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Automatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and self-
organizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created
for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native
and non-native speakers were audio-video recorded, from which seven native speakers’ and phonology experts’ speech was
selected for analyses. For the purpose of the present study, a sub-list of 103 words containing the English alveolar lateral
phoneme /l/ was compiled. The list includes ‘dark’ (velarized) allophonic realizations (which occur before a consonant
or at the end of the word before silence) and 52 ‘clear’ allophonic realizations (which occur before a vowel), as well as
voicing variants. The recorded signals were segmented into allophones and parametrized using a set of descriptors, origi-
nating from the MPEG 7 standard, plus dedicated time-based parameters as well as modified MFCC features proposed by
the authors. Classification methods such as ANNs, the kNN and the SOM were employed to automatically detect the two
types of allophones. Various sets of features were tested to achieve the best performance of the automatic methods. In the
final experiment, a selected set of features was used for automatic evaluation of the pronunciation of dark /l/ by non-native
speakers.

Keywords: allophones, audio features, artificial neural networks (ANNs), k-nearest neighbor (kNN), self-organizing map
(SOM).

1. Introduction

The aim of the research presented in this paper is to
find efficient feature vectors that will enable automatic
assignment of allophones extracted from English speech
to an appropriate phonological group. The study
performed is to be presented in the context of variations
the allophones of /l/ to develop a methodology for other
consonantal allophones. The achieved sets of parameters
describe model pronunciation of lateral allophones. The
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goal of this selection is not only to differentiate between
allophones, but to determine on the basis of objective
measures whether the target phenomena were pronounced
correctly. At the final stage of the experiment, dark
/l/ performances of non-native English speakers were
analyzed using a chosen set of features. Such an
approach may be used in the future in an application
checking the speaker’s pronunciation in the process
of language learning and providing him/her with an
automatic feedback on speech correctness.
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Lateral allophones were selected for the analysis
as these linguistic phenomena are particularly difficult
for Polish speakers. For a few decades, one has
observed continuous improvement in the technology of
speech-recognition systems. This is due to several factors.
One of them is building audio-visual speech corpora
in which fast camera recordings and video analysis
(visemes) support audio recognition (Almajai et al., 2016;
Cooke et al., 2006; Dalka et al., 2014). This concerns both
English and national databases (Czyzewski et al., 2017b;
Kunka et al., 2013; Benezeth et al., 2011; Trojanová
et al., 2008; Żelasko et al., 2016; Kłosowski, 2017).
For the audio part, the utterances may be spoken at a
slow and normal speech pace; they may also contain
prosodic features to improve the learning process of the
audio-visual speech recognition system. Recently, more
efficient machine learning methods have also appeared
for speech analysis and recognition (Almajai et al., 2016;
Jadczyk and Ziółko, 2015; Marasek and Gubrynowicz,
2005; Brocki and Marasek, 2015; Aubanel and Nguyen,
2010), such as deep learning (Mroueh et al., 2015;
Noda et al., 2015). Moreover, a renewed interest
in phonemic-level-based analyses has appeared (Biswas
et al., 2015; Czyzewski et al., 2013; Kupryjanow and
Czyzewski, 2013; Ziółko and Ziółko, 2009; Cooke et al.,
2006) with applications to various areas, such as, e.g.,
biometry (Czyzewski et al., 2017a).

A unique feature of the audio-visual database
(Fox et al., 2005) created at the Multimedia Systems
Department, Gdansk University of Technology, is
the recording of a list of specially selected words
containing variations in allophones, thus enabling a
more in-depth analysis of speech sounds. For the
purpose of the experiments carried out, a series of
audio-video recordings was performed to gather the
required information. The framework of the experiments
is briefly described in Section 2. The current study
focuses on the audio analysis. Audio files were edited and
segmented into allophones, and then parametrized using a
set of descriptors. This is presented in Section 2. From
the entire list a sub-list containing words with various
allophones of /l/ was chosen for a detailed analysis.

As mentioned before, the rationale behind this study
is to provide a methodology for allophone analysis
and automatic assignment of selected allophones to
an appropriate phonological group. The analysis
involved native speakers (Standard Southern British or
SSBrE—Standard Southern British English; both male
and female) and, at the final stage, recordings of
non-native speakers. The accent demonstrated by the
phonology experts is also near native SSBrE (Standard
Southern British English), and the articulation and
distribution of dark /l/ in South African English is
the same as in SSBrE. The discussion concerning the
phonological features of the audio material assessed

is presented in Section 3. The allophones are
parametrized and the created feature vectors are checked
for redundancy. To this end, the PCA (principal
component analysis) is applied. This is shown in
Section 3.

