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The paper introduces a method of mathematical modeling of high scale road traffic networks, where a new special hyper-
matrix structure is intended to be used. The structure describes the inner–inner, inner–outer and outer–outer relations, and
laws of a network area. The research examines the nonlinear equation system. The analysed model can be applied to the
testing and planning of large-scale road traffic networks and the regulation of traffic systems. The elaborated model is in
state space form, where the states are vehicle densities on a particular lane and the dynamics are described by a nonlinear
state constrained positive system. This model can be used directly for simulation and analysis and as a starting point for
investigating various control strategies. The stability of the traffic over the network can be analyzed by constructing a linear
Lyapunov function and the associated theory. The model points out that in intersection control one must take the traffic
density values of both the input and the output sections into account. Generally, the control of any domain has to take the
density of input and output sections into consideration.
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1. Introduction

Arneson and Langbort (2009) discuss the control of pos-
itive distributed systems. These systems represent the
flow-through dynamics of the incoming material in a net-
work of interconnected reservoirs according to mass con-
servation laws and the underlying structure of the inter-
connection network (Bastin, 1999). Such models have
been used to describe a variety of different systems in-
cluding automobile or aircraft traffic flow, job-balancing
in computer clusters (Fu et al., 2006) or any systems of
connected reservoirs with natural constraints, such as irri-
gation networks (Cantoni et al., 2007). The paper by Ar-
neson and Langbort (2009) focuses on linear techniques
for the design of static routing parameters for single des-
tination networks under the goal of minimizing the total
delay time while satisfying additional delay or capacity
constraints. Delay in an air traffic network is costly, with
costs arising, e.g., from missed connections or extra fuel
consumption associated with airborne delays. For this rea-
son, many algorithms for air traffic flow management have
the minimization of delay costs (at least in part) as an
objective. Many articles discuss such systems (see, e.g.,
Bertsimas and Patterson, 1998; Krozel and Penny, 2006).

Arneson and Langbort (2009) present a Linear Pro-
graming (LP) based method to design routing parameters
to minimize the total delay. They prove that this method
minimizes delay over all choices of routing parameters
ensuring that the closed loop system is stable, positive,
conservative and exhibits user specified interconnection.
They consider positive systems which can be described as
a network of sections through which material can travel.
The flow out of a given section can diverge and enter
multiple subsequent sections, including itself, and simi-
larly, flow from multiple sections can converge and enter
one subsequent section. The authors presented three theo-
rems which can be used to design static routing parameters
for positive, conservative systems representing the flow of
material through networks. Delay constraints and capac-
ity constraints can also be enforced. Haddad et al. (2010)
examined optimal steady-state control for isolated traffic
intersections. A simplified isolated controlled vehicular
traffic intersection with two movements is considered. A
discrete-event max-plus model is proposed to formulate
an optimization problem for the traffic lamp switching se-
quence. In the case when the criterion is a strictly mono-
tone linear function of the queue lengths, the problem be-
comes a linear programming one.
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Webster (1958) investigated the undersaturated con-
ditions for isolated traffic intersections, i.e., the total flow
entering the intersection can pass through within the cy-
cle duration. He derived an expression for the average
delay per vehicle for a given movement, based on theo-
retical analysis and empirical results. Other papers (e.g.,
Mazloumi, 2008; Rouphail and Akcelik, 1992) aimed to
improve the delay estimation formula for oversaturated
conditions, while others proposed different models, meth-
ods, and strategies for controlling oversaturated isolated
intersections (Chang and Lin, 2000; Gazis, 1964; Guard-
abassi et al., 1984; Improta and Cantarella, 1984; Kashani
and Saridis, 1983; Michalopoulos and Stephanopoulos,
1978; Talmor and Mahalel, 2007) where the control ob-
jective was to minimize delays or to maximize the inter-
section capacity. With proper sensors it is easier to mea-
sure queue lengths than to estimate delays. Therefore,
in the technical note by Haddad et al. (2010), the crite-
ria are functions of the queue lengths inspired by Gazis
and Potts (1963), so the time integral over the sum of all
queue lengths at the intersection, or the so-called “total de-
lay”, is minimized. A necessary and sufficient condition
for the steady-state control with constant cycle length was
also derived by Haddad et al. (2010). The N -stage control
problem was formulated. It was shown that the N -stage
control problem can be solved by LP if the criterion J
is linear and strictly increasing. Furthermore, Nava-stage
control can be used to bring the queue lengths to the opti-
mum.

