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SZEGŐ’S FIRST LIMIT THEOREM IN TERMS OF

A REALIZATION OF A CONTINUOUS-TIME

TIME-VARYING SYSTEM

Pablo A. IGLESIAS∗, Guoqiang ZANG∗

It is shown that the limit in an abstract version of Szegő’s limit theorem can be
expressed in terms of the antistable dynamics of the system. When the system
dynamics are regular, it is shown that the limit equals the difference between
the antistable Lyapunov exponents of the system and those of its inverse. In
the general case, the elements of the dichotomy spectrum give lower and upper
bounds.

Keywords: time-varying systems, exponential dichotomies, coprime,

inner/outer factorizations

1. Introduction

In the early part of the last century, Szegő proved two formulae regarding the limits
of certain Toeplitz matrices in terms of their symbols. Since then, these two limits
have received considerable attention, see (Böttcher and Silbermann, 1999) and the
references therein. In the case where the symbol can be expressed as a rational matrix
function, Gohberg et al. (1987) showed a relationship between these limits and the
realization of the symbol.

Consider a continuous matrix function Φ on the unit circle. Furthermore, assume
that the symbol Φ is a rational matrix function with realization

Φ(z) = I + C(zI −A)−1B, |z| = 1.

Assume that det Φ(z) 6= 0, for |z| = 1, and that the winding number
(1/2π) arg detΦ(eiω)|πω=−π is equal to zero. Moreover, assume that A

× := A − BC
has no eigenvalues on the unit circle. As shown in (Gohberg et al., 1987), Szegő’s first
limit theorem can then be stated as follows:

1

2π

∫ π

−π

log detΦ(eiω) dω =
∑

i

log |zi| −
∑

i

log |pi|,

where zi (resp. pi) are the eigenvalues of A
× (resp. A) with norm greater than one.
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For symbols arising from realizations of continuous-time systems, analogues of the
original Szegő formulae were obtained in (Ahiezer, 1964; Kac, 1954). Their connection
with the symbol can be found in (Gohberg et al., 1987). In this case, the Toeplitz
matrix is replaced by the Wiener-Hopf operator

(Fw)(t) = w(t) +

∫

∞

0

f(t− τ)w(τ) dτ , t ≥ 0, (1)

where f is an m×m matrix function with entries in L1(−∞,∞) and symbol

F (ω) = I + C(iωI −A)−1B, −∞ < ω <∞,

A and A× having no eigenvalues on the imaginary axis. If the function f(t) is
continuous, we can consider the operator

[FTw](t) =

∫ T

0

f(t− τ)w(τ) dτ

as the truncation and look at the limit

lim
T→∞

1

T
log det(I + FT )=

1

2π

∫

∞

−∞

log detF (iω) dω=
∑

i

Re zi −
∑

i

Re pi, (2)

where zi (resp. pi) are the eigenvalues of A
× (resp. A) in the right-hand plane.

A second generalization of Szegő’s limit was provided in (Dym and Ta’assan,
1981). While they consider a very general situation, their results can be used where
the function (1) is replaced by

(Fw)(t) = w(t) +

∫

∞

0

f(t, τ)w(τ) dτ , t ≥ 0.

In this paper we show that, for this case, the limit obtained in (Dym and Ta’assan,
1981) can also be expressed in terms of the antistable dynamics of a realization for F .
The results considered here are continuous-time versions of those in (Iglesias, 2001).
We note that the use of Szegő’s limits has a long history in the engineering community,
see (Grenander and Szegő, 1958; Iglesias, 2002).

The remainder of the paper is organized as follows: Section 2 provides some
necessary preliminaries on Lyapunov exponents, exponential dichotomies, inner/outer
and coprime factorizations. In Section 3 we present the relevant results from (Dym
and Ta’assan, 1981). We then present our main results in Section 4.

