion.
Sharpening the sufficient stability conditions by incorporating parameters of the fuzzy
clusters would allow us to improve the FuMR controller performance by tuning not
only local controller parameters but also by optimising fuzzy clustering.

The theory presented in the paper is illustrated with two rather simple examples.
It has also found its first industrial application in one of the Polish power plants, where
a multi-regional PID controller based on the fuzzy process modelling (Domanski et
al., 1998) has been successfully applied to SO, emission control.
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