As mentioned before, the focus of the present study is
on automatic allophone recognition employing optimized
feature vectors and the machine learning approach.
Application of artificial neural networks (ANNs), the
k-nearest neighbor (kNN) and self-organizing maps
SOMs is justified by a possibility to compare the
approach presented in our study with other research
results. Such a comparison cannot, however, be
performed in a straightforward way, as other works
in this area concentrate around speech recognition
and not on elements of speech, such as allophones
(Mitterer et al., 2018; Ali et al., 1999; Kozierski
et al., 2016; Baghdasaryan and Beex, 2011). Kozierski
and his collaborators came to the conclusion that an
approach based on allophones cannot directly be used
in automatic speech recognition without further research
and modification of the employed methods (Kozierski
et al., 2016). Nevertheless, to show that it is applicable
to employ such algorithms to automatic allophone
recognition, in Section 4, optimized feature vectors are fed
into the ANNs, kNN and SOM algorithms to assign them
to an appropriate phonological group, taking into account
the speaker-individual features, the gender, as well as the
native/non-native context. Finally, conclusions on the
application of ANNs, the kNN and SOMs in automatic
allophone assignment are drawn.

1.1. Allophonic material. It was observed that,
at the level of conscious awareness, listeners are
characteristically attuned only to the distinctions between
phonemes. Making speakers aware of allophonic variation
requires that their attention be carefully directed to the
distinction (Giegerich, 1992). An example of such
phonological problem in English is the allophonic variants
of the phoneme /l/. The group includes velarized (dark)
[ë], which is articulated with the back of the tongue
raised towards the soft palate and occurs word-finally or
before another consonant (e.g., ball, fool, all, etc.), dental
[l] instead of alveolar when a 〈th〉 consonant follows
(e.g., wealth, health, stealth, etc.), fully devoiced /l/
when the preceding consonant is voiceless (e.g., slight,
flight, plow, etc.) and partially devoiced word-initially,
whereby the (clear) [l] onset is voiceless and voicing
starts at the end of the /l/ articulation (e.g., listen, lose,
allow, etc.), and partially devoiced word-final (dark) [ë],
whereby the allophone is devoiced only towards the end
of its articulation. In the production of the dark /l/,
the front constriction of the tongue tip is accompanied
by a post-dorsal or pharyngeal gesture, which results in
observable lowering of the formant frequencies level L2
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(second formant level) and rising of L1 (first formant
level) (Giles and Moll, 1975). The variants of /l/ depend
on the position of the tongue in the mouth. These
differences result in very different formant frequencies.

It was shown by Recasens (2012) that a relatively
high F2, about 1500–2000 Hz for clear /l/, and a lower
F2, about 800–1200 Hz for dark /l/, are characteristic for

Table 1. List of speakers included in the analysis (numbered as
in the database).

No. Gender English spoken Accent

A Female Near native British
B Male Native British
C Male Native British (Eustary)
D Male Native South African
E Male Native British
F Female Near-Native British
G Female Native British

Table 2. List of words used in the experiment (containing dark
variants of the allophone /l/).

Dark /l/ Words

fully voiced
album, already, bulldog, elbow,
field, shield, tool, will rise

partially
voiced

all, also, bell, bolt, bottle, cattle,
comfortable, crawl, example, fail,
feel, file, foil, hall, hell, help, jail,
level, little, melt, mobile, pill, poll,
pub meal, school, scowl, scrawl,
shall, shell, sick girl, special, spill,
steal, still, stole, style, welcome,
zeal

partially
voiced,
syllabic

handle, middle, saddle

dentalized,
partially
voiced

although, health

Table 3. List of words used in the experiment (containing clear
variants of the allophone /l/).

Clear /l/ Words

fully voiced
align, black cat, blackbird, deadly,
family, lilly, nonetheless, will you

partially
voiced

lack, lady, lair, lamp, large, lark,
late, leak, Lear, learn, leave, leg,
leisure, lend, let, level, light, lilly,
lit, little, loaf, log cabin, long,
longer, look, loot, lord, lot, loud,
luck, lunch, lure

voiceless
chocolate, class, clever, close,
cloud, complete, play, replace,
splash, spleen, split )

these allophones. It is also mentioned that F1 is typically
higher for dark /l/ than for clear /l/ (Recasens, 2012).
The acoustic analysis of dark and clear /l/ is based on an
investigation of the first (F1) and the second (F2) formant
frequencies in our study.

1.2. Recordings. A special system consisting of video
and audio modalities was prepared, although in this study
the authors focus on audio recordings only. The audio files
were recorded with a 48 kHz/16 bit resolution with three
microphones (an LAV microphone and two condenser
microphones situated 50 and 100 cm away from the
speaker). Speech samples of 16 speakers (non-native
English speakers, as well as English native speakers and
a phonology expert) were recorded. For the purpