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In a general regression neural network (GRNN), the number of neurons in the pattern layer is proportional to the number of
training samples in the dataset. The use of a GRNN in applications that have relatively large datasets becomes troublesome
due to the architecture and speed required. The great number of neurons in the pattern layer requires a substantial increase
in memory usage and causes a substantial decrease in calculation speed. Therefore, there is a strong need for pattern layer
size reduction. In this study, a self-organizing map (SOM) structure is introduced as a pre-processor for the GRNN. First, an
SOM is generated for the training dataset. Second, each training record is labelled with the most similar map unit. Lastly,
when a new test record is applied to the network, the most similar map units are detected, and the training data that have
the same labels as the detected units are fed into the network instead of the entire training dataset. This scheme enables a
considerable reduction in the pattern layer size. The proposed hybrid model was evaluated by using fifteen benchmark test
functions and eight different UCI datasets. According to the simulation results, the proposed model significantly simplifies
the GRNN’s structure without any performance loss.

Keywords: generalized regression neural network, artificial neural network, self-organizing maps, nearest neighbour, re-
duced dataset.

1. Introduction

The general regression neural network (GRNN) was
introduced by Donald F. Specht as an alternative to
the well-known back-propagation training algorithms
(Specht, 1991). The main advantage of the GRNN model
is that unlike the other training algorithms that require
large numbers of iterations to be performed in the training
phase to converge to a desired solution, the GRNN
does not require an iterative training process (Krenker
et al., 2011). Due to its simple structure and ease of
implementation, the GRNN has been widely employed
to solve a variety of problems in pattern classification,
clustering, function approximation, optimization and
prediction.

Reducing the data complexity and determining the
relevant training data are two of the most important steps
in the GRNN. Usually, while a portion of the training data
are informative, some may be noisy or have no important
relationship with the test record being modelled. Thus,
without using any pre-processing algorithm for related
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input determination, shortcomings may emerge, including
the following (Maier and Dandy, 1997; Szemenyei and
Vajda, 2017):

• increased computational complexity,

• increased memory requirements,

• increased processing time,

• reduced prediction accuracy.

The use of pre-processing algorithms provides
obvious advantages in the selection of appropriate training
data for GRNNs. Several methods based on various
clustering and local learning algorithms have been
proposed to overcome these problems. First, Specht
presented the clustering version of a GRNN to reduce the
number of neurons in the pattern layer (Specht, 1991).
In subsequent studies, various clustering techniques have
been proposed for compressing all training data into
a few clusters. Zheng et al. (2008) used a k-means
clustering algorithm for separating training data into
groups. In that study, an improvement in the prediction

skartal@cu.edu.tr


412 S. Kartal et al.

accuracy of the GRNN was achieved by grouping data
and assigning different smoothing parameters to each
group. An estimation-of-distribution algorithm (EDA)
was employed to determine the optimum smoothing
parameter. When clustering methods are employed as
a pre-processor, the number of clusters, another critical
parameter affecting the GRNN performance, emerges.
The number of cluster is selected by increasing the
number k with a predefined step size.

Zhao et al. (2007) proposed a method based on
fuzzy means clustering (FMC) to reduce the number of
pattern neurons. FMC groups similar data into clusters,
and cluster centres represent all the samples in the
cluster. During the clustering operation, first, similarity
values between the training data and cluster centres are
calculated according to a given similarity metric. Second,
similarity is compared with a given threshold value. If
the similarity value is less than the threshold value, the
data are placed into the related cluster; otherwise, they
are designated as the centre of the newly created cluster.
While the algorithm given by Zhao et al. (2007) simplified
the GRNN structure, the accuracy of the model decreased
slightly.

In another study, Bowden et al. (2005) reported
several disadvantages of the application of all potential
training data in a GRNN, including the increased
computational complexity and memory requirements. To
address these shortcomings, the authors proposed an SOM
combined with a hybrid genetic algorithm and a GRNN
(SOM-GAGRNN). This algorithm utilizes the SOM to
cluster the training data into groups of similar data. Then,
from each cluster, the training record with the shortest
Euclidean distance to the cluster weights is selected.
Finally, the obtained training data are applied to the
GRNN.

Another GRNN algorithm based on FMC was
suggested by Husain et al. (2004). In this algorithm, a
similarity index is calculated through a simple similarity
measure to indicate the degree of similarity in the data
to be clustered. The cluster centre of related data is
determined according to an iterative process. In the work
of Husain et al. (2004), the calculated cluster centres were
used to define the parameters of the GRNN.

A hybrid model combining the fuzzy ART (FA) and
a GRNN for noisy data was proposed by Yuen et al.
(2004). FA is a powerful unsupervised classifier based
on adaptive resonance theory. When the FA was used as
the pre-processor for the GRNN to compress training data,
the obtained output values were employed in pattern layer
neurons for prediction.

Kokkinos and Margaritis (2015) introduced the local
learning model of the GRNN algorithm. The method
uses only the k-nearest neighbours of the test record and
reduces the operation cost from O(N) to O(k), where
O(N) denotes the Big-O notation of the computational

cost for the use of all training data and O(k) is the Big-O
notation of the computational cost for the use of k-nearest
training data. Since k � N , the method improves
the suitability of the GRNN for large-scale applications.
First, a network is constructed with a minimum number of
nearest neighbours. Then, new neurons are progressively
added until the process reaches the last nearest neighbour.
At each step, a new network structure is created and a
prediction value is obtained by averaging the results of
each network.

Recent studies indicate that clustering versions of the
GRNN may provide several advantages such as speed,
reduced cost, and more reliable results. With the use
of clustering methods, training data are grouped into
clusters, and instead of employing all training samples
as kernels, only the training samples belonging to these
clusters are used. Hence, the redundant samples can
be removed from the training set, reducing the required
calculations.