2. Preliminaries

We consider linear time-varying systems ΣG admitting a state-space representation

ΣG :=

{

ẋ(t) = A(t)x(t) +B(t)w(t)

y(t) = C(t)x(t) +D(t)w(t)
=

[

A(t) B(t)

C(t) D(t)

]

. (3)
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We will assume that all the matrix functions A(t) ∈ � n×n , B(t) ∈ � n×m , C(t) ∈
� m×n , D(t) ∈ � m×m are continuous, bounded functions of t defined for t ≥ 0.
With this system we associate an operator � mapping the input � to output � .
This operator has an integral representation

y(t) = D(t)w(t) +

∫ t

−∞

G(t, τ)w(τ) dt,

where the kernel G(t, τ) equals

G(t, τ) = C(t)ΦA(t, τ)B(τ), if t ≥ τ ,

and zero otherwise. The matrix function ΦA(t, τ) is the transition matrix which
equals

ΦA(t, τ) = X(t)X
−1(τ),

where X(t) is the fundamental solution to the matrix differential equation

Ẋ(t) = A(t)X(t), X(0) = X0

and X0 is invertible. The following result is standard, see, e.g., (Rugh, 1996), and
will be needed in the sequel.

Lemma 1. (Liouville’s formula) The transition matrix for A(t) satisfies

log detΦA(t, τ) =

∫ t

τ

trace
[

A(σ)
]

dσ

for every t and τ .

2.1. Lyapunov Exponents and Exponential Dichotomies

For time-varying systems, the Lyapunov exponents or characteristic numbers play
the same role as the real parts of the eigenvalues of the time-invariant matrix A(t) ≡
A. We now present, following (Dieci et al., 1997), some basic results on Lyapunov
exponents.

2.1.1. Lyapunov exponents

Consider the n-dimensional homogeneous system

ẋ(t) = A(t)x(t). (4)

Suppose that X(t) is the fundamental solution with an orthogonal initial condition
X0, and let {pi}

n
i=1 be an orthonormal basis for � n . Then the characteristic numbers

λi(pi) = lim sup
T→∞

1

T
log ‖X(T )pi‖ (5)

are well defined.



1264 P.A. Iglesias and G. Zang

Suppose that the orthonormal basis {pi}
n
i=1 is chosen so as to minimize

∑n

i=1 λi(pi). The basis is then said to be normal and the corresponding λi are called
the Lyapunov exponents. For now we will denote by λi the Lyapunov exponents
associated with a normal basis. It is well-known that, in this case,

n
∑

i=1

λi ≥ lim sup
T→∞

1

T

∫ T

0

trace
[

A(s)
]

ds. (6)

It is important to differentiate between the stable poles and zeros of the symbol of
the integral operator (1), which do not contribute to the right-hand side of (2), and the
unstable poles and zeros, which do. Time-varying systems which can be decomposed
into stable and antistable components are said to possess an exponential dichotomy.

2.1.2. Exponential Dichotomy

The linear system (4) is said to possess an exponential dichotomy if there exists a
projection P , and real constant γ > 0, λ > 0, such that

∥

∥X(t)PX−1(τ)
∥

∥ ≤ γ exp
(

− λ(t− τ)
)

, for t ≥ τ ,

∥

∥X(t)(I − P )X−1(τ)
∥

∥ ≤ γ exp
(

− λ(τ − t)
)

, for τ ≥ t.

Note that, if rank(P ) = ns, an exponential dichotomy implies that ns fundamental
solutions are uniformly exponentially stable, whereas nu = n − ns are uniformly
exponentially antistable. In this case we say that the exponential dichotomy is of
rank ns.

The existence of an exponential dichotomy allows us to define a stability preserv-
ing state space transformation (a Lyapunov transformation) that separates the stable
and antistable parts of A(t).

Lemma 2. (Coppel, 1978, Ch. 5) If the function A(t) in the realization (3) admits
an exponential dichotomy, then there exists a bounded matrix function V (t) with
bounded inverses such that

[

(

V̇ (t) + V (t)A(t)
)

V −1(t) V (t)B(t)

C(t)V −1(t) D(t)

]

=:







As(t) 0 Bs(t)

0 Au(t) Bu(t)

Cs(t) Cu(t) D(t)






,

where As(t) is stable and Au(t) is antistable.

Whenever two matrices A1(t) and A2(t) are related by a Lyapunov transforma-
tion, we say that they are kinematically similar, and this will be denoted by A1 ' A2.
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2.1.3. Dichotomy Spectrum

Exponential dichotomies permit us to present another form of spectral representation
for linear time-varying systems related to Lyapunov exponents. The dichotomy, or
Sacker-Sell spectrum, Sdich, of the system (4) is the set of real values λ for which the
translated systems

ẋ(t) =
(

A(t)− λI
)

x(t)

fail to have an exponential dichotomy (Sacker and Sell, 1978). In general, the spectrum
is a collection of compact non-overlapping intervals:

Sdich =

m
⋃

i=1

[λi, λi],

where m ≤ n and λ1 ≤ λ1 < λ2 ≤ λ2 < · · · < λm ≤ λm, and n is the dimension of
the A(t) matrix.

Suppose that real-valued λ0, λ1, . . . , λm are chosen in the complement of Sdich
so that

λ0 < λ1 ≤ λ1 < λ1 < λ2 ≤ · · · ≤ λm−1 < λm−1 < λm ≤ λm < λm. (7)

It is straightforward to check that for λ0 all the trajectories of (3) are antistable.
Similarly, for λm all the trajectories of (4) are stable.

Now, the matrix A(t) − λ1I admits an exponential dichotomy and thus, from
Lemma 2, is kinematically similar to a block-diagonal matrix. Equivalently,

A(t) '

[

A1(t) 0

0 Ā1(t)

]

,

where A1(t) is a square matrix of order n1. Repeating this process with λ2 leads to

Ā1(t) '

[

A2(t) 0

0 Ā2(t)

]

,

where A2(t) is a square matrix of order n2. Continuing this procedure will lead to
a sequence of matrices Ak(t) of size nk × nk, for k = 1, . . . ,m, so that A(t) '
diag{A1(t), . . . , An(t)} and n1 + · · ·+ nm = n. It should be stated that the resulting
matrices Ak(t) do not depend on the particular choice of λk provided that (7) holds.

Since A(t)−λoI is antistable, there exist an ε > 0 and a K ≥ 0, both depending
on λ0 such that, for t ≥ s,

1

Φ′A−λ0I(t, s)ΦA−λ0I(t, s) ≥ K
2 exp

(

− 2ε(s− t)
)

.

However, we have

ΦA−λ0I(t, s) = ΦA(t, s)e
−λ0(t−s),

1 We note that the prime ( ′) denotes the transpose and not a derivative.
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so that

Φ′A(t, s)ΦA(t, s) ≥ K
2 exp
(

2(λ0 + ε)(t− s)
)

,

and thus

log detΦA(t, s) ≥ n logK + n(λ0 + ε)(t− s).

Let t > s. Dividing by τ := t−s, taking the limit as τ →∞ and using Lemma 1,
we obtain

lim
τ→∞

1

τ

∫ s+τ

s

trace
[

A(σ)
]

dσ ≥ n(λ0 + ε).

The above holds for any λ0 < λ1. Passing to the limit λ0 → λ1, we have, for t = T
and s = 0,

lim
T→∞

1

T

∫ T

0

trace
[

A(σ)
]

dσ ≥ nλ1.

For λm, since A(t)− λmI is stable, we have

Φ′A−λmI(t, s)ΦA−λmI(t, s) ≤ K
2 exp

(

− 2ε(t− s)
)

for some K ≥ 0 and ε > 0. Proceeding as above, we obtain

lim
T→∞

1

T

∫ T

0

trace
[

A(σ)
]

dσ ≤ nλm.

This procedure can be repeated for all λk ∈ (λk, λk+1), k = 1, . . . ,m−1 to yield
the following:

Lemma 3. Suppose that the matrix function A(t) has a dichotomy spectrum Sdich =
⋃m

k=1[λk, λk] satisfying (7), and suppose that the corresponding Ak(t) have orders
nk, k = 1, . . . ,m. Then

m
∑

k=1

nkλk ≤ lim
T→∞

1

T

∫ T

0

trace
[

A(σ)
]

dσ ≤

m
∑

k=1

nkλk.

2.1.4. Regular Systems

In the special case where each of these intervals is a point (not necessarily unique), the
spectrum is known as a point spectrum. Here, each λi in the point spectrum equals a
Lyapunov exponent, and the system is said to be regular. Moreover, in this case the
lim sups in (5) and (6) can be replaced by limits, cf. (Dieci et al., 1997).

Clearly, time-invariant systems are regular and the elements of the point spectrum
are the real part of the eigenvalues of A. Similarly, if the matrix function A(t) is
periodic, then the Floquet theory (see (Rugh, 1996)) for a description) states that
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there exists a change of variables so that the resulting equation is time-invariant. The
resulting point spectrum coincides with the Floquet one.

In general, however, systems will not have point spectra. An example of a 2× 2
real matrix with almost periodic coefficients is given in (Millionščikov, 1969). Unfortu-
nately, regularity is hard to verify for any particular system, though all time-invariant
and periodic systems are regular. In these two cases, the spectral values are the mag-
nitudes of the eigenvalues and Floquet characteristic exponents of the system. For
systems involving a flow with an invariant probability measure, Oseledeč’s multiplica-
tive ergodic theory states that regularity occurs with probability one (Arnold, 1998).

2.2. Assumptions on the System

We will consider integral operators of the form � := � ∗ � , where � admits a
stabilizable and detectable state-space realization2 given by (3) with D(t) = I . We
will need the following additional assumptions. First of all, we need to differentiate
between the stable and antistable dynamics of ΣG. To this end, we make the following
standing assumption:

Assumption 1. The matrix A(t) admits an exponential dichotomy of rank npd .
Moreover, the antistable component has dichotomy spectrum

Λp = [p1, p1] ∪ [p2, p2] ∪ · · · ∪ [pm, pm]

with dimensions n1, . . . , nm and
∑m

k=1 nk = np, where npd + np = n.

We will also need to differentiate between the stable and antistable zero dynamics
of ΣF . Thus, we put the following restriction:

Assumption 2. The matrix A×(t) = A(t)−B(t)C(t) admits an exponential dichoto-
my of rank nzd . Moreover, the antistable component has dichotomy spectrum

Λz = [z1, z1] ∪ [z2, z2] ∪ · · · ∪ [zm′ , zm′ ]

with dimensions n′1, . . . , n
′

m′
and
∑m

′

k=1 n
′

k
= nz, where nzd + nz = n.

In the time-invariant case, the continuity of f(t) in (2) requires that CB = 0.
In our case, we impose the following condition:

Assumption 3. The operator � has a relative degree of at least two, i.e. C(t)B(t) =
0 for all t.

Finally, the following assumption is made for technical reasons:

Assumption 4. The derivatives Ḃ(t) and Ċ(t) are bounded.

2 A realization (3) is stabilizable if there exists a bounded F (t) such that A(t) + B(t)F (t) is
uniformly exponentially stable. Similarly, it is detectable if there exists a bounded L(t) such
that A(t) + L(t)C(t) is uniformly exponentially stable.
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2.3. Factorizations

2.3.1. Inner/Outer Factorization

In the following, we will need to compute an inner/outer factorization of a bounded
operator � . That is, we seek two systems with associated input/output operators � i
and � o such that � = � i � o, where � i, � o and � −1

o are all causal and bounded,
and ‖ � iw‖2 = ‖w‖2 for any w ∈ L2, where L2 is the space of square Lebesgue-
integrable, measurable vector-valued functions defined over the half-line [0,∞).

For a bounded operator which has the state representation

ΣN =

[

A(t) B(t)

C(t) I

]

(8)

we can derive state-space representations of its inner and outer factors in terms of
the solution of a related Riccati differential equation. In the following result, we say
that (A(t), B(t)) is uniformly completely controllable if there exist positive constants
σ, α and β such that

αI ≤W (t, t+ σ) ≤ βI,

where

W (t, t+ σ) :=

∫ t+σ

t

ΦA(t, τ)B(τ)B
′(τ)Φ′A(t, τ) dτ (9)

is the controllability Gramian of (A(t), B(t)).

The Riccati differential equation

−Ẋ(t) = A′(t)X(t) +X(t)A(t)−X(t)B(t)B′(t)X(t) (10)

has a stabilizing solution X(t) if X(t) = X ′(t) ≥ 0, X(t) is bounded and A(t) −
B(t)B′(t)X(t) is stable.

Lemma 4. Suppose that A(t) admits an exponential dichotomy and that the pair
(A(t), B(t)) is stabilizable. Then (10) has a stabilizing solution X(t) and:

(i) If A(t) is stable, then X(t) ≡ 0 for all t.

(ii) If A(t) is antistable, then ∃ ε > 0 such that εI ≤ X(t) for all t.

(iii) If (A(t), B(t)) =
([

As(t) 0
0 Au(t)

]

,
[

Bs(t)
Bu(t)

])

admits an exponential dichotomy as

in Lemma 2, then X(t) =
[ 0 0
0 Xu(t)

]

and ∃ ε > 0 such that εI ≤ Xu(t) for
all t.

Proof. Note that the solution to the general equation (10) and that of item (iii)
are related by X(t) 7→ T ′(t)X(t)T (t) where T (t) is the Lyapunov transformation of
Lemma 2. Thus, to prove the existence of a general solution it is enough to prove (i)—
which is trivial—and (ii). Note that the existence of the solution follows from the
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general result of (Vojtenko, 1987) that the Riccati differential equation has a solution
iff the corresponding Hamiltonian has an exponential dichotomy. In this specific case,
the Hamiltonian is block-diagonal and hence has an exponential dichotomy iff A(t)
has one. However, as we need to show the boundedness (from both above and below)
of the solution, we will first show its existence and this will lead to the required
bounds.

To prove (ii), we use the result of (Ilchmann and Kern, 1987), which states
that (A(t), B(t)) is uniformly stabilizable iff the pair (Au(t), Bu(t)) is uniformly
completely controllable. Note that in (ii), Au ≡ A and Bu ≡ B.

To prove item (ii), our approach follows that of (Kalman, 1960); see also (Ravi
et al., 1991). Consider the finite-horizon matrix equation

Q̇T (t) = A(t)QT (t) +QT (t)A
′(t)−B(t)B′(t), QT (T ) = 0.

The solution is QT (t) =W (t, T ), where W (t, T ) is given by (9). Note that

αI ≤ QT (t) ≤ βI for t < T − σ.

For two terminal times T2 > T1 it is straightforward to check that QT2(t) ≥ QT1(t)
for all t < T1 − σ. Thus {QT (·)}, indexed by T , is a nondecreasing sequence of con-
tinuous functions that is bounded from below. Consequently, there exists a (unique)
bounded function Q(t) defined as limT→∞QT (t) = Q(t). As in (Kalman, 1960), it
follows that Q(t) satisfies

Q̇(t) = A(t)Q(t) +Q(t)A′(t)−B(t)B′(t)

and αI ≤ Q(t) ≤ βI . Thus Q(t) is invertible. It is straightforward to check that
X(t) = Q−1(t) is the solution to (10) and that it is bounded from both above and
below. It remains to show that A(t) − B(t)B′(t)X(t) is stable. This follows from
the fact that due to the bounds on Q(t) it is a Lyapunov transformation and thus
A(t)−B(t)B′(t)X(t) is kinematically similar to −A′(t):

Q̇(t) =
(

A(t)−B(t)B′(t)X(t)
)

Q(t)−Q(t)
(

−A′(t)
)

and −A′(t) is stable since A(t) is anti-stable.

Lemma 5. Consider the operator � with stabilizable state-space representation (8).
Furthermore, assume that A×(t) has an exponential dichotomy. Then � has an
inner/outer factorization � = � i � o. State-space representations for the two factors
are

ΣNi =

[

A(t) −B(t)B′(t)X(t)−B(t)C(t) B(t)

−B′(t)X(t) I

]

(11)

and

ΣNo =

[

A(t) B(t)

B′(t)X(t) + C(t) I

]

, (12)

where X(t) is the solution of the Riccati differential equation

−Ẋ(t) = A×
′

(t)X(t) +X(t)A×(t)−X(t)B(t)B′(t)X(t). (13)
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Proof. The pair (A×(t), B(t)) is stabilizable iff (A(t), B(t)) is so. Thus, since A×(t)
has exponential dichotomy, the Riccati differential equation (13) has a stabilizing
solution. That rest of the proof is a straightforward extension of the time-invariant
result which can be obtained by the general formulae for inner/outer factorizations
that are found on pp. 367 and 368 in (Zhou et al., 1996).

2.3.2. Coprime Factorization

In order to associate Szegő’s limit theorem with the appropriate state space represen-
tation, we will need to compute a left coprime factorization of an operator � . The
pair of systems with associated operators � and � form a left coprime factorization
of � if � and � are both bounded operators, � −1 exists as a causal integral
operator, � = � −1 � , and � and � are left coprime; that is, there exist two
bounded integral operators � and � such that ��� + ��� = � .
For the operator which has the state-space representation

ΣG =

[

A(t) B(t)

C(t) I

]

(14)

we can derive state-space representations of its left coprime factors in terms of the
solution of a related Riccati differential equation.

Lemma 6. Suppose that A(t) admits an exponential dichotomy and that the pair
(C(t), A(t)) is detectable. Then the Riccati differential equation

Ẏ (t) = A(t)Y (t) + Y (t)A′(t)− Y (t)C ′(t)C(t)Y (t) (15)

has a stabilizing solution Y (t) and:

(i) If A(t) is stable, then Y (t) ≡ 0 for all t.

(ii) If A(t) is antistable, then ∃ ε > 0 such that εI ≤ Y (t) for all t.

(iii) If (C(t), A(t)) =
(

[Cs(t) Cu(t) ] ,
[

As(t) 0
0 Au(t)

])

admits an exponential dichotomy

as in Lemma 2, then Y (t) =
[

0 0
0 Yu(t)

]

and ∃ ε > 0 such that εI ≤ Yu(t) for
all t.

Proof. It is similar to that of Lemma 4 and therefore is omitted.

Lemma 7. Suppose that the operator � admits a detectable state-space represen-
tation (14) and that A(t) admits an exponential dichotomy. Then � admits a left
coprime factorization � = � −1 � , where � is co-inner, both of the two factors
are bounded and have state-space representations

ΣM =

[

A(t)− Y (t)C ′(t)C(t) −Y (t)C ′(t)

C(t) I

]

and

ΣN =

[

A(t) − Y (t)C ′(t)C(t) B(t)− Y (t)C ′(t)

C(t) I

]

. (16)
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Proof. The proof follows the time-invariant result which can be obtained by the general
formulae for left coprime factorizations that are found on p. 370 in (Zhou et al.,
1996).

We note that for the class of operators considered in Section 2.2, the operator �
satisfies the assumptions of Lemma 7. Thus we can write

� = � ∗ � = [ � −1 � ]∗[ � −1 � ] = � ∗ �
since � is co-inner.

We now show that the operator � satisfies the assumptions of Lemma 5. In
particular, we write the state-space representation (8) as

ΣN =

[

AN (t) BN (t)

CN (t) I

]

:=

[

A(t) − Y (t)C ′(t)C(t) B(t)− Y (t)C ′(t)

C(t) I

]

.

Then

A×
N
(t) :=AN (t)−BN (t)CN (t)

= A(t) − Y (t)C ′(t)C(t)−B(t)C(t)+Y (t)C ′(t)C(t)=A×(t), (17)

so that A×
N
(t) admits an exponential dichotomy since A×(t) does. Similarly, since

AN (t) is stable, the pair (AN (t), BN (t)) is stabilizable.

This allows us to compute an inner/outer factorization of � as in Lemma 5. In
particular, � = � ∗ � = � ∗

o � o, where

ΣNo =

[

AN (t) BN (t)

B′
N
(t)XN (t) + CN (t) I

]

(18)

and XN (t) is the stabilizing solution of the Riccati differential equation

−ẊN (t)=A
×
′

N
(t)XN (t) +XN (t)A

×

N
(t)−XN (t)BN (t)B

′

N (t)XN (t)

with A×
N
(t) = AN (t)− BN(t)CN (t). Finally, using (17), we can write this as

−ẊN (t)=A
×
′

(t)XN (t) +XN (t)A
×(t)−XN (t)BN (t)B

′

N (t)XN (t). (19)

3. Abstract Szegő Theorem

For continuous-time systems, (Dym and Ta’assan, 1981) provided an abstract version
of Szegő’s limit theorem. In particular, let � be a bounded integral operator with
an m×m matrix-valued kernel F (t, s) acting on L2, and let PT be the projection
defined as

PTx(s) =

{

x(s) if 0 ≤ s ≤ T ,

0 otherwise

for 0 ≤ T <∞.

In the sequel, we define ˆ� = � − I . It can be shown that log det(I + PT ˆ� PT )
serves as a natural continuous analogue of Szegő’s limit. For our purposes, the main
result of (Dym and Ta’assan, 1981) is the following.
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Theorem 8. (Dym and Ta’assan, 1981) Let ˆ� be an integral operator with contin-
uous kernel. Assume that PT ˆ� PT is trace class and that I + PT ˆ� PT is invertible
for all 0 ≤ t ≤ T . Then

log det(I + PT ˆ� PT ) = trace
[

PT � −PT + PT � +PT
]

, (20)

where � = (I + � −)(I + � +) is a right-factorization.

To use this result on the operator � considered in Section 2.2, we first need to
show that ˆ� := � − I is a trace class.

Lemma 9. (Iglesias, 2002) Let ˆ� = � − I, where � is the integral operator associ-
ated with the state-space representation (3). Furthermore, assume that the derivatives
Ḃ(t) and Ċ(t) are bounded. Then PT ˆ� PT is a trace-class operator.

Theorem 10. Let � be the operator defined as in Section 2.2. Then

lim
T→∞

1

4T
log det(I + PT ˆ� PT ) = lim

T→∞

1

2T

∫ T

0

trace
[

N̂o(t, t)
]

dt. (21)

Proof. The system associated with the input-ouput operator � has a state-space
representation given by

ΣF =

[

Ã(t) B̃(t)

C̃(t) 0

]

:=







A(t)−B(t)C(t) 0 B(t)

C ′(t)C(t) −(A(t)−B(t)C(t))′ −C ′(t)

−C(t) −B′(t) 0






.

The boundedness of Ã, B̃, ˙̃B, C̃ and ˙̃C follows from that of the corresponding
constituent matrices. Similarly, the continuity of B̃ and C̃ follows from that of B
and C. Thus, from Lemma 9, ˆ� := � − I is a trace class. That I + PT ˆ� PT is
invertible follows from the state-space description. We can now apply Theorem 8. In
our particular case, we get

� − = � ∗

o − I and � + = � o − I.

Furthermore, we can evaluate the right-hand side of (20), as in the proof of Theo-
rem 3.1 in (Dym and Ta’assan, 1981), see also (Gohberg and Krĕın, 1969, Ch. III.11),
as follows:

trace
[

PT ˆ� ∗

oPT + PT
ˆ� oPT
]

= 2

∫ T

0

trace[N̂o(t, t)] dt.

In the next section we will show how the integral defined by (21) is tied to the
antistable pole and zero dynamics of the system as in the time-invariant case.
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4. Main Results

Now we can provide a connection between the general Szegő-type limit considered in
the previous section and the antistable dynamics of the given system.

Theorem 11. For the integral operator � = � ∗ � , where � is the integral operator
admitting the state-space realization (3) which satisfies Assumptions 1–4, define ˆ� =

� − I. Then
m
∑

i=1

nip
i
−

m
′

∑

i=1

nizi≤ lim
T→∞

1

2T
log det(I + PT ˆ� PT )≤

m
∑

i=1

nipi −

m
′

∑

i=1

nizi, (22)

where p
i
and pi, i = 1, . . . ,m are the spectral values defined in Assumption 1, and

zi and zi, i = 1, . . . ,m
′ are the spectral values defined in Assumption 2.

Proof. By Theorem 10 we need to compute the kernel of ˆ� o = � o− I . From (18) we
have

N̂o(t, τ) =
[

B′N(t)XN (t) + CN (t)
]

ΦAN (t, τ)BN (τ), t ≥ τ,

and thus

N̂o(t, t) =
[

B′N (t)XN (t) + CN (t)
]

BN (t)

= B′N (t)XN (t)BN (t) + C(t)
[

B(t)− Y (t)C(t)′
]

= B′N (t)XN (t)BN (t)− C(t)Y (t)C
′(t), (23)

where (23) follows from Assumption 3.

Moreover, from Lemma 4 we obtain

trace
[

B′N (t)XN (t)BN (t)
]

= trace
[

BNu(t)B
′

Nu
(t)XNu(t)

]

.

Similarly, Lemma 6 gives

trace
[

C(t)Y (t)C ′(t)
]

= trace
[

C ′u(t)Cu(t)Y
′

u(t)
]

.

Now, note that the Riccati differential equation for XNu, given by (19), can be rewrit-
ten as

ẊNu(t) =
(

−
[

A×u (t)−BNu(t)B
′

Nu
(t)XNu(t)

]

′

)

XNu(t) +XNu(t)
(

−A×u (t)
)

.

For any t and τ the solution of this equation is

XNu(t) = Φ−[A×u −BNuB′NuX
′

Nu
]′(t, τ)XNu(τ)ΦA×u (τ, t).

In particular, let t = T and τ = 0. Now, taking the logarithm of the determinant of
both sides of this equation leads to

log detXNu(T ) = log detXNu(0) + log det Φ−[A×u −BNuB′NuX
′

Nu
]′(T, 0)

+ log detΦ
A
×

u
(0, T ).
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Furthermore,

lim
T→∞

1

T

(

log detXNu(T )− log detXNu(0)
)

= 0,

since XNu(t) is bounded from both above and below. Thus

lim
T→∞

1

T

(

log detΦ
−[A×u −BNuB

′

Nu
XNu ]
(T, 0) + log detΦ

A
×

u
(0, T )

)

= 0.

Applying Lemma 1 to both the transition matrices yields

log detΦ
−[A×u −BNuB

′

Nu
XNu ]

′(T, 0)

=

∫ T

0

trace[BNu(t)B
′

Nu
(t)X ′Nu(t)−A

×

u (t)] dt

=

∫ T

0

trace[BNu(t)B
′

Nu
(t)X ′Nu(t)] dt−

∫ T

0

trace[A×u (t)] dt

and

log detΦ
A
×

u
(0, T ) = −

∫ T

0

trace
[

A×u (t)
]

dt.

Thus

lim
T→∞

1

2T

∫ T

0

trace[BNu(t)B
′

Nu
(t)X ′Nu(t)] dt = lim

T→∞

1

T

∫ T

0

trace[A×u (t)] dt.

Similarly, working with the Riccati differential equation (15), we can show that

lim
T→∞

1

2T

∫ T

0

trace
[

C ′u(t)Cu(t)Yu(t)
]

dt = lim
T→∞

1

T

∫ T

0

trace
[

Au(t)
]

dt.

By Theorem 10 and (21), we have

lim
T→∞

1

4T
log det(I + PT ˆ� PT )

= lim
T→∞

1

2T

∫ T

0

trace
[

N̂o(t, t)
]

dt

= lim
T→∞

1

2T

∫ T

0

trace
[

BNu(t)B
′

Nu
(t)X ′Nu(t)− C

′

u(t)Cu(t)Yu(t)
]

dt

= lim
T→∞

1

T

∫ T

0

trace
[

A×u (t)−Au(t)
]

dt.

Finally, by Lemma 3 we obtain (22).
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Corollary 12. If, in addition to the assumptions of Theorem 11, the antistable com-
ponent of the system dynamics Au and A

×

u are regular, then

lim
T→∞

1

2T
log det(I + PT ˆ� PT ) =

m
∑

i=1

nipi −

m
′

∑

i=1

n′izi,

where pi and zi are the Lyapunov exponents of the antistable component Au and
A×u , respectively.

Proof. It follows directly from the definition of the regularity and Theorem 11.
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