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Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unam-
biguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework
and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the
properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems
and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and
comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature,
and by providing a method based on differential algebra to check these properties.
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1. Introduction

Identifiability is an important concept that decides to what
extent the parameter values of a mathematical model can
be uniquely inferred from input-output measurements,
assuming that the model has the same structure as the
system (Nelles, 2002). Mathematically, this means that
there exists an unambiguous mapping between the model
parameters and the output trajectories. Identifiability
is hence a pre-condition for safely running a parameter
estimation algorithm and obtaining reliable results.

In the last years, there has been quite a lot
of emphasis on bounded-error models, as opposed to
stochastic ones, for achieving several tasks, e.g., fault
diagnosis and fault tolerant control (Puig, 2010; Seybold
et al., 2015), robust robot localization (Kieffer et al.,
2000), reachability analysis (Auer et al., 2013; Maiga
et al., 2016). This has been stressed by the success of
operational estimation methods aiming at computing sets
guaranteed to contain the feasible parameter/state set,
i.e., the set of all the parameter/state vectors consistent
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with the specified bounds. This is why bounded, or also
called set-membership, estimation is qualified as guar-
anteed (Kieffer et al., 2002). In this paper, we use the
term set-membership, abbreviated as SM, having in mind
that the type of sets can be of different kinds, such as
ellipsoids (Kurzhanski and Valyi, 1997), boxes (Kieffer
and Walter, 2011), parallelotopes (Chiscii et al., 1996),
zonotopes (Alamo et al., 2005), or other polytopes.

Interval analysis has brought a set of tools that
indifferently apply to linear and nonlinear systems (Jaulin
et al., 2001) as opposed to ellipsoidal and zonotope-based
estimation methods. Furthermore, its efficiency has been
considerably enhanced by recent constraint propagation
techniques (Chabert and Jaulin, 2009; Kieffer and Walter,
2011; Maiga et al., 2013), resulting in the most
appropriate paradigm to deal with nonlinearities.

Identifiability of SM nonlinear models has been
shown to give rise to three concepts: SM-identifiability,
μ-SM-identifiability, and ε-SM-identifiability that we
introduced earlier (Jauberthie et al., 2011; 2013). In this
paper, we are interested in the way these properties impact
the SM parameter estimation (SM-PE) problem. This
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issue is characterized by two new properties. Soundness
guarantees that the feasible parameter set (FPS) is reduced
to one single bounded connected set. On the other hand,
ε-consistency is a numerical property that guarantees that
the FPS and the solution set returned by a parameter
estimation algorithm with precision ε are composed of an
equal number of mutually disjoint connected sets. While
abundant literature exists on SM-PE (Jaulin et al., 2001;
Raı̈ssi et al., 2004; Kieffer and Walter, 2011; Milanese
et al., 2013; Herrero et al., 2016), these problems have
never been discussed in relation to SM-identifiability.

The paper is organized as follows. Section 2 recalls
the definitions of SM-identifiability, μ-SM-identifiability,
and ε-SM-identifiability, and a method for checking these
properties. Section 3 brings a first contribution with a
thorough analysis of the links between these ones and
related properties existing in the literature. Section 4
introduces the properties of SM-PE problems, namely,
soundness and ε-consistency, as Sections 5 and 6 derive
the conditions that guarantee these properties. Finally,
Section 7 concludes the paper and discusses perspectives
of the work.

2. Set-membership identifiability

This section resumes the framework proposed by
Jauberthie et al. (2013) for SM-identifiability for the class
of systems formalized below.

2.1. Class of systems. The models considered in
this paper are bounded-error uncertain nonlinear models,
controlled or uncontrolled, of the following form:

Γ =

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t, p) = f(x(t, p), u(t), p),
y(t, p) = h(x(t, p), p),
x(t0, p) = x0 ∈ X0,
p ∈ P ⊂ UP , t0 ≤ t ≤ T,

(1)

where

• x(t, p) ∈ R
n and y(t, p) ∈ R

m denote the state
variables and the outputs at time, t respectively;

• u(t) ∈ R
r is the input vector at time t; in the case of

uncontrolled models, u(t) is equal to 0;

• the initial conditions x0, if any, are assumed to
belong to a bounded set X0, and one assumes that X0

does not contain equilibrium points of the system;

• the parameter vector p belongs to a connected set P
assumed to be included in UP , where UP ⊆ R

p is
an a priori known set of admissible parameters; the
components of p are denoted by pi;

• the functions f and h are real and analytic1 on M ,
where M is an open set of Rn such that x(t, p) ∈ M
for every t ∈ [t0, T ] and p ∈ P , T is a finite or
infinite time bound.

In the following, Y (P ) denotes the set of output
trajectories, the solution of Γ for any p ∈ P , and is also
called the output of Γ arising from P . P c denotes the
complement of P in UP .

2.2. Useful concepts. Let us consider a nonempty
connected set Π of Rp, ‖ · ‖ a usual norm on R

p and d
its associated distance.

The distance2 between two sets Π1 and Π2 of Rp is
defined by

d(Π1,Π2) = min
π1∈Π1,π2∈Π2

d(π1, π2).