Modeling and control of urban and city traffic net-
works are important tools to avoid congestions and traffic
jams (Peter and Bokor, 2010). Investigation of applica-
tions of various modeling and control paradigms aims at
helping to operate the traffic network more efficiently by
increasing the throughput of a network. In most cases,
models are used for simulation of various road traffic sce-
narios and serve as analysis tools. Modeling for con-
trol usually needs lower complexity models than those
used for analysis, and these are preferably described in
state space forms. A well known class of control ori-
ented models is based on the store-and-forward approach,
which describes a queue building in front of a stop line
(Drew, 1968; Gazis, 1976). This model is used in the TUC
urban control strategy proposed by Diakaki et al. (2003),
who designed and implemented a Linear Quadratic (LQR)
control strategy. Another control approach was elabo-
rated by Kulcsar et al. (2005) and Tettamanti et al. (2008),
with the focus on the model predictive control concept.
This approach allowed taking the green light constraints
into consideration. Soft computing methods are also
widely used in the analysis of traffic systems and trans-
port problems (see Földesi and Botzheim, 2010; Harmati
et al., 2007). Modern control methods offer powerful
mathematical tools which can be successfully applied also
in non-control oriented fields of vehicle dynamics, for ex-

ample, in the crash process (Harmati et al., 2010).

2. Mathematical model

A common topic of research projects is macroscopic mod-
elling, analysis and control of large-scale transport net-
work processes. For this purpose, we propose a test
methodology based on the theory of positive systems,
where, in essence, the model is a macroscopic one. The
first definition of positive systems was given by Luen-
berger (1979), stating that a positive system is the one
in which the state variables are not negative. The ma-
jority of the analysed road traffic processes meet this re-
quirement based on the original physical meaning of their
states. Road traffic processes are usually described in the
literature by setting up general linear systems of equations
not exploiting the positive characteristics of the processes.
We might think that the known properties of general lin-
ear systems are true in the case of positive systems as well,
but they are not. The terms of the controllability and ob-
servability of positive systems are not derivable from the
known methods applied in general systems.

The problem is particularly true when a non-negative
co-domain is required not only for the states, but for the
control input sign, too. Therefore, describing road system
processes as pure positive systems is not a trivial task from
the control engineering point of view. The control task in
this case means that the system must be controlled from
one state to another so that the states remain non-negative
values during the transitions, too. The descriptions of the
systems and controllability were given by Caccetta and
Rumchev (2000), Farina and Rinaldi (2000), as well as
Bacciotti (1983), Coxson and Shapiro (1987) and Valcher
(1996).

According to Boothby (1982) and Sachkov (1997),
regarding the real matrix A applied in control theory the
following theorem holds: The system is positive if and
only if the matrix A is a Metzler matrix, i.e., all of the
elements not in the main diagonal are non-negative (the
elements in the main diagonal may be arbitrary). In our

Fig. 1. Illustration of inner section modeling.
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case nonlinear positive systems are examined. The well-
known road traffic network models treat junctions or inter-
sections as essential elements in models. This results in a
graph which closely copies maps, while its apices are the
junctions or intersections, and the arcs are the road sec-
tions connecting them. The optimal function of junctions
is really important in the system. However, if we con-
sider their role more thoroughly, they are the inevitable
evil in the network. It would be ideal from the transporta-
tion point of view if less and less intersection traffic were
there. Furthermore, if they did not exist, one could get
from any point to another without intersection traffic. That
obviously sounds absurd, but this thought leads us to an-
other approach. It raises the question whether it is indeed
necessary to have junctions as the focus of examinations.

The correct answer is that as far as transport is con-
cerned, the focus of examination has to be placed on the
whole of the network. The components of the network are,
as an initial approach, the lanes and the parking spaces,
and the parking lanes alongside the roads. The parking
spaces and the parking lanes will be modeled as general-
ized sections of the network. These sections co-operate in
the whole network and these components form the edges
of the network graph. The edges of the controlled graph
will represent dynamic relations among the co-operating
sections. The relations between the sections are described
by an interaction matrix. It takes all elements included in
a particular map of the traffic network and all rules (in-
cluding traffic lights) that determine how the traffic runs
into consideration. The rules specify the traffic on the el-
ements, and a set of conditions on how the traffic flows
from one element to another. The map also contains im-
portant parameters, such as the length, width, the num-
ber of lanes, the number of vehicles that can be located
in parking spaces, numeric figures of the allowed speed,
which considered the parameters of the dynamical model.
A junction does not appear as an individual component
here, as the function of each junction is a part of the re-
lation system. A particular component of the model (sec-
tion) is illustrated in Fig.1.

Assuming that h is the length of a unit-vehicle, the
state of a section i is defined as

xi(t) =
ni(t) · h

li
, (1)

where ni denotes the number of vehicles on section i, h
and li denote the average length of the vehicles and the
length of this section, respectively. This definition results
in a dimensionless quantity describing the ratio of the total
length of vehicles moving on section i and the length of
this section. The state variables are positive and satisfy
0 ≤ xi ≤ 1.

The in-flow and out-flow vehicle traffic densities are
denoted by sk, k ∈ M , where the index set M specifies
the number of flows entering and leaving section i. In this

model the (geometrical) vehicle density is positive, too,
and satisfies 0 ≤ s ≤ 1. It is a dimensionless quantity
which measures the ratio of the total length of vehicles on
a certain section and the length of that section.

To make a comparison with the conventional use of
vehicle density definition S with the dimension of the
number of vehicles per km (Diakaki et al., 1998; Kachroo
and Ozbay, 1999; Papageorgiu, 1991), this definition de-
scribes traffic density as the number of vehicles being on
a given road section, in an amount t of time. The dimen-
sionless s can be related to S by using the length of the
unit-vehicle h, measured in meters, as

s =
S · h
1000

. (2)

The parking spaces can be modeled as generalized sec-
tions of the network. Denote byPi a parking space where
the number of vehicles that can be stored is denoted by
Ni, and the number of vehicles parking there at a particu-
lar time instance t is given by ni(t). Define the associated
state variable as xi(t) = ni(t)/Ni so that

xi(t) =
ni(t) · h
Ni · h , (3)

and therefore a fictive section with length li = Ni · h can
be defined and added to the network.

Our transport network model, consisting of n pieces
of inner sections, describes that route/urban transport sys-
tem, which is located in a region bounded by a closed
curve.

In this case, the (Hi) vehicle densities evolving on
the inner network are the system’s features of condition,
in the order of x1(t), x2(t), x3(t), . . . , xn(t). The model
also uses the sub-network of the outer network (Ho),
which consists of such m pieces of sections that have a
direct relation with some inner sections. Vehicle densities
evolving on them are indicated by s1(t), s2(t), . . . , sm(t),
which are known based on measurements. Our mathemat-
ical model depicting the network takes into consideration
the inner relations of the network within the region and
the outer relations of it outside the region in Fig. 2.

The traffic network under consideration will consist
of n inner sections and describes a route/urban transport
system which is located in a region within a closed curve.
The state vector x(t) = [x1(t), x2(t), x3(t), . . . , xn(t)]
will include all the states of the inner elements and the
variables s will be considered measurable exogenous vari-
ables.

The state equation of the original physical model is
the following nonlinear differential set of equations:

ẋ = L−1 [K(x(t), s(t))x(t) + Kex(x(t), s(t))s(t)] ,
(4)

where x ∈ R
n, s ∈ R

m, L = diag{l1, . . . , ln} con-
tains the lengths of the inner sections (∀li > 0, i =
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1, 2, . . . , n), K ∈ R
n×n, Kex ∈ R

n×m. In the model for
any xi (i = 1, 2, . . . , n) and sk (k = 1, 2, . . . , m) state-
parameters are dimensionless densities and take values in
the interval [0, 1].

In the case of Eqns. (5), (8) and (15) the original
physical model is written in the form of conventional state
equations relative to control models.

On the basis of the following it is evident that K is a
Metzler matrix and Kex is a positive matrix, which does
not contain negative elements.

The physical meaning of the elements vij (i =
1, 2, . . . , n; j = 1, 2, . . . , n) of matrix K is a velocity
(m/s). In the case of vij it means the transitional velocity
from inner section j to inner section i (j �= i), which is
a non-negative value. On the main diagonal, vjj (which
denotes the outflow velocities from inner section j) is the
sum of outflow velocities to the inner and outer sections
in the case of section j. These are non-positive values. To
sum up, there are zeroes or negative values on the main
diagonal of K , every other element is zero or positive;
consequently, K is a Metzler matrix.

The physical meaning of the elements vex
ij (i =

1, 2, . . . , n; j = 1, 2, . . . , m) of matrix Kex is a velocity
(m/s) as well. In the case of vex

ij it means the transitional
velocity from outer section j to inner section i, which is
a non-negative value. Consequently, in the case of Kex,
every element of the matrix is zero or positive.

In Eqns. (5) and (8), matrices A, Bs in the discrete
model and matrices Ã, B̃s in the continuous model are
composed from matrices K and Kex with linear transfor-
mation. In the following transformations the elements of
matrices K and Kex are multiplied by positive numbers
and positive values are added to the elements on the main
diagonal as well. The result of the transformation in the
case of A and Ã is a Metzler matrix and in the case of Bs

and B̃s a positive matrix.
The state equations can be constructed by describ-

ing the traffic interactions among the sections including
the effect of in- and out-flows s. The interactions will be
effected by traffic lights as will be illustrated later. The

Fig. 2. Relations of the inner and the outer network.

effects of green lights will be considered positive control
inputs.

The state space model in discrete time can be ex-
pressed as

x(t + 1) = A(x(t), s(t))x(t) + Bs(x(t), s(t))s(t), (5)

where 0 ≤ x(t) ≤ 1 and 0 ≤ s(t) ≤ 1, ∀ t, and

A(x(t), s(t)) = L−1[L + TK(x(t), s(t))], (6)

Bs(x(t), s(t)) = L−1TKex(x(t), s(t))], (7)

where T is the model step.
Generally, Kij = kijvij(t), Kex

ij = kex
ij vex

ij (t) and
vij(t) = f(xi(t), xj(t)) or vex

ij (t) = f(xi(t), sj(t)). The
system is a positive system, and the model is essentially a
macroscopic model.

In continuous time one can construct the state equa-
tions in a similar form:

ẋ(t) = Ã(x(t), s(t))x(t) + B̃s(x(t), s(t))s(t), (8)

where

Ã(x(t), s(t)) = L−1K(x(t), s(t)), (9)

B̃s(x(t), s(t)) = L−1Kex(x(t), s(t)). (10)

Although our model is a special macroscopic model, with
this method it can be used to determine the individual ve-
hicle movements and the expected arrival times (Peter and
Basset, 2009). The above mentioned problem requires us-
ing the calculus of variations. The solution is simplified
by the fact that the number of the possible trajectories is
finite. Using assumptions on the dependence of the vehi-
cle speed on the traffic density, there are many options to
specify the matrix function Ã, B̃s; see, e.g., the works of
Greenshields (1934) (linear) or Greenberg (1959) (loga-
rithmic). In the foregoing investigation we use the Green-
shields function that assumes a linear relation between
speed and density in the form v(x) = Vmax(1−x), where
Vmax defines a maximum speed. Under this assumption
the (i, j)-th elements of the matrices Ã, B̃s will depend
on the speed v(x) such that

vij =
li · Vmax(1 − xi) + lj · Vmax(1 − xj)

li + lj
. (11)

Traffic constraints can be taken into consideration,
too. If section i is full, i.e., xi = 1, then no vehicles
can pass from, e.g., section j to i. This situation can be
described by the function

S(xi) =
{

0 if xi = 1,
1 otherwise.

(12)

Also, there are no vehicles passing from section j if it is
empty. This can be modeled by defining a function

E(xj) =
{

1 if xj > 0,
0 if xj = 0.

(13)
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The element of the matrices taking these situations
and traffic light controls into consideration can now be
written as

vij

= uiS(xi)
li · Vmax(1 − xi) + lj · Vmax(1 − xj)

li + lj
E(xj)

(14)

for all t ≥ 0, where ui is the length of the green light
associated with section i, (i �= j).

In the sections that have interactions with exogenous
variables, the state variables xi will be replaced by si.
With obvious rearrangements, the continuous time state
equations can be written in the form

ẋ(t) = Â(x(t), s(t))x(t) + B̂s(x(t), s(t))s(t)

+ B̂u(x(t), s(t))u(t). (15)

If there is no traffic light control in a given network, the
last term is missing.

Let us examine the types of matrices Â and B̂ in
Eqn. (15). This equation can be written with separation
based on the original physical equation in the following
form:

Â = K(x, s, u = 0), (16)

B̂ = Kex(x, s, u = 0). (17)

B̂u ∈ R
n×q, where the i-th column (i = 1, . . . , q) is

∂

∂ui
(K(x, s, u) · x) +

∂

∂ui
(Kex(x, s, u) · s). (18)

In this case, the following is considered: In the origi-
nal physical model ui (i = 1, 2, , q) are non-negative con-
trol signals and multiplier factors of the matrix elements.
Every element can be multiplied by only one ui factor.
However, a factor ui can modify several elements.

In this procedure elements are omitted from the orig-
inal K Metzler matrix resulting in a matrix Â, which, con-
sequently, is a Metzler matrix as well. In the same way el-
ements are omitted from the positive matrix Kex resulting
in a matrix B̂, which hence is a positive matrix as well.

Since the matrices Â, B̂s and B̂u are functions of the
measurable variable s and the state variable x, this system
is called a quasi Linear Parameter Varying (qLPV) system.
In addition, it can be shown that in most situations (for
fixed x, and s), the matrix Â is a Metzler matrix and this
qLPV system is positive. This leads to the investigation
of equilibrium points, stability and control by using the
theory of qLPV and of positive systems. There are few
existing literature items that publish results on this class
of systems.

3. Equilibria and Lyapunov stability

A nonlinear positive system can have many equilibrium
points. Their stability can be investigated through Lya-
punov theory using a linear Lyapunov function,

V (x) =
n∑

i=1

fixi. (19)

For the discrete time system the condition V (t + 1) <
V (t) ensures asymptotic stability of the origin, (see, e.g.,
Luenberger, 1979). The examination of this expression
generates a solution for the control law through the Lya-
punov function, which gives an eligible solution for the
asymptotic stability of the system and can dynamically
be applied to the whole region as well as its critical sub-
domains.

In the following discussion we examine the stabil-
ity of the origin of the state space using the continuous
time model with no control input u. Assume that the con-
straints described by the functions S, E are not active.
For the autonomous system (8), the following result can
be obtained.