In the present study, a hybrid GRNN model, an
SOM-GRNN, is proposed to select the relevant training
data and reduce the sample complexity of the standard
GRNN (SGRNN), which includes sigma tuning and
excludes any pre-processing algorithm. SOM-based
clustering is an appropriate alternative to traditional
clustering algorithm techniques. Hence, the main
objectives of the proposed study are to design a specific
SOM-based pre-processing algorithm for GRNNs and
to provide more reliable results than the traditional
pre-processing algorithms.

2. Problem of input data representation

A review the literature reveals that in many cases, the
lack of a reliable algorithm for selecting the related
training data raises doubt about the representation
efficiency of the selected training data. Training data
determination methodologies vary depending on the
employed algorithm. The main algorithms can be divided
into two categories.

In the first category of algorithms, training data
are separated into a set of independent groups, called
clusters, which are not necessarily representative of test
data. Thus, while similar data are grouped within the same
cluster, dissimilar data are grouped into distinct clusters.
This operation helps users to discover and understand the
natural structure of the data and extract the essence of
large datasets (Harkanth and Phulpagar, 2013; Berkhin,
2002). When a new test record is applied, the related
data cluster is determined and used as the training dataset.
Only the relationships between test records and cluster
centres are calculated. The proposed algorithms that use
the clustering algorithms as a pre-processor are examples
of this category (Zheng et al., 2008; Zhao et al., 2007;
Husain et al., 2004; Yuen et al., 2004).
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In the second category, where the aim is to find
related data, the relationships between a test record and
all other data are determined when the test record is
applied. In such algorithms, there is no training phase and
operations are performed directly on the test data. Thus,
more related training data for the GRNN are obtained.
Relations between the test record and other records are
calculated one by one, and if the dependence is found to be
important, the record is retained in the final training data
subset of the GRNN. Otherwise, it is eliminated. Since
all these operations are performed after the test data are
received, the number of transactions during the prediction
process increases greatly.

In the present study, the following input
determination methods are implemented to compare
their results with the proposed method:

1. k-means, FMC and winner takes all (WTA) are
employed as pre-processing algorithms of the first
category. The k-means clustering algorithm is one
of the most widely used clustering algorithms in the
literature (Hartigan and Wong, 1979; Sabo, 2014).
The FMC algorithm is frequently used with GRNNs
and is included here as a representative of alternative
approaches to GRNN modelling (Bezdek et al.,
1984). WTA is used as an alternative to the SOM
as a competitive learning algorithm. These three
clustering algorithms in conjunction with a GRNN
enable a detailed and reliable comparison for the
study. The most fundamental shortcoming of these
algorithms is the difficulty in determining the number
of clusters (Kolesnikov et al., 2015).

2. The algorithm chosen for comparison from the
second category is k-nearest neighbours (kNN).
kNN is an appropriate alternative to the traditional
clustering algorithms. The aims of the algorithm
are to find the k-nearest neighbours of the record
with defined distance functions and to reduce the
operation cost from O(N) to O(k), where k is the
neighbour count, N is the total number of data and
k � N (Cover and Hart, 1967). As in clustering
algorithms, there is a critical parameter named the
neighbour count (k) to be determined. In general,
a small value of k increases the influence of the
noisy data on the result, whereas a larger k increases
the computational cost. Detailed information can be
found in the work of Cover and Hart (1967).

3. Background

3.1. SOM. The SOM is one of the most widely used
neural networks. An SOM net can be considered
a two-layered neural network working in two
modes: training and mapping. This model projects
high-dimensional data onto a two-dimensional map

Fig. 1. General structure of the SOM.

(Kohonen, 1982). A graphical representation of
the algorithm is given in Fig. 1, where x denotes
the m-dimensional N records and w denotes the
m-dimensional k weight vectors (Carrasco Kind and
Brunner, 2014).

Map units are called nodes or neurons. Each node
has its own weight vector, which has the same dimension
as the input vector. Nodes are placed on a hexagonal or
rectangular grid with certain intervals. In the training
mode, competitive learning is employed (Jain et al.,
1998). First, all weight vectors are initialized to small
random values. Second, the Euclidean distance between
the input record �xj and weight vector �wi is computed as
follows:

dsi(�xj) = ||�xj − �wi||, (1)

where dsi(�xj) is the Euclidean distance between the j-th
input record and the i-th weight vector.

The node whose weight vector is closest to the input
data is detected and called the best matching unit (BMU)
or winner unit. Lastly, the weight values of the BMU
and the neighbouring nodes are adjusted to the input data.
For adjusting these weight values, a neighbourhood is
calculated. Neighbourhood H(i,BMU(�xj))(l) for the l-th
iteration is calculated with the following equation:

H(i,BMU(�xj))(l) = exp

(−S2
(i,BMU(�xj))

2σ(l)2

)
, (2)

where BMU(�xj) is the BMU, i is a node in the grid, and
S(i,BMU(�xj)) denotes the lateral distance between the i-th
node and BMU(�xj), and σ(l) is a coefficient used for
determining the number of affecting neighbours.

The magnitude of the adjustment decreases with
respect to the time and distance from the BMU. A popular
time dependence is the exponential function

σ(l) = σ(0) exp

(−l

λ

)
, (3)
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Fig. 2. Schematic diagram of the GRNN.

where σ(0) signifies the magnitude at the initial time, λ is
a time constant and l is the current time step (iteration
number). Due to the change in the magnitude, the
neighbourhood will shrink to the size of just one node, the
BMU, over time. The weight values for the l-th iteration
are updated as follows:

�wi(l) = �wi(l − 1)

+ lr(l)×H(i,BMU(�xj))(l)× (�xj − �wi),
(4)

where lr(l) denotes the learning rate at the l-th iteration.
The nodes of the SOM are themselves cluster centres,

and these nodes are utilized to form larger clusters. This
approach is a powerful method for detecting outliers and
dealing with missing data values. Similar to the clustering
methods and kNNs, the critical parameter of an SOM
network is its size (k) (Kotsiantis and Pintelas, 2004;
Rama et al., 2010).