Let us define δ(Π) as the diameter of Π. δ(Π) is
given by the least upper bound of {d(π1, π2), π1, π2 ∈
Π}. If Π is not bounded, we define δ(Π) = +∞
(Bourbaki, 1989). On the metric space (Π, d), let μ be
a continuous map from Π to Π. As an extension of the
definition of contraction by Munkres (1975), we define
μ as a set contraction if there is a nonnegative number
k < 1 such that for all Π1, Π2 ⊆ Π, d(μ(Π1), μ(Π2)) <
kd(Π1,Π2). In the following, ‖ · ‖ denotes the Euclidean
norm, ‖ · ‖∞ the maximum norm, and ‖ · ‖1 the norm 1.
These may be defined on R

α, where α ∈ {n, p,m} ,
depending on the case.

2.3. Definitions. The proposed definitions are given
for controlled systems but they can be formulated in
a similar manner for uncontrolled ones assuming that
u(t) = 0.

Definition 1. Given the model Γ expressed by (1),
consider a nonempty connected set P ∗ ⊆ UP and another
set P̄ ⊆ UP . Then P ∗ is globally SM-identifiable if there
exists an input u such that Y (P ∗) �= ∅ and Y (P ∗) ∩
Y (P̄ ) �= ∅ =⇒ P ∗ ∩ P̄ �= ∅.

Definition 1 states that a connected set P ∗ is globally
SM-identifiable if the output of Γ arising from P ∗ does
not share any trajectory with the output of Γ arising from
any set P̄ ⊆ P ∗c. As an example, consider the following
nonlinear system of the form (1):

ẋ = x+ t cos(p), x(t0) = x0, (2)

1The assumption that f and h are analytic on M , and hence infinitely
differentiable, is needed in Section 3.3 for the use of differential algebra.
In particular, proving sufficiency in Theorem 1 requires y(t, p) to be
expressed as a Taylor series. This proof is provided by Jauberthie et al.
(2013).

2To keep the concept intuitive, it is a deliberate abuse of language to
call d(Π1,Π2) a distance between the two sets Π1 and Π2 of Rp , even
though it does not satisfy all the assumptions of a distance, in particular
the triangular inequality.
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where p is a bounded-error parameter for which the
admissible set is UP = [0, 2π]. The solution of (2) is
x(t) = x0e

t + (−1 − t + et) cos(p). It is clear that
this system is not globally identifiable. It is enough
to notice that any pair (p1 = π − α, p2 = π + α),
with α ∈ [0, π], results in the same trajectory, since
cos(π − α) = cos(π + α) for α ∈ [0, π]. However,
the trajectories arising from any set P ∗ = [π − α, π + α]
with α ∈ [0, π] are different from any trajectory arising
from other regions of the parameter space. P ∗ is then said
to be globally SM-identifiable.

The definition of μ-SM-identifiability has been
proposed to ensure that the set P ∗ may be contracted as
small as desired while still retaining the SM-identifiability
property. For this purpose, a contractionμ is applied to P ∗

and, by the Banach fixed-point theorem, it implies that the
diameter of μ(P ∗) tends to zero (Munkres, 1975).

Definition 2. A nonempty connected set P ∗ ⊆
UP is globally μ-SM-identifiable if μ(P ∗) is globally
SM-identifiable for any contraction μ from P ∗ to P ∗.

This implies the following proposition.

Proposition 1. If the nonempty connected set P ∗ ⊆
UP is globally μ-SM-identifiable, then it is globally
SM-identifiable. The converse is not true.

Proof. For the converse, consider the system (2) and
the set P ∗ = [π − α, π + α] with α ∈ [0, π] as before.
P ∗ has been shown to be globally SM-identifiable but
it is not μ-SM-identifiable since, assuming α1, α2 ∈
]0, π[ , α1 ≥ α2, any set P ∗

1 = [π − α1, π − α2] ⊆ P ∗

shares trajectories with its complementary set P ∗c
1 that

contains [π + α2, π + α1]. �

If the diameter of μ(P ∗), δ(μ(P ∗)), cannot be lower
than ε without loosing SM-identifiability, we refer to
ε-SM-identifiability (Jauberthie et al., 2013).

Definition 3. Consider an SM-identifiable nonempty
connected set P ∗ ⊆ UP . Then P ∗ is globally ε-SM-
identifiable if there exists a set contraction μ from P ∗

to P ∗ such that δ(μ(P ∗)) = ε and μ(P ∗)) is globally
SM-identifiable, and for all μ̃ such that μ̃(P ∗) ⊂ μ(P ∗),
μ̃(P ∗) is not globally SM-identifiable.

To summarize, interpreting identifiability in the SM
framework leads to two definitions, depending on whether
one considers a set as a whole (SM-identifiability) or
also cares about the properties of its proper subsets
(μ-SM-identifiability). μ-SM-identifiability can be seen
as subsuming classical identifiability in the sense that
if P ∗ is μ-SM-identifiable, it implies that any p ∈
P ∗ is identifiable in the classical sense (Ljung and
Glad, 1994). ε-SM-identifiability is a kind of structural
μ-SM-identifiability since subsets of a delimited diameter
ε that are SM-identifiable although not μ-SM-identifiable

are accepted. The reader is referred to the work of
Jauberthie et al. (2011) for the extension to structural and
local counterparts of these properties.

3. SM-identifiability and related concepts

The links between (μ)-SM-identifiability and classical
and interval identifiability were provided by Jauberthie
et al. (2011; 2013). In this section, we are interested
in the links with ε-global identifiability (Braems et al.,
2001) and partial injectivity (Lagrange et al., 2008).
These links allow us to propose a method for checking
(μ)-SM-identifiability.