Proposition 1. The system described by Eqn. (8) is stable
at the origin if

n∑
j=1

m∑
w=1

vout
wj xj >

m∑
j=1

n∑
i=1

vinp
ij sinp

j , ∀t > 0, (20)

where

vout
wj = Vmax

pw · (1 − sout
w ) + lj · (1 − xj)
pw + lj

(21)

and

vinp
ij = Vmax

li · (1 − xi) + pj · (1 − sinp
j )

li + pj
, (22)

i.e., the aggregated out-flow traffic on the boundary is
larger than the aggregated in-flow traffic.

Proof. The outline of the proof is the following.
The derivative of the Lyapunov function is V̇ (x) =∑n

i=1 fiẋi. If we take fi = li, i.e., the coefficients are
the section lengths, then

V̇ (x) =
n∑

i=1

liẋi = lT L−1[K(x, s)x + Kex(x, s)s].

(23)
Since lT L−1 = [1, 1, . . . , 1], the above function is the
sum of the columns of the relation matrices K(x, s),
Kex(x, s). By construction, the elements on the main di-
agonal of K(x, s) have the form

vii = −
⎡
⎣
⎛
⎝ n∑

r=1, r �=i

vri(xr, xi) +
m∑

w=1

vwi(sw, xi)

⎞
⎠

⎤
⎦ ,

(24)
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where the first term is the negative of the sum of all the
other elements in the column i. This shows that the sum
of the elements in the i-th column of K(x, s) is

m∑
w=1

vwjxj < 0. (25)

�
Similarly, the i-th column sum of the matrix Kex(x, s)s
is obtained as

∑n
i=1 vijsj > 0. Then the time derivative

of the Lyapunov function will be negative for all t if the
condition in (20) is satisfied.

Notice that it is simple to find a physical meaning
of this Lyapunov function. Since the state is defined as
xi(t) and V (x) =

∑n
i=1 lixi = h

∑n
i=1 ni , the value of

this function is equal to the total length of the vehicles on
the inner road network. The negative value of the deriva-
tive V̇ ensures that the total number of vehicles, i.e., the
total length of the road occupied by the vehicles, will de-
crease in the network. A trivial consequence is that the
autonomous system (Sex = 0) has always a stable equi-
librium at the state space origin.

Therefore, the negative value of the derivative of
V (t), according to t, means a decrease in the total number
of vehicles as well as a decrease in the total amount of the
occupied road length in the inner road network.

This examination generates a solution for the control
law through the Lyapunov function, which gives an eligi-
ble solution for the asymptotic stability of the system and
can be dynamically applied to the whole region and to its
critical sub-domains.

4. Application example

This section illustrates the construction of the state space
model for a simple network (two-way road crossing with
traffic lights) shown in Figs. 4–5. It consists of four in-
flow sections described by the exogenous variables s1, s3,
s5, s7, eight states x = [x1, x2, x3, x4, x5, x6, x7, x8]T ,

Fig. 3. Control law practising the Lyapunov function in the re-
gion and sub-regions.

and four outflow sections; the associated variables are de-
noted by s2, s4, s6, s8. Assume that we have a single
traffic light u1 green at section 1 while red at section 2,
resulting in u2 = 1 − u1.

In continuous time the state equation can be de-
scribed as (15), where

• matrix Â is a 8 × 8 sparse matrix whose nonzero el-
ements are the following:

Â(2, 2) = −ao2,2(s2, x2),

Â(2, 7) = a2,7(x2, x7) − a2,7(x2, x7)α8,7,

Â(3, 3) = −α4,3a4,3(x4, x3) − a6,3(x6, x3),
+ a6,3(x6, x3)α4,3,

Â(4, 3) = α4,3a4,3(x4, x3),

Â(4, 4) = −ao4,4(s4, x4),

Â(6, 3) = a6,3(x6, x3) − a6,3(x6, x3)α4,3,

Â(6, 6) = −ao6,6(s6, x6),

Â(7, 7) = −a2,7(x2, x7) + a2,7(x2, x7)α8,7,

− α8,7a8,7(x8, x7),

Â(8, 7) = α8,7a8,7(x8, x7),

Â(8, 8) = −ao8,8(s8, x8);

Fig. 4. Two-way road crossing with the traffic light u1 = 1.

Fig. 5. Two-way road crossing with the traffic light u1 = 0.
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• matrix B̂s is an 8 × 8 sparse matrix whose nonzero
elements are the following:

B̂s(1, 1) = ai1,1(x1, s1),

B̂s(3, 3) = ai3,3(x3, s3),

B̂s(5, 5) = ai5,5(x5, s5),

B̂s(7, 7) = ai7,7(x7, s7);

• matrix B̂u is equal to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−α2,1a2,1(x2, x1) − (1 − α2,1)a4,1(x4, x1))x1

α2,1a2,1(x2, x1)x1 − (1 − α8,7)a2,7(x2, x7)x7

(α4,3a4,3(x4, x3) + (1 − α4,3)a6,3(x6, x3)) x3

(1 − α2,1)a4,1(x4, x1)x1 − α4,3a4,3(x4, x3)x3

(−α6,5a6,5(x6, x5) − (1 − α6,5)a8,5(x8, x5))x5

−(1 − α4,3)a6,3(x6, x3)x3 + α6,5a6,5(x6, x5)x5

((1 − α8,7)a2,7(x2, x7) + α8, 7a8,7(x8, x7))x7

(1 − α6,5)a8,5(x8, x5)x5 − α8,7a8,7(x8, x7)x7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(26)

where

ai,j(xi, xj) = S(xi)vi,j(xi, xj)E(xj),
aoi,j(si, xj) = S(si)vi,j(si, xj)E(xj),
aii,j(xi, sj) = S(xi)vi,j(xi, sj)E(sj),

and we adapt the following notation:

αi,j the distribution rate (j → i),

vi,j the velocity of the flow (j → i), defined by (11),

S defined by (12),

E defined by (13).

The performance variable z is defined as the sum of
the number of vehicles (see Fig. 6) that can be transmit-
ted through the junction under all possible connections
of road sections controlled (switched) by the traffic light
(Peter and Bokor, 2010). In this example there are two

u(t)=E

[
t+Tper∫

t

z1(τ) dτ−
t+Tper∫

t

z2(τ) dτ

]

ẋ(t)=Â(x,s)x+B̂s(x,s)s+B̂u(x,s)u(t)�

u

�s �z

�
x(t)

�

Fig. 6. Control loop of the traffic network control.

possible switched connections, and the control objective
is ∫ t

t0

z(τ) dτ → Max!. (27)

The control signal is a switching signal computed
from the difference of the predicted number of transmit-
ted vehicles in a given road section connection (section
topology):

z1(t) =
4∑

i=1

N Inp
2i−1(t) +

4∑
i=1

NOutp
2i (t) + N1(t), (28)

z2(t) =
4∑

i=1

N Inp
2i−1(t) +

4∑
i=1

NOutp
2i (t) + N2(t), (29)

where the number of transmitted vehicles in the period dτ
is

4∑
i=1

N Inp
2i−1(t),

4∑
i=1

NOutp
2i (t), N1(t), N2(t),

(30)

N1(t) = N12(t) + N14(t) + N56(t) + N58(t), (31)

N2(t) = N34(t) + N36(t) + N72(t) + N78(t), (32)

z(t) =
4∑

i=1

N Inp
2i−1(t) +

4∑
i=1

NOutp
2i (t)

+ N1(t) · u(t) + N2(t) · (1 − u(t)), (33)

and

u(t) = E

⎡
⎣

t+Tper∫
t

z1(τ) dτ −
t+Tper∫

t

z2(τ) dτ

⎤
⎦ , (34)

where E(x) = 1 if x > 0 and E(x) = 0 if x ≤ 0 (see
Fig. 6).