3.2. GRNN. A GRNN is a four-layer feed-forward
neural network based on Parzen’s window estimation
and often used for function approximation. The GRNN
consists of an input layer, a pattern layer, a summation
layer and an output layer. Each layer contains a different
number of neurons by which the different layers can
connect with each other. The general structure of a GRNN
model is given in Fig. 2 (Specht, 1991).

Let �xinp be the input, �xj be the j-th sample stored
in the pattern layer and dgj denote the squared Euclidean
distance between �xj and �xinp. Prediction for the input �xinp

can be calculated as follows:

Y (�xinp) =

N∑
j=1

yj exp
(−dgj

2σ2

)
N∑
j=1

exp
(−dgj

2σ2

) , (5)

where Y (�xinp) is the predicted value, σ is a smoothing
parameter and yj is the output value for the j-th sample.

Each layer of the GRNN computes one of the steps
of the calculation given in (5). The number of neurons in
the first (or input) layer is equal to the dimension of �xj .
The second layer is the pattern layer, where each training
record is stored in one neuron. In this layer, the Euclidean
distance dgj between the incoming test record �xinp and
training record �xj is computed as follows:

dgj = (�xinp − �xj)
T
(�xinp − �xj) . (6)

Pattern layer neurons output the weight values f(x)
by using a Gaussian unit exp

(−dgj/2σ
2
)
. The third

layer has two summation neurons a numerator and a
denominator. While the numerator, represented with
yf(x), sums the products of weights with the target value
of the related training record, the denominator, denoted
with f(x), computes the sum of all weights. Finally, the
fourth layer divides the numerator by the denominator and
produces the estimated output (Specht, 1991).

4. Proposed algorithm

Instead of using all training samples in the pattern layer,
various algorithms such as clustering and kNNs have been
used in the literature to determine relevant training data.

To select relevant training data, a new SOM-based
GRNN algorithm that significantly reduces the sample
complexity is proposed in this article. Unlike traditional
clustering algorithms, SOM clustering forms a semantic
map where similar cluster centres are mapped close
together and dissimilar ones further apart. Depending
on this feature, while the most similar data are labelled
with the same cluster index, less similar data are labelled
with the nearest neighbour cluster index and dissimilar
ones with the distant cluster index. Based on these
advantages of the SOM, not only the best matching cluster
data but also less similar nearest clusters’ data are taken
into account when GRNNs pattern layer neurons are
constructed.

In an SOM-GRNN, first an SOM is created with
training data to find the clusters. Then, when the test
data are applied by using the created map, their clusters
and neighbours are detected. All the samples belonging to
the chosen clusters are placed into the pattern layer of the
GRNN. Finally, the GRNN steps are applied to the test
data for prediction.

A general overview of the test step of the
SOM-GRNN algorithm by using the most similar and
similar clusters is illustrated in Fig. 3. In this figure, �xinp

is an m-dimensional test vector, its BMU is shown with
5 and the neighbours of the BMU are represented with 1,
2, 3, 4, 6, 7, 8, and 9. Training data x belonging to these
clusters are placed into the pattern layer of the GRNN, and
�xinp is applied to the GRNN.
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Fig. 3. General overview of the SOM-GRNN.

Let y contain the target values of the x, k
be the number of map units (clusters), xred be
m-dimensional chosen samples belonging to the BMU
and its neighbouring clusters, and R be the number of
reduced training data. The algorithm of the SOM-GRNN
is summarized as Algorithm 1.

Algorithm 1. Selection of the stationary point.
Require: x, �xinp, y, k,σ,lr0,σ0

1: Set to nom and denom as zeros
2: Assign random values to w
3: Apply steps of the SOM to generate a map with k

units using x
4: Apply �xinp as test
5: while i ≤ k do
6: dsi(�xinp) = ||�xinp − �wi|| ;
7: end while
8: BMU = argmini(ds)
9: Find nearest neighbours of BMU itself

10: Find training records xred belonging to nearest
neighbours of BMU and BMU

11: while r ≤ R do
12: Calculate squared Euclidean distance between �xinp

and �xred
r as dgr =

∑m
i=1(xinp,i − xred

r,i)
2

13: Compute nom = nom + yr × exp(−dgr
2σ2 )

14: Compute denom = denom + exp(−dgr
2σ2 )

15: end while
16: Y (�xinp) =

nom

denom
17: return Y (�xinp) {Returns prediction result}

5. Comparison of the SOM-GRNN with
popular data selection and clustering
algorithms

In this section, one of the employed clustering algorithms,
k-means clustering and kNN, are implemented and
analysed as a pre-processor of the GRNN. It can be seen
from the examples given in Fig. 4 that the major weakness
of the clustering algorithm is caused by the occurrence of

outliers. Outliers are abnormal test data that are present
at the boundaries and are distant from principal units.
Their predictions are complicated and inconsistent for the
GRNN. The use of clustering to summarize training data
for the GRNN causes the emergence of new inner borders
that are formed by previously intermediate units.

An example view of the k-means clustering
algorithm’s result over the Bird function consisting of 400
randomly created samples is given in Fig. 4. The cluster
count is chosen as 4, and 4 different marks are used to
illustrate the clusters. Lines represent the projection of
the Bird function results on two dimensions; the figure and
the circled shapes illustrate the regions with peak results
of the function.

The proximity of the function lines to each other
is proportional to the force of the peak values. In
the figure, the × marks represent test data. The test
records lying within the borders of the clusters are
called inner outliers. These outliers are illustrated with
both × and circles. Even though these data are not
outliers for the SGRNN, they may behave as outliers
for clustering-GRNN algorithms. Since some parts of
training data similar to the test record (outlier record)
are in another cluster, a more erroneous prediction
result compared with the standard algorithm is obtained.
Assume that one of the inner outlier test records lying
between the square and circle clusters is clustered into
the circle cluster by the clustering algorithm. In this case,
this test record is predicted by using only the training data
belonging to the circle cluster, while the square training
data closest to this test record cannot be employed. Hence,
the prediction error increases.

The SOM has critical importance for the selection of
all relevant training data, especially in operations of the
test data that are near the cluster borders. Since similar
clusters are located close to each other in the output of
the SOM, not only the most similar cluster but also its
neighbouring clusters with less similar training data are
used in the GRNN. Thus, the test record is not allowed
to remain in the border area of the training data used, and
the emergence of inner outlier data between the clusters is
prevented.
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Fig. 4. Clustering-GRNN: inner outliers.

Fig. 5. Training data of the most similar cluster on the Bird
function.

In Fig. 5, the use of training samples from only the
most similar cluster of the test record is illustrated with
the Bird function. In Fig. 6, the use of training samples
from both the most similar and similar clusters (its
neighbouring clusters) is illustrated with the Bird function
for the same test record. While the + marks indicate all
training data, the stars indicate selected training data and
the dot with a circle indicates the test record. Figure 5
illustrates that the use of the training data belonging only
to the BMU (cluster) may produce inner outlier data as in
the k-means clustering algorithm.

A second popular pre-processing algorithm, kNN,
requires excessive calculations for the prediction of each
test record separately. When a new test record is
applied, first, distances are measured between the test
record and all training data. Then, one more calculation
step is required to determine the k-nearest training data.
Furthermore, if the selected nearest data are located near
the training data heap, the prediction result will be derived
from unevenly distributed neighbours, rather than from
the surrounding examples reflecting the true nature of test
record, and it may be close to the mean value of selected
records.

5.1. Complexity analysis. The SOM-GRNN
algorithm consists of two separate steps, the SOM and

Fig. 6. Training data of the most similar and similar clusters on
the Bird function.

GRNN. If we analyze the complexity of the algorithm,
both the algorithms must be examined separately and
summed at the final step.

Suppose that N is the number of training data, k is
the number of map units that is small enough to be ignored
when compared with N , and L is the number of iterations.

The computational complexity of the traditional
SOM algorithm for each iteration will be O(kN) and
the total complexity of the SOM can be considered as
O(LkN). The second step of the algorithm consists of
the GRNN, which is the one pass learning algorithm and
has O(N) computational complexity for the prediction
of one test record. However, in the SOM-GRNN, the
number of training data is reduced from N to R, where
R � N . Consequently, the SOM-GRNN algorithm has
O(LkN) + O(R) complexity, which equals O(LkN).
The WTA algorithm, which is another “competitive
learning” algorithm, has the same calculation complexity,
as it has the same processing procedures as the SOM.

The other two popular clustering-GRNN algorithms
(FMC and k-means) have structures similar to the
SOM-GRNN. In the clustering step, both the algorithms
require O(kN) calculations for each iteration, where
k is the cluster count. Since the FMC algorithm
requires a membership matrix, once the distance from
the cluster centre is calculated, the membership matrix
is updated in the same loop. Although this computation
slightly increases the transaction count, the computational
complexity does not change. In both algorithms, with
the addition of the SGRNN, the total complexity can be
considered as O(LkN) +O(N) for L iterations.

In contrast, in the kNN-GRNN, both algorithms
are in nested structures. In the basic kNN, the k
nearest training data have to be detected for each test
record, which requires N distance calculation and sorting
operations. These operations require N and N logN
operations, respectively. For one test record, the total
computational complexity for kNN and the GRNN is
O(N +N logN + k).

According to the complexity analysis, SOM-GRNN,
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WTA-GRNN, k-means-GRNN, FMC-GRNN algorithms
have O(LkN), the kNN-GRNN has O(N logN), and the
SGRNN has O(N) computational complexities. When
the results are superficially examined, the complexity
of the standard algorithm, O(N), seems less than that
of the others. However, SOMs and other clustering
methods (k-means, FCM and WTA) are pre-processing
algorithms and have to be performed before the testing
step. Thus, when a new test record is applied, there remain
two operations: the detection of nearest clusters and the
GRNN operation with reduced training data. This feature
ensures faster prediction of these four algorithms for the
instantaneous test record and a decrease in computational
complexity from O(N) to O(R), where R � N .

6. Tests and results

6.1. Real-world datasets and test functions. To test
the practicality of the SOM-GRNN, the method was tested
on eight datasets with known dependence attributes. The
benchmark datasets we use in the test process are listed
in Table ??. Datasets are downloaded from the UCI
repository (Bache and Lichman, 2013). All the input
features and targets have been normalized into the range
[0, 1].

It was considered necessary to compare the input
determination method on synthetic data, before applying
this method to the real-world case study. Fifteen
well-known benchmark test functions were employed
for analyzing and comparing the performances of
the proposed SOM-GRNN algorithm and the others
(SGRNN, k-means-GRNN, FMC-GRNN, WTA-GRNN
and kNN-GRNN) (Tang et al., 2009). The functional
form, boundaries and global minimum points of the test
functions are given in Table 2.

6.2. Cluster count estimation. Clustering algorithms
have been fundamental pre-processors for GRNNs in
the literature. However, determining the number of
clusters (k) is the main problem in data clustering,
and selection of the appropriate k is often ambiguous.
In this study, four k-estimation algorithms proposed
in the literature (Calinski–Harabasz, Davies–Bouldin,
Gap and Silhouette) are employed to determine the
best number of clusters for each real-world dataset and
benchmark function (Caliński and Harabasz, 1974; Davies
and Bouldin, 1979; Rousseeuw, 1987; Tibshirani et al.,
2001). Since the generated random data are the same
for all the test functions, only one test is performed for
randomly created data. Cluster numbers from 2 to 100
were evaluated by the algorithms, and the most suitable
numbers of clusters in this range are given in Table 3.