3.1. Links with ε-global identifiability. Global
identifiability in P ∗ ⊂ UP (g.i.i.P ∗) was proposed by
Braems et al. (2001) as a means to provide a stronger
conclusion than structural identifiability, guaranteeing that
atypical regions of nonidentifiability do not exist in the
parameter space.

Definition 4. Given (u, x0) ∈ R
r ×X0, the parameter pi

is globally identifiable in P ∗ (g.i.i.P ∗) if

∀(p, p̄) ∈ P ∗, y(·, p) ≡ y(·, p̄) ⇒ pi = p̄i, (3)

and the parameter vector p is g.i.i.P ∗ if all its components
are g.i.i.P ∗.

The originality of Braems et al. (2001) is to propose
a practical way to formulate the condition of Definition 4,
which consists in checking the condition

�(p, p̄) ∈ P ∗ × P ∗

such that y(·, p) ≡ y(·, p̄), ‖p̄− p‖∞ > 0. (4)

This is a constraint satisfaction problem (CSP) that can be
solved in a guaranteed way by interval constraint propa-
gation (ICP). In practice, Braems et al. (2001) state that
checking the condition (4) comes back to checking

�(p, p̄) ∈ P ∗ × P ∗

such that y(·, p) ≡ y(·, p̄), ‖p̄− p‖∞ > ε, (5)

which is defined as ε-g.i.i.P ∗. We have the following
results.

Proposition 2. P ∗ is globally μ-SM-identifiable with re-
spect to P ∗ (in the sense that UP is reduced to P ∗) if and
only if (4) is satisfied.

Proof. Jauberthie et al. (2013) provided the proof that
if P ∗ is globally μ-SM-identifiable, then equivalently any
p in P ∗ is globally identifiable with respect to P ∗, hence
satisfying the conditions (3) and (4). �

Proposition 3. If P ∗ is globally ε-SM-identifiable with
respect to P ∗, then the condition (5) is satisfied.
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Proof. P ∗ is globally ε-SM-identifiable (cf. Definition 3)
with respect to P ∗ if and only if there exists some subset
P̃ ⊂ P ∗ such that δ(P̃ ) = ε and the interior of P̃ ,
denoted by int(P̃ ), as well as any P̃ ′ ⊆ P̃ is not globally
SM-identifiable, hence not globally identifiable. In such a
case, for all p, p̄ ∈ P ∗\int(P̃ ) satisfies the condition (5).
The converse is not true because, when the condition (5) is
satisfied, it does not provide any information about subsets
P̃ ′ ⊆ P̃ such that δ(P̃ ) ≤ ε. �

From the above propositions, the condition (5) does
not allow one to decide between μ-SM-identifiability
and ε-SM-identifiability. It can be considered to check
μ-SM-identifiability accepting a numerical precision of ε.

3.2. Links with partial injectivity. The definition
of partial injectivity of a function was introduced
in Lagrange et al. (2008). This notion perfectly
characterizes μ-SM-identifiability. A second definition
named restricted-partial injectivity is proposed in this
paper in order to characterize global SM-identifiability.

Definition 5. Consider a function f : A → B and any set
A1 ⊆ A. The function f is said to be a partial injection of
A1 over A, or (A1,A)-injective, if ∀a1 ∈ A1, ∀a ∈ A,

a1 �= a ⇒ f(a1) �= f(a).

f is said to be A-injective if it is (A,A)-injective.

In Lagrange et al. (2008), an algorithm based
on interval analysis for testing the injectivity of a
given differentiable function is presented and a solver
called IAVIA (injectivity analysis using interval analysis)
implemented in C++ is mentioned.3 For a given function,
the solver partitions a given box in two domains: a
domain on which the function is partially injective and an
indeterminate domain on which the function may or may
not be injective.

In order to characterize global SM-identifiability, the
notion of restricted-partial injectivity is introduced.

Definition 6. Consider a function f : A → B and any set
A1 ⊆ A. The function f is said to be a restricted-partial
injection of A1 over A, or (A1,A)-R-injective, if

∀a1 ∈ A1, ∀a ∈ Ac
1, f(a1) �= f(a).

In the following proposition, partial injectivity
and restricted partial injectivity are interpreted in
terms of trajectories, and this formulation makes the
direct link with the definition of SM-identifiability and
μ-SM-identifiability possible.

Consider the set of outputs Su arising from UP for a
given input u.

3Let us notice that the solver IAVIA has been implemented for func-
tions f : R → R

2 and f : R2 → R
2.

Proposition 4. Given the model Γ, P ∗ is globally
SM-identifiable (resp. μ-SM-identifiable) for an input u
if and only if the function ϕ : UP → Su : p → y(·, p) is
(P ∗,UP)-R-injective (resp. (P ∗,UP)-injective).

Proof.
(Necessity) From the definition of global
SM-identifiability, P ∗ and its complementary do not
share trajectories; hence, there do not exist common
trajectories arising from these two sets, which implies
that ϕ is (P ∗,UP)-R-injective.

If P ∗ is μ-SM-identifiable, then the property of
global SM-identifiability is satisfied for any μ(P ∗), μ
being a contraction from P ∗ to P ∗, which implies that for
any P̄ included in the complement of μ(P ∗), Y (μ(P ∗))
and Y (P̄ ) have no common trajectories. In other words,
from the Banach fixed-point theorem, the trajectory
arising from p ∈ P ∗ is different from any trajectory
arising from UP \ {p} and hence ϕ is (P ∗,UP)-injective.

(Sufficiency) If P̄ is such that P ∗ ∩ P̄ = ∅, P̄ is
included in the complementary of P ∗, and since ϕ is
(P ∗,UP)-R-injective, there exist no common trajectories
arising from these two sets; hence P ∗ is globally
SM-identifiable.

Assume now that ϕ is (P ∗,UP)-injective and that,
for a contraction μ, Y (μ(P ∗)) and Y (P̄ ) have common
trajectories. Then these trajectories arise from the
same parameter. This implies that μ(P ∗) and P̄
have a nonempty intersection and that P ∗ is globally
μ-SM-identifiable. �

Corollary 1. The following properties are equivalent:

• P ∗ is globally μ-SM-identifiable;

• the function ϕ : UP → Su : p → y(·, p) is (P ∗,UP)-
injective;

• the condition (4) is satisfied.

Proof. The proof directly comes from Propositions 2
and 4. �

Corollary 2. P ∗ is globally ε-SM-identifiable implies
that ϕ is (P̃ ,UP)-R-injective, with P̃ ⊆ P ∗ and δ(P̃ ) ≥
ε. The converse is not true.

Proof. The necessity part of the proof of Proposition 4
applies and the inverse is not true for the same reasons as
in the proof of Proposition 1. �

Testing (P ∗,UP)-injectivity or (P ∗,UP)-R-inje-
ctivity numerically can be done with an adaptation
of IAVIA (Lagrange et al., 2008) but it does not
allow us to decide between μ-SM-identifiability
and ε-SM-identifiability or SM-identifiability and
ε-SM-identifiability.



Set-membership identifiability of nonlinear models and related parameter estimation properties 807

3.3. Differential algebra method to perform SM-
identifiability analysis. Proposition 4 points at an
operational method to check SM and μ-SM-identifiability
provided that the functionϕ : UP → Su : p → y(·, p) that
maps parameters and trajectories is known. Differential
algebra (Kolchin, 1973) was shown to provide a way
to derive an implicit form of this function (Jauberthie
et al., 2011) 4.

This method, whose main result is given by
Theorem 1 below, is based on the use of relations linking
outputs, inputs and parameters of the model. These
relations are more precisely differential polynomials
whose indeterminates are the variables y and u, and
coefficients are rational expressions in p.

For obtaining such polynomials, the
Rosenfeld–Groebner algorithm, which is an elimination
algorithm (Boulier, 1994) implemented in the package
DifferentialAlgebra of Maple, is an efficient tool. The
Rosenfeld–Groebner algorithm is used to eliminate
state variables—to obtain the relations linking only
outputs, inputs and parameters. With the elimination
order {p} < {y, u} < {x} (Kolchin, 1973; Denis-Vidal
et al., 2001b), several solutions are delivered by the
algorithm. One is called the characteristic presentation
because it corresponds to the general solution, the others
being particular solutions.

The characteristic presentation contains differential
polynomials linking outputs, inputs and parameters of the
form

Ri(y, u, p) = mi
0(y, u)

+

ni∑

k=1

θik(p)m
i
k(y, u), i = 1, . . . ,m,

(6)

where (θik(p))1≤k≤ni are rational in p, θiu �= θiv (u �=
v), mi

k(y, u))0≤k≤ni are differential polynomials with
respect to y, u andmi

0(y, u) �= 0. {θik(p)}1≤k≤ni is called
the exhaustive summary of Ri.

The size of the system is the number of outputs. For
the time being, we assume that i = 1; that is, there is
one output and n1 = n, R1 = R, m1

k(y, u) = mk(y, u).
The case of more outputs is considered at the end of this
section.

Consider t+0 the right limit of t0
5 and l the higher

order derivative of y in (6). ΔR(y, u) denotes the func-
tional determinant formed from {mk(y, u)}1≤k≤n and

4Another technique based on the power series expansion method
inspired by Pohjanpalo (1978) was also proposed by Jauberthie et al.
(2011).

5t+0 is considered to ensure the existence of derivatives.

given by the Wronskian (Denis-Vidal et al., 2001a)

ΔR(y, u)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎜
⎜
⎝

m1(y, u) . . . mn(y, u)

m1(y, u)
(1) . . . mn(y, u)

(1)

. . .
m1(y, u)

(n−1) . . . mn(y, u)
(n−1)

⎞

⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣

.
(7)

Theorem 1. (Jauberthie et al., 2011) Assume that
the functional determinant ΔR(y, u) is not identically
equal to zero.6 Consider P ∗ a connected subset of UP .
If the function defined by φ : p = (p1, . . . , pp) �→
(θ1(p), . . . , θn(p), y(t

+
0 , p), . . . , y

(l−1)(t+0 , p)) is
(P ∗,UP)-R-injective (resp. (P ∗,UP)-injective) then
P ∗ is globally SM-identifiable (resp. μ-SM-identifiable).
Furthermore, if for a contraction μ, μ(P ∗) has a diam-
eter equal to ε and φ is (μ(P ∗),UP )-R-injective but not
(μ(P ∗),UP)-injective then P ∗ is ε-SM-identifiable. In
the two cases, if the coefficient of y(l) in (6) is not equal
to 0 at t0, then the converse is valid. 7

Remark 1. If m ≥ 1, then for each of the obtained
m differential polynomials Ri(y, u, p), the functional
determinant is evaluated. If it is not identically equal to
zero, the associated exhaustive summary is added to the
image of the function φ for which (partial) injectivity has
to be studied.

Theorem 1 has been used by Ravanbod et al.
(2014) to provide an operational method for analyzing
identifiability in an SM framework. First, the
μ-SM-identifiable parameter subsets are determined with
IAVIA. Then, determining the maxima and minima of the
function φ allows one to assess SM-identifiable subsets
and subsets that are neither SM nor μ-SM-identifiable.

4. SM parameter estimation and properties

In this section, the SM-PE problem is presented and two
important properties are introduced, namely, soundness
and ε-consistency. SM-identifiability is shown to play a
key role in relation to this problem.

Classical parameter estimation considers a time
series of noisy measured output data ym(ti), i = 0, . . . , h,
where ym(·) ∈ R

m, generated by the real system on the
interval [0, T ]. The problem is formulated as finding the
parameter vector p∗ for which the outputs produced by the

6This assumption consists in verifying the linear independence of the
mk(y, u), k = 1, . . . , n. To this end, it is sufficient to find a time point
at which the Wronskian is nonzero. In the framework of differential alge-
bra, this condition consists in verifying that this functional determinant
is not ideally obtained after eliminating state variables. In practice, it
can be checked with the function Belong To of the package Differential
Algebra of Maple 16.

7When initial conditions are not considered, the function φ becomes
φ : p = (p1, . . . , pp) �→ (θ1(p), . . . , θn(p)) and the converse of the
theorem is not valid.
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model best match the measured data according to some
criterion. Minimal least squares is a common method,
which is formulated as

p∗ = arg min
p∈UP

th∑

t=t0

‖ym(t)− y(t, p)‖2.

The SM-PE problem assumes that the measured outputs
are corrupted by bounded-error terms that may originate
from the system parameters varying within specified
bounds, bounded noise, or sensor precision such that
ym(ti) ∈ Ym(ti), i = 0, . . . , h, where the Ym(ti)’s are
connected sets of Rm. The SM-PE problem is formulated
as finding the set of parameter vectors P ⊆ R

p such that
the arising trajectories hit all the output data sets, i.e.,

p∗ ∈ P ⇔ y(ti, p
∗) ∈ Ym(ti), ∀i = 0, . . . , h.

P is called the feasible parameter set (FPS). SM-PE
problems are generally solved with a branch and bound
algorithm that enumerates candidate solutions thanks to a
rooted tree and assumes the full parameter space as the
root set. At every node, the set of trajectories arising from
the parameter set considered is checked for consistency
against the measurements and labelled feasible, unfeasible
or undetermined. Unfeasible sets are rejected while
undetermined sets are split and checked in turn until the
diameter of the candidate solution set is smaller than or
equal to a given threshold ε provided by the user. Here
ε is the precision threshold (or the precision for short)
of the SM-PE algorithm. The SIVIA (set inversion via
interval analysis) algorithm (Jaulin and Walter, 1993) can
be cited to exemplify the above principles (branch and
bound (bisection) and interval analysis). The number
of bisections to be performed is generally prohibitive.
Hence, recent algorithms take advantage of constraint
propagation techniques to reduce the width of the boxes
to be checked. In this context, the model is interpreted as
the set of constraints of a constraint satisfaction problem
(CSP ). For solving such a CSP , various types of the
so-called contractors can be used (Chabert and Jaulin,
2009).

It should be noted that such algorithms are anytime
by nature, i.e., they provide a guaranteed solution
independently of the stopping time, which redeems in
some way their exponential complexity. The returned
solution is an overestimation of the FPS given by the
convex union of the candidates that have been labelled
feasible and undetermined. Interestingly, the convex
union may consist of one set or more (cf. the work of
Jaulin et al. (2001) for several variants). In the following,
we refer to the SM-PE algorithm as to a generic SM-PE
algorithm based on these principles.

When considering an SM-PE problem, one would
like to know beforehand whether or not P is reduced
to one single connected set. In much the same may as

for classical parameter estimation, this property indicates
whether the problem is mathematically well-posed.

Definition 7. An SM-PE problem is said to be sound if
P ⊆ UP is reduced to one single connected set. In this
case, P is also said to be sound.

Given an SM-PE algorithm with precision threshold
ε, we denote by Pε the solution set. Then it is important
to know the properties of Pε in relation to P .

Definition 8. Assume thatP is equal to the union of κ ≥ 1
mutually disjoint connected sets. Then the solution set Pε

is said to be ε-consistent if Pε is equal to the union of κε

mutually disjoint connected sets and κε = κ.

Overdetermination and algorithm precision result in
Pε overestimating P , which may imply κε < κ. In
this case, at least one of the sets composing Pε includes
several sets composing P . ε-consistency is analyzed in
Section 6.

5. Soundness

5.1. Conditions for soundness.

Proposition 5. Consider the system Γ and assume that the
set P ⊆ UP is the FPS of an SM-PE problem for Γ. Then
P is sound if and only if P is globally SM-identifiable.

Proof. By definition, if P is a globally SM-identifiable
set, those of Γ arising from P are different from the
trajectories arising from the complement Pc = UP \P . In
addition, P is connected, hence P is sound. Conversely,
if P is sound, by definition it is globally SM-identifiable.

�

In addition to being SM-identifiable, assume that P
is μ-SM-identifiable for Γ. In this case, it is interesting to
note that P preserves soundness when the bounded error
corrupting the output data is getting smaller and smaller.
In this case, P is said to be μ-sound. This is stated by the
following result.

Proposition 6. Given the output data sets Ym(ti), i =
1, . . . , h, assume that P is sound. Then, if P is μ-SM-
identifiable, for Γ, the FPS of the same problem with con-
tracted output data sets μi(Ym(ti)), i = 1, . . . , h, where
the μi’s are contractions, is also sound.

Proof. This proof uses Proposition 5. The result simply
comes from the fact that if P is μ-SM-identifiable for Γ,
then P is obviously SM-identifiable, and for all P ⊂ P ,
P is also SM-identifiable. �
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5.2. Example. Consider the model

⎧
⎪⎨

⎪⎩

ẋ1 = (p1 + 2(1− p2) cos(p1))x
2
1 + (1 − p2)x2,

ẋ2 = sin(p1)x1,

y = x1,
(8)

where (p1, p2) ∈ [−1, 4]× [0, 1/10] = UP .
By setting c1 = sin(p1), with the elimination order

{c1, p2} < {y} < {x1, x2}, the Rosenfeld–Groebner
algorithm gives the following differential polynomial:

R(y, u)

= ÿ − 2(p1 + 2(1− p2) cos(p1))ẏy

− (1− p2) sin(p1)y. (9)

In that case, the functional determinant is reduced to
�R(y) = det(ẏy, y) = −y2ÿ and is not identically equal
to 0.

In order to consider the initial condition, the function
φ : (p1, p2) → ((p1+2(1−p2) cos(p1)), (1−p2) sin(p1))
has to be studied. By using the algorithm proposed in
Ravanbod et al. (2014), Fig. 1 (right) is obtained. UP =
[−1, 4] × [0, 1/10] has been partitioned in two domains:
a domain on which the function φ is partially injective
and hence corresponding to μ-SM-identifiable subsets in
grey color in the figure and two subsets in white color,
each of them producing the same image.8 If a parameter
estimation problem is formulated such that the FPS P is in
UP , we can now decide whether or notP is sound. Indeed,
if the inverse image of the trajectories hitting the output
data sets entirely lies in a μ-SM-identifiable subset, then
P is sound. On the contrary, P is unsound.

Fig. 1. Set of diameter ε interposed between P1, P2 and their
undistinguishability neighborhoods (left), and the parti-
tion of the parameter domain: the grey color subsets are
μ-SM-identifiable (right).

6. ε-consistency

6.1. Conditions for ε-consistency. As expressed in
Definition 8, ε-consistency is a property of the solution

8Notice that IAVIA gives no information about these two domains:
they are labelled undetermined.

set Pε returned by the SM-PE algorithm with a specified
precision threshold ε. Among the problems that impact
ε-consistency, two are analyzed in this paper:

• the SM-PE algorithm may not be able to separate
the mutually disjoint connected sets forming P by
testing topologically relevant candidate solution sets;

• trajectories arising from solution parameters may
not be distinguishable from trajectories arising from
nonsolution parameters, given the precision of the
sensors.

Proposition 7. If the FPS P is sound, then the solution
set Pε is ε-consistent for any ε.

Proof. If P is sound, it is reduced to one single connected
set. Then, from the principle of branch and bound
algorithms, the solution set Pε is also reduced to one
single connected set although it may be an overestimation
of P . �

Let us now assume that P is unsound and consists
of κ mutually disjoint connected sets, say Pi, i =
1, . . . , κ. The fact that the SM-PE algorithm is able
to separate the Pi’s is a topological problem involving
the distance between the Pi’s and the diameter of the
smallest candidate solution sets considered by the branch
and bound SM-PE algorithm.

Proposition 8. If P is unsound and consists of κ mutually
disjoint connected sets Pi, i = 1, . . . , κ, then a necessary
condition for the solution set Pε returned by the SM-PE
algorithm with precision threshold ε to be ε-consistent is
that d(Pi,Pj) > ε, ∀i, j = 1, . . . , κ, i �= j.

Proof. With no loss of generality, consider two mutually
disjoint connected sets P1 and P2. The successive
partitions of the parameter space arising from the branch
and bound procedure provide candidate solution sets
whose diameter is greater than or equal to ε. P1 andP2 are
separable if any candidate solution set of diameter ε can
be interposed anywhere between the two sets, in particular
just where the two sets are closest. 9 Only in such a
case, i.e., if d(P1,P2) > ε, can the interposed candidate
solution be labelled unfeasible, hence rejected by the
algorithm, and Pε composed of two mutually disjoint sets.

�

Let us now consider the second problem related to
the fact that the output data sets Ym(ti), i = 0, . . . , h, rely
on sensors with a given precision λ, i.e., v = vmes ± λ,
where v is the true value and vmes the measured one.
In this case, two trajectories y(·, p) and y(·, p̄) must be

9Interposed just where the two sets are closest means that the candi-
date set can be aligned with the segment [p1, p2] that connects the two
points p1 ∈ Fr(P1) and p2 ∈ Fr(P2) which are at a minimum distance,
and that its intersection with either P1 or P2 is empty.



810 C. Jauberthie et al.

distant by λ, i.e., be such that there exists t ∈ [t0, T ],
‖y(t, p) − y(t, p̄)‖∞ > λ, to be distinguishable. If the
trajectories arising from nonsolution parameters are not
distinguishable from those arising from parameters of the
the solution sets Pi, then Pε may not be ε-consistent.

The following proposition, whose proof is based on
the Gronwall lemma, proves that, under some conditions,
y is Lipschitz continuous with respect to the parameter
vector. It provides the Lipschitz constant Ky,p explicitly
so that the conditions about parameters under which
the output trajectories are distant by a given λ can be
determined.

Recall first that, if a function g is real and analytic
on M , an open set of Rn, for every compact set K ⊂ M ,
there exists a constant K > 0 such that, for every x in K,
the following bound holds:

∥
∥
∥
dg

dx
(x)

∥
∥
∥
∞

≤ K,

Since f and h defining Γ are assumed to be real and
analytic on M , assuming x ∈ K, K to be a compact,
they are Lipschitz continuous with respect to x. Their
Lipschitz constants are respectively denoted Kf,x and
Kh,x.

Consider the following assumptions:

(i) f and h defined on [t0, T ] × UP are Lipschitz
continuous according to p, and their Lipschitz
constants are respectively denoted Kf,p and Kh,p;

(ii) the solution x(t, p) of Γ is in the compact K;

(iii) if the initial conditions depend on p, the function
p �→ x(t0, p) is assumed to be Lipschitz continuous
according to p and its Lipschitz constant is denoted
by Kx0,p.

Proposition 9. Assume that the assumptions (i)–(iii) are
satisfied. Then y is Lipschitz continuous with respect to p
and its Lipschitz constant Ky,p is given by

Ky,p = Kh,x(Kx0,p+Kf,p(T − t0))e
Kf,x(T−t0)+Kh,p.

If the initial conditions do not depend on p, Ky,p is given
by

Ky,p = Kh,xKf,p(T − t0)e
Kf,x(T−t0) +Kh,p.

Proof. First, integrating both the sides of the equation

ẋ(t, p) = f(x(t, p), u(t), p) on [0, t], we get

‖x(t, p)− x(t, p̄)‖
≤ ‖x(t0, p)− x(t0, p̄)‖

+

∫ t

t0

‖f(x(s, p), u(s), p)− f(x(s, p̄), u(s), p̄)‖ ds

≤ ‖x(t0, p)− x(t0, p̄)‖

+

∫ t

t0

‖f(x(s, p), u(s), p)− f(x(s, p), u(s), p̄)‖ ds

+

∫ t

t0

‖f(x(s, p), u(s), p̄)− f(x(s, p̄), u(s), p̄)‖ ds.
(10)

Using the assumption (i) about the Lipschitz continuity of
f , we deduce that

‖x(t, p)− x(t, p̄)‖
≤ ‖x(t0, p)− x(t0, p̄)‖
+Kf,p(T − t0)‖p− p̄‖

+Kf,x

∫ t

t0

‖x(s, p)− x(s, p̄)‖ ds.

(11)

Then the application of the Gronwall lemma and the
assumption (iii) gives

‖x(t, p)− x(t, p̄)‖
≤ (Kx0,p +Kf,p(T − t0)) ‖p− p̄‖eKf,x(T−t0). (12)

Finally, using the hypothesis on h, the following
inequalities are obtained:

‖y(t, p)− y(t, p̄)‖
≤ ‖h(x(t, p), p)− h(x(t, p̄), p)‖
+ ‖h(x(t, p̄), p)− h(x(t, p̄), p̄)‖

≤ Kh,x‖x(t, p)− x(t, p̄)‖+Kh,p‖p− p̄‖
≤ Kh,x (Kx0,p +Kf,p(T − t0)) ‖p− p̄‖eKf,x(T−t0)

+Kh,p‖p− p̄‖
≤ (Kh,x(Kx0,p +Kf,p(T − t0))e

Kf,x(T−t0)

+Kh,p)‖p− p̄‖.
(13)

�
If the initial conditions do not depend on the

parameters, then it is sufficient to set Kx0,p = 0 in the
previous proof.

From this result, one can determine the minimal
distance between two parameter vectors p and p̄ for which
the trajectories y(t, p) and y(t, p̄) are ensured to be distant
by λ. Applying the Lipschitz result of y(t, p) with respect
to p, the following corollary is deduced.
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Corollary 3. Let us consider two trajectories y(·, p) and
y(·, p̄) arising from Γ. Then, under conditions (i)–(iii), if

∃t ∈ [t0, T ], ‖y(t, p)− y(t, p̄)‖∞ > λ

then

‖p− p̄‖ >
λ

Ky,p
.

Proof. Since y is Lipschitz continuous according to the
parameter vector p, we get

λ < ‖y(t, p)− y(t, p̄)‖∞ < Ky,p‖p− p̄‖, (14)

which implies

‖p− p̄‖ >
λ

Ky,p
.

�
This result means that the Pi’s forming P are

surrounded by a neighborhood that may generate
trajectories that are not distinguishable from those arising
from their inside parameters.

Putting together the results of Proposition 8 and
Corollary 3, we obtain the following condition for
ε-consistency.

Proposition 10. Consider the system Γ along with the
assumptions (i)–(iii) and assume that P is unsound and
consists of κ mutually disjoint connected sets Pi, i =
1, . . . , κ. If the solution set Pε returned by the SM-PE
algorithm with precision threshold ε is ε-consistent, then

d(Pi,Pj) > ε+
2λ

Ky,p
, ∀i, j = 1, . . . , κ,

where λ is the precision of the sensors.

Proof. With no loss of generality, assume that P
consists of two mutually disjoint connected sets P1 and
P2. Denote by NP1 and NP2 the undistinguishability
neighborhoods of P1 and P2, respectively. The sets to
be separated by the SM-PE algorithm are hence P1∪NP1

and P2 ∪ NP2 . Then Proposition 8 applied to these sets
implies d(P1∪NP1 ,P2∪NP2) > ε. The characterization
of NP1 and NP2 provided by Corollary 3 then implies
d(Pi,Pj) > ε + 2λ/Ky,p as illustrated in Fig. 1 (left).

�

Remark 2. The converse is also true if the inclusion
function P → [Y ](P ) used by the SM-PE algorithm
to predict the set of trajectories arising from a given
candidate parameter set P is such that [Y ](P ) = Y (P ),
which is rarely the case.

6.2. Example. Consider the following example
defined on [0, T ]:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t, p) = cos(p)x2(t, p), x1(0) = ( 1√
2
+ 1)/2,

ẋ2(t, p) = −x1(t, p) cos(p) +
(
1− x1(t, p)

2

−2x2(t, p)
2
)
x2(t, p), x2(0) = 0,

y(t, p) = x1(t, p).
(15)

The functions f and h are defined by

f(x, p) = (cos(p)x2,−x1 cos(p) + (1− x2
1 − 2x2

2)x2)
T ,

and h(x, p) = x1 where x = (x1, x2)
T and T denotes

the transpose of the considered vector. The solution
(x1(t), x2(t))

T remains in the ring R defined by the two
circles centered at (0, 0) with radii 1/

√
2 and 1. Indeed,

we have

d

dt

(
x2
1 + x2

2

2

)

= x1
dx1

dt
+ x2

dx2

dt

= (1− x2
1 − 2x2

2)x
2
2.

Since 1 − x2
1 − 2x2

2 is positive for x2
1 + x2

2 < 1/2
and negative for x2

1 + x2
2 > 1, x2

1 + x2
2 increases when

x2
1 + x2

2 < 1/2 and decreases when x2
1 + x2

2 > 1. One
can conclude that, according to the initial condition, the
solution remains in the ring R.

The following step consists in finding the Lipschitz
constants. Let us consider z = (z1, z2)

T ∈ R. Clearly,
Kh,p = 0, Kh,x = 1 and Kf,p = 1 since ‖x‖ =
‖(x1, x2)

T ‖ < 1. For Kf,x, by reordering the terms and
adding x2

1z2 − x2
1z2 in line 3, we get

‖f(x, p)− f(z, p)‖1
≤ | cos(p)|(|x2 − z2|+ |x1 − z1|)
+ |x2 − z2|+ |(x2

1 − 2x2
2)x2 − (z21 − 2z22)z2|

≤ (|x1 − z1|+ 2|x2 − z2|)
+ |x2

1x2 − x2
1z2 + x2

1z2

− z21z2 − 2(x3
2 − z32)|

≤ (|x1 − z1|+ 2|x2 − z2|) + x2
1|x2 − z2|

+ |z2||x2
1 − z21 |+ 2|x3

2 − z32 |.

(16)

Since |x1| < 1, |z1| < 1, we deduce, on the one
hand, that |x2

1−z21 | ≤ |x1−z1|(|x1|+ |z1|) ≤ 2|x1−z1|,
and on the other that

|z32 − x3
2| = |x2 − z2||z22 + 2x2z2 + x2

2|
≤ 4|x2 − z2|.

Hence

‖f(x, p)− f(z, p)‖1
≤ (|x1 − z1|+ 2|x2 − z2|)
+ |x2 − z2|+ 2|x1 − z1|
+ 8|x2 − z2| ≤ 11‖x− z‖1.

(17)
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Using the equivalence between norms 1 and maximum
norm, we get

‖f(x, p)− f(z, p)‖∞ ≤ 22‖x− z‖.

Hence Kf,x = 22 and from Proposition 9 the Lipschitz
constant Ky,p is equal to Te22T . Taking [0, T ] = [0, 1],
we get sensor precision λ = 0.01, and SM-PE algorithm
precision threshold ε = 0.001. By Proposition 10 the
solution set is ε-consistent, which implies that

d(Pi,Pj) > ε+
2λ

Ky,p

� 0.001 + 5.579 · 10−12

� 0.001, ∀i, j = 1, . . . , κ.

In this example, the SM-PE algorithm precision
is dominant over the sensor precision with respect to
ε-consistency.

7. Discussion and conclusions

This paper casts identifiability in an SM framework and
relates the properties introduced by Jauberthie et al.
(2011; 2013), namely, SM-/μ-SM-/ε-SM-identifiability,
to the properties of SM-PE problems. Soundness and
ε-consistency are proposed to characterize an SM-PE
problem. Soundness is a theoretical property that assesses
that the SM-PE problem is well-posed. Note that
ε-consistency guarantees that the structure of the FPS
is well reflected in the solution returned by the SM-PE
algorithm.

SM-/μ-SM-/ε-SM-identifiability is compared with
related properties existing in the literature, in particular
partial injectivity. The differential algebra based method
proposed to check these properties leads to checking
partial-injectivity and a newly introduced property
named partial-R-injectivity. The algorithm proposed
for this (Ravanbod et al., 2014) remains of exponential
complexity like many interval-based algorithms, but it is
still useful for medium-size problems.

Accordingly, ε-consistency is a complex property
for which only necessary conditions are provided. It
is impacted by several features of the SM-PE problem,
including sensor precision and the overestimation
involved in the computation of the image of a parameter
set. Evaluating this overestimation and how it impacts
ε-consistency remains an open problem.
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Set-membership identifiability: Definitions and analysis,
Proceedings of the 18th IFAC World Congress, Milan,
Italy, pp. 12024–12029.

Jauberthie, C., Verdière, N. and Travé-Massuyès, L.
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