It can be deduced that this control is in a state feed-
back form and results in a switched (in this case bimodal)
state dependent switching control system. The result of
the simulations shows an increased number of transmit-
ted vehicles as shown in Fig. 7, when compared with the
traditional equally partitioned green light control strategy.
When applying the switching control strategy, one can im-
pose more conditions on u, like a minimum dwell time
and a constraint on the periodicity.

In a generic case, considering an intersection of n
phases, the control uk(t) = 1 of the k-th phase is realized
when the phase possesses the highest amount of Nk, the
pre-calculated vehicle transmission. The control signal
can be explicitly formulated mathematically if all phases
possess different transfer rates:

uk(t) =
n∏

i=1;i�=k

E(Nk − Ni), k = 1, 2, . . . , n .

(35)
In this case, uk(t) = 1, and ui(t) = 0. (i �= k, i =
1, 2, . . . , n).
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5. Summary

The model can be applied to analyze and design large-
scale road traffic networks by simulations and to investi-
gate control strategies in traffic systems. A special macro-
scopic model was used. Thus, mathematical models lead-
ing to partial differential equation systems can be avoided.
Junction does not play a quintessential role in our special
model, i.e., there are sections that either co-operate or not.
The parallel lanes have an effect on each other. This in-
teraction, which refers to depending on each other or dis-
turbing each other, influences the density and speed of ve-
hicles moving on parallel lanes. The incoming traffic also
has an effect on the right and left lanes. This interaction
manifests itself in the disturbance caused by passing each
other. The defined parking spaces as well as the parking
lanes alongside the roads are modeled as generalized sec-
tions in the network, and the vehicles parking there also
interact with network sections. In the proposed model the
vehicle density refers to the ratio of the total length of ve-
hicles on a given section and the length of this section.
Our road traffic model examines the vehicle density on the
sections of a road network located within a closed curve.
The vehicle flows into and out of the region are considered
to be measurable. The in-flow vehicle densities measured
on the boundaries of road sections act as exogenous sig-
nals. The densities xi(t) appearing on the road sections of
the region are the system states.

The state equations derived from the operation of this
road network are in the form of a positive qLPV system.
Stability analysis of the origin of the state space was per-
formed using Lyapunov theory. In addition, simulations
under various traffic situations show that the model can
also serve for designing traffic light control to increase the
throughput of traffic networks.

7000
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0
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Optimal system

Fig. 7. Traffic flow through: the number of transmitted vehicles,
two-way road crossing with traffic lights: the original
and the system.

6. Conclusions

The research is expected to result in a new modelling
methodology, by which the basic task is to create a more
efficient model that describes and manages dynamic net-
work systems of all sizes. In the course of this, elements
must be determined of which a road transport system of
any size can be built.

The other expected result of the research is that the
new model leads to positive nonlinear systems theory (in-
stead of the former traditional map-graph approach) in the
field of mathematics. Solving large network problems, a
new domain-level control principle and optimization us-
ing the Lyapunov function can be realized.

The research of large traffic networks is, besides the
theoretical discussion, of major practical importance, too.
There are significant economic interests worldwide in de-
signing the optimum flow of vehicles and the optimal
routes, as well as increasing safety. An expected prac-
tical result of the research is that the model will pro-
vide instructions for traffic control centres to avoid traffic
jams based on real-time measurements (but by calcula-
tions faster than real time).

The model will also provide instructions for traffic
control centres to avoid traffic congestions or environmen-
tal damages based on real-time vehicle density or emis-
sion measurements within a range. It will provide infor-
mation for the vehicles to select an optimal and safe traffic
route through a domain based on pre-calculations to avoid
traffic jams.

Thanks to the available network IT equipments and
many on-vehicle electronic and electromechanical com-
ponents the majority of the targets are now achievable.

From the mathematical point of view the linear Lya-
punov function applied in positive systems is certainly not
a new result in itself. The new result in our case is the
physical content of the Lyapunov function, which defines
the length of all vehicles on a network bounded by an ar-
bitrary closed curve. This result provides new possibilities
in realizing the optimal control on the domain level.
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