There is no common cluster count for any dataset.
Therefore, according to three different data reduction
percentage values selected (80, 90, 95), three different

k-cluster counts (5, 10, 20) were utilized to demonstrate
the prediction performances of the clustering-GRNN
algorithms.

6.3. Results and discussion. In this study, in
addition to the SOM-GRNN, SGRNN and integration
of the GRNN with four other pre-processing algorithms,
k-means clustering, FMC, WTA and kNN were developed
and implemented for more reliable discussions. All the
algorithms were implemented using MATLAB.

Before starting the test procedures in addition to
the cluster count, there are three more parameters: best
sigma, nearest-neighbour count and SOM size. These
parameters have to be tuned for the GRNN, clustering
algorithms, kNN and the SOM, respectively. Sigma
optimization is crucial and was accomplished by ten-fold
cross validation. For benchmark test functions, the sigma
value was initiated at 0.1 and increased gradually up to
3 by 0.1 steps to find an optimum value. However, for
real datasets, since all the input features and targets were
normalized into the range [0, 1], sigma was initiated at
0.01 and increased gradually up to 1 by 0.01 steps. While
there is only one sigma value for the SGRNN, in the
clustering-GRNN there are different sigma values for each
cluster. Thus, on completion of the clustering process, a
sigma optimization procedure was applied for each cluster
separately. Since in kNN and the SOM-GRNN training
data are determined in accordance with the test record
during the test process, their optimal sigma values cannot
be obtained until the test operation starts. The sigma
searching process at the test step causes extra operation
costs and decreases in speed. Moreover, in kNN, due to
the small number of training data, the process of searching
for the optimal sigma value may not provide reliable
results. Hence, the optimal sigma value was tuned for
the SGRNN and all clustering-GRNNs. The optimal
sigma value calculated for the SGRNN is also used for
the kNN-GRNN and the SOM-GRNN. Additionally, if
we intended to carry out a similar optimization procedure
for the SOM size and the nearest-neighbour count, a huge
number of tests would be required and it would take quite
a long time. Therefore, three different nearest-neighbour
counts (5, 10, 20) and three different SOM sizes (8,
10, 16) were utilized to demonstrate the prediction
performances of the algorithms.

The proposed SOM-GRNN, the SGRNN and the
other four hybrid GRNN algorithms were tested on
eight different UCI datasets and 1000 randomly created
data for each test function. Ten-fold cross validation
was carried out for each configuration to compare the
prediction results obtained from these datasets. The UCI
datasets and randomly created data were separated to
ten sub-groups. While nine sub-groups were used for
training the models, the remaining sub-group was used
as test data. Until all ten sub-groups were applied as
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Table 3. Estimated cluster counts.
Dataset Cal. Har. Sil. Gap Dav. Boul.

B1 100 2 97 2
B2 98 2 97 2
B3 98 2 97 2
B4 97 2 100 2
B5 99 2 98 2
B6 98 2 2 2
B7 100 2 2 2
B8 100 2 2 2
f 99 2 2 2

test data, this process was repeated. For each benchmark
function, tests were repeated with 10 different random
seed values to decrease the effect of randomness on the
results (Hamzacebi, 2008). For these data, the results were
averaged over 10.

The performances of the algorithms were measured
on the basis of two criteria: mean squared error (MSE)
and mean absolute error (MAE),

MSE =
1

Ntest

Ntest∑
q=1

(ytestq − Yq(�xinp))
2, (7)

MAE =
1

Ntest

Ntest∑
q=1

|ytestq − Yq(�xinp)|, (8)

where Ntest is the number of test data, ytestq is the actual
value of the q-th test data and Yq(�xinp) is the predicted
value of the q-th test data.

Average results of the SGRNN and the hybrid GRNN
with clustering algorithms in terms of MSE and MAE are
given in Tables 4–6. The tables illustrate the prediction
error values of the SGRNN and percentages of the error
changes with respect to the SGRNN. While ‘0’ means
the same result as the one obtained from the SGRNN,
‘–’ indicates a worse result. The others denote positive
improvements on the SGRNN. The results show that
although the clustering algorithms greatly reduce the
complexity of the pattern layer, the negative impact over
all the test functions can be seen clearly. In all clustering
algorithms, the increase in the error rate is proportional to
the increase in the number of clusters.

In a detailed examination of the k-means GRNN,
when k is increased from 5 to 10 and 20, the differences
between the SGRNN and k-means-GRNN increase. If
we calculate the average change in MSE rates for
synthetic and real datasets, there are −7.88% and −6.38%
decreases in prediction accuracy for 5 clustered GRNNs,
respectively. When we increase the cluster count to
10, the average error percentage increases to −14.12%
−11.92% and, when the cluster count is 20, the average
error percentage increases to −28.16% and −27.87% for

synthetic and real datasets, respectively. A similar relation
between the increase in error rate and cluster count can
also be observed in the MAE measurements.

According to Table 5, the results obtained for the
FMC algorithm are similar to those for the k-means
GRNN. According to both results, it is clear that the
clustering process decreases the performance of the
SGRNN, and this ratio increases in proportion to the
number of clusters, as in the k-means-GRNN. However,
when the effects of the WTA algorithm on the GRNN
are examined, the results seem to be worse than for the
other clustering algorithms. This finding shows that the
competitive learning algorithm based on the principle of
the “winner takes all” does not work well with the GRNN.

It is assumed that if the most similar training data
to the test record are acquired by clustering approaches
and a different tuned sigma value is used for each
cluster, the prediction error rate will decrease with
respect to the SGRNN. However, the results given in
Tables 4, 5 and 6 indicate that using clustering methods
as a pre-processor made conventional GRNN algorithms
performance sensitive to the newly emerged inner outliers.
For example, while the SGRNN is steadier than the
5-means GRNN, the 5-means GRNN is steadier than the
10-means GRNN and the 20-means GRNN. This finding
clearly shows the effects of emerging cluster-outliers on
the prediction accuracy.

According to Table 7, the kNN-GRNN for k =
5 provides better or equal prediction performances for
four test functions (f2, f3, f8, f13) and three UCI datasets
in terms of MSE by using merely five training data.
When k is increased to 10 and 20, the results indicate
that the differences between the performances of the
SGRNN and the kNN-GRNN decrease. Although there
are significant reductions in the numbers of training data,
there is no consistency and reliability in the achieved
results. Additionally, kNN requires more calculation costs
for sorting and selecting the nearest k training data for
each test record. By taking these into consideration, we
can conclude that performance of the kNN-GRNN is not
sufficient to improve the overall prediction accuracy and
speed.

The comparative results for the SOM-GRNN and
the SGRNN are listed in Table 8. It can be clearly
seen that SOM-GRNNs with sizes of 8 × 8 and 10 × 10
produce either better or the same results as the SGRNN
for all given test functions and very small differences
for real-world datasets in both the error measurements,
MSE and MAE. Moreover, the proposed pre-processing
algorithm produces more consistent results than the
clustering-GRNN and kNN-GRNN algorithms.

When the performance of pre-processing algorithms
is compared, clustering-GRNN algorithms require 80%,
90% and 95% less training data for 5, 10 and 20 cluster
counts, respectively. However, none of the clustering
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Table 4. Error values of the SGRNN and the deviation percentages of the k-means-GRNN algorithm from the SGRNN.
MSE MAE

SGRNN k = 5 k = 10 k = 20 SGRNN k = 5 k = 10 k = 20

f1 1E+07 -5.94 -6.46 -8.96 984.34 -5.55 -6.47 -12.03
f2 49.893 -4.96 -7.49 -14.88 5.51 -1.37 -2.28 -4.95
f3 11269 -3.37 -6.37 -12.47 77.69 -1.57 -2.68 -4.93
f4 0.4254 -4.2 -5.78 -9.28 0.5 -1.55 -1.83 -3.9
f5 1E+08 -4.09 -7.9 -22.07 4252.4 -3.44 -7.17 -15.58
f6 32376 -6.78 -12.71 -23.52 86.5 -3.71 -7.27 -13.76
f7 26.703 -13.63 -27.78 -52.55 3.21 -6.12 -10.95 -18.91
f8 349.75 -4.28 -7.28 -24.17 8.37 -4.48 -10.51 -25.75
f9 3.1504 -6.64 -14.01 -26.47 1.27 -2.89 -6.49 -11.37
f10 434.14 -16.43 -37.56 -66.28 12.78 -7.99 -17.18 -27.03
f11 668.95 -11.39 -23.29 -37.9 16.29 -5.47 -12.68 -20.67
f12 0.6085 -7.83 -6.89 -13.76 0.25 -4.14 -4.76 -8.66
f13 0 -3.96 -5.7 -28.2 0 -1.15 -2.25 -14.05
f14 290.83 -7.76 -14.86 -25.53 9.28 -4.21 -9.45 -14.59
f15 1.1253 -17.05 -27.75 -56.45 0.64 -9.03 -14.27 -25.74
B1 0.0171 -7.9 -27.97 -25.59 0.1 -3.56 -8.81 -9.33
B2 0 -1.34 -1.88 -3.08 0 -1.39 -1.21 -1
B3 0.0023 -2.92 -2.97 -3.31 0.03 -0.14 -1.06 -0.59
B4 0.0276 6.44 7.77 -0.02 0.12 2.91 2.74 1.98
B5 0.0036 -26.84 -33.59 -51.85 0.03 -23.48 -31.03 -43.95
B6 0.0043 -14.54 -27.26 -45.5 0.04 -11.75 -20.22 -32.06
B7 0.0181 -1.64 -6.38 -10.31 0.11 0.39 -2.08 -2.12
B8 0.0151 -2.31 -3.14 -4.12 0.1 0.18 -1.48 -1.66

Table 5. Error values of the SGRNN and the deviation percentages of the FMC-GRNN algorithm from the SGRNN.
MSE MAE

SGRNN k = 5 k = 10 k = 20 SGRNN k = 5 k = 10 k = 20

f1 1E+07 -7.11 -8.14 -23.25 984.34 -5.66 -8.18 -12.97
f2 49.893 -5.44 -8.66 -16.08 5.51 -1.51 -2.63 -5.61
f3 11269 -3.73 -7.69 -12.59 77.69 -1.74 -3.22 -4.97
f4 0.4254 -3.58 -3.11 -10.43 0.5 -1.63 -1.53 -4.06
f5 1E+08 -4.53 -11.15 -21.55 4252.4 -3.09 -8.12 -15.62
f6 32376 -8.99 -15.67 -21.16 86.5 -4.22 -8.37 -13.18
f7 26.703 -13.47 -29.42 -51.42 3.21 -5.69 -11 -19.13
f8 349.75 -5.41 -10.16 -25.97 8.37 -4.5 -10.81 -26.39
f9 3.1504 -7.91 -14.35 -28.11 1.27 -3.51 -6.21 -11.49
f10 434.14 -16.3 -39.46 -61.84 12.78 -8.24 -15.65 -24.67
f11 668.95 -10.53 -22.84 -47.03 16.29 -5.32 -11.84 -22.66
f12 0.6085 -3.85 -7.64 -20.58 0.25 -3.75 -5.14 -10.02
f13 0 -2.5 -5.29 -10.51 0 -1.18 -1.97 -6
f14 290.83 -8.46 -14.71 -30.01 9.28 -4.76 -8.88 -15.1
f15 1.1253 -14.57 -27.86 -54.36 0.64 -8 -13.7 -24.71
B1 0.0171 -9.24 -12.77 -23.53 0.1 -3 -5.52 -10.48
B2 0 -2.61 -2.45 -5.66 0 -1.67 -1.52 -2.68
B3 0.0023 -2.37 -3.96 -4.29 0.03 -0.73 -1.3 -1.19
B4 0.0276 5.34 8.87 -0.1 0.12 2.01 2.71 -0.29
B5 0.0036 -11.08 -33.26 -91.05 0.03 -14.48 -34.9 -55.58
B6 0.0043 -10.24 -28.16 -59.85 0.04 -11.45 -23.85 -37.71
B7 0.0181 -2.2 -7.72 -9.83 0.11 -0.13 -2.49 -3.2
B8 0.0151 -3.6 -4.34 -6.94 0.1 -2.03 -2.24 -3.14
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Table 6. Error values of the SGRNN and the deviation percentages of the WTA-GRNN algorithm from the SGRNN.
MSE MAE

SGRNN k = 5 k = 10 k = 20 SGRNN k = 5 k = 10 k = 20

f1 1E+07 -7 -18.4 -260.5 984.34 -6.36 -17.49 -89.55
f2 49.893 -17.23 -37.18 -106.7 5.51 -6.01 -13.21 -38.13
f3 11269 -6.26 -7.04 -14.2 77.69 -3.54 -2.89 -6.35
f4 0.4254 -7.68 -35.85 -48.11 0.5 -2.45 -15.56 -19.06
f5 1E+08 -21.66 -167.6 -917.1 4252.4 -12.22 -57.39 -162.3
f6 32376 -13.21 -32.12 -250.8 86.5 -7.26 -16.77 -81.87
f7 26.703 -36.85 -127.1 -517.4 3.21 -13.5 -35.72 -113.2
f8 349.75 -15.17 -144.7 -275.6 8.37 -13.34 -65.81 -94.32
f9 3.1504 -58.84 -63.45 -81.72 1.27 -30.58 -31.59 -37.41
f10 434.14 -31.24 -88.93 -509.3 12.78 -13.55 -29.62 -101.5
f11 668.95 -27.4 -121.3 -822.2 16.29 -12.36 -40.43 -149.8
f12 0.6085 -8.09 -12 -61.69 0.25 -4.91 -9.02 -32.05
f13 0 -5.07 -10.61 -35.11 0 -2.77 -5.58 -18.65
f14 290.83 -17.82 -45.4 -276.1 9.28 -9.9 -22.39 -90.64
f15 1.1253 -25.24 -68.64 -349.8 0.64 -13.6 -26.2 -87.66
B1 0.0171 -10.62 -39.57 -21.52 0.1 -3.55 -14.85 -9.21
B2 0 -1E+06 -67.96 -48.2 0 -1329 -24.14 -15.99
B3 0.0023 -40.61 -100.8 -159.1 0.03 -16.18 -37.56 -51.41
B4 0.0276 -3.71 -22.48 -9.67 0.12 -5.34 -14.77 -9.96
B5 0.0036 -45.9 -88.04 -96.77 0.03 -29.77 -51.86 -56
B6 0.0043 -31.23 -79.11 -77.51 0.04 -19.54 -41.95 -44.17
B7 0.0181 -4.07 -23.01 -22.82 0.11 -0.67 -6.59 -9.11
B8 0.0151 -7.51 -19.03 -23.36 0.1 -3.25 -6.81 -10.32

Table 7. Error values of the SGRNN and the deviation percentages of the kNN-GRNN algorithm from the SGRNN.
MSE MAE

SGRNN k = 5 k = 10 k = 20 SGRNN k = 5 k = 10 k = 20

f1 1E+07 -1.94 -0.31 -0.01 984.34 -2.97 -0.41 -0.01
f2 49.893 4.69 0.9 0.01 5.51 2.78 0.51 0.01
f3 11269 0.04 0 0 77.69 0.02 0 0
f4 0.4254 -6.33 -0.57 0.3 0.5 -3.83 -0.92 -0.03
f5 1E+08 -2.82 -1.14 -0.06 4252.4 -4.02 -0.83 -0.02
f6 32376 -1.87 -0.16 0 86.5 -2.07 -0.2 0
f7 26.703 -2.11 0.93 0.13 3.21 -1.64 0.28 0.05
f8 349.75 24.65 11.34 2.42 8.37 11.75 7.53 2.9
f9 3.1504 -2.17 -0.07 0 1.27 -1.25 -0.04 0
f10 434.14 -17.64 -4.33 -0.4 12.78 -10.7 -2.87 -0.24
f11 668.95 -8.53 -1.82 -0.08 16.29 -6.81 -1.43 -0.03
f12 0.6085 -0.44 0.18 0 0.25 1.22 0.34 0.01
f13 0 1.23 0.6 0.04 0 2.62 0.95 0.07
f14 290.83 -3.1 -0.34 0 9.28 -2.49 -0.28 0
f15 1.1253 -12.69 -3.33 -0.2 0.64 -7.52 -1.89 -0.09
B1 0.0171 -10.5 -4.75 0.38 0.1 -2.85 -1.64 0.98
B2 0 -0.8 1.88 2.13 0 0.15 1.4 1.4
B3 0.0023 1.37 2.27 1.54 0.03 4.02 3.35 1.95
B4 0.0276 6.19 4.73 3.18 0.12 6.9 4.71 2.57
B5 0.0036 2.5 1.42 1.05 0.03 3.67 1.12 1.05
B6 0.0043 1.78 1.35 1.04 0.04 2.57 1.39 1.04
B7 0.0181 -15.08 -6.63 -1.92 0.11 -1.53 0.64 1.81
B8 0.0151 -12.18 -5.06 -1.15 0.1 -2.96 -0.85 0.4
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Table 8. Error values of the SGRNN and the deviation percentages of the SOM-GRNN algorithm from the SGRNN.
MSE MAE

SGRNN 8×8 10×10 16×16 SGRNN 8×8 10×10 16×16

f1 1E+07 0 0 -0.01 984.34 0 0 -0.02
f2 49.893 0 0 0.02 5.51 0 0 0.01
f3 11269 0 0 0 77.69 0 0 0
f4 0.4254 0 0.02 0.1 0.5 0 0 -0.09
f5 1E+08 0 0 -0.07 4252.4 0 0 -0.07
f6 32376 0 0 -0.01 86.5 0 0 -0.01
f7 26.703 0 0 0.06 3.21 0 0 0.01
f8 349.75 0 0.02 0.57 8.37 0.01 0.1 1.07
f9 3.1504 0 0 0.02 1.27 0 0 0.01
f10 434.14 0 0 -0.38 12.78 0 0 -0.21
f11 668.95 0 0 -0.17 16.29 0 0 -0.11
f12 0.6085 0 0 0 0.25 0 0 0
f13 0 0 0 0.01 0 0 0 0.04
f14 290.83 0 0 -0.01 9.28 0 0 -0.02
f15 1.1253 0 0 -0.38 0.64 0 0 -0.23
B1 0.0171 -0.45 -0.11 -6.36 0.1 -0.13 0.02 -1.23
B2 0 0 -0.02 -0.38 0 0.01 0 -0.18
B3 0.0023 0 -0.01 0 0.03 0 0 0.03
B4 0.0276 -0.07 0.3 1.15 0.12 0.06 0.27 0.91
B5 0.0036 -0.01 -0.03 -0.39 0.03 -0.02 -0.06 -0.27
B6 0.0043 0 -0.02 -0.01 0.04 -0.03 -0.04 -0.09
B7 0.0181 -0.55 0.08 -1.09 0.11 0.33 0.72 1.02
B8 0.0151 -0.16 -0.36 -0.82 0.1 0.08 -0.09 -0.03

algorithms produce results as reliable as the SGRNN.
The kNN-GRNN, in contrast, employed 5, 10 and 20
nearest neighbours instead of all training data. Although,
the results were obtained by using much fewer training
data, there was still no important improvement in the
performance results for k = 5 and k = 10. However,
almost the same prediction performances are obtained by
using 20 training data. Nevertheless, the prediction time
calculation is still one of the greatest drawbacks of this
algorithm.

When the SOM size is selected as 8 and 10,
the algorithm produces almost the same results as the
SGRNN, and when the SOM size is increased to 16, a
slight difference in the performance starts to be observed
depending on the reduction of training data. In addition,
the SOM-GRNN reduces the number of training data from
900 to 99, 64 and 25 for 8, 10 and 16 SOM sizes (64,
100 and 256 cluster counts), respectively. Due to the
non-homogeneous dispersion of training data over the
clusters, the number of utilized training data could not
be calculated directly from the cluster counts. Hence,
the total number of utilized training data were counted
while the prediction operation was executed, and then
an average value was calculated. If it is assumed that
the training data were dispersed homogeneously over the
clusters and the map structure is hexagonal, then the

following formula can be used to calculate the number of
utilized training data:

R = 7
N

k
, (9)

where 7 represents the cluster count (BMU and its 6
neighbours in the hexagon map). If this equation is used,
almost the same result with the given counts will be
obtained.

7. Conclusion

In this study, a new method to solve the sample
complexity problem of the GRNN has been proposed. The
performance of the proposed method has been evaluated
on fifteen benchmark test functions and eight different
UCI datasets and compared with that of the SGRNN as
well as popular hybrid methods used in the literature.
Although all the pre-processing algorithms given in the
literature reduce the data complexity of the GRNN,
prediction accuracy could not be enhanced adequately.

The proposed method employs an SOM as a
pre-processing algorithm for the GRNN. Instead of
using all training data in GRNNs pattern layer, using a
small group of data that are the neighbours of the test
record significantly reduces memory complexity. As a
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pre-processor, an SOM has been employed to cluster the
training data off-line. Whenever a test record needs to
be predicted, it is subjected to the SOM to identify the
similar cases in the training data. The data in the best
matching cluster and its neighbouring clusters are utilized
as the pattern layer of the SOM-GRNN.

The proposed method provides three advantages
over compared methods. The first advantage is a
reduction in the pattern layer size without an inner outlier
problem. The second is data reduction with an acceptable
computational complexity. The last advantage is the
production of almost the same prediction results as the
SGRNN with fewer training data.

Consequently, the major drawback of the pattern
layer complexity of the SGRNN for huge datasets is
overcome. The proposed method decreases the number
of required pattern layer neurons by approximately 89%
for an SOM of size 8 without any loss in performance
compared with the SGRNN. Furthermore, the numerical
results denoting accuracy and calculation complexity
show the superiority of the proposed method over
popular approaches such as the clustering-GRNN and the
kNN-GRNN.
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Buse Melis Özyildirim received her BE and
MSc degrees from the Department of Computer
Engineering, Cukurova University, in 2010 and
2012, respectively. She then received her PhD
degree from the Department of Electrical and
Electronics Engineering of the same university
in 2015. She now works as an assistant pro-
fessor in the Department of Computer Engineer-
ing there. Her research interests include artificial
neural networks.

Received: 27 April 2017
Revised: 11 August 2017
Re-revised: 26 September 2017
Accepted: 25 October 2017


	Introduction
	Problem of input data representation
	Background
	SOM
	GRNN

	Proposed algorithm
	Comparison of the SOM-GRNN with popular data selection and clustering algorithms
	Complexity analysis

	Tests and results
	Real-world datasets and test functions
	Cluster count estimation
	Results and discussion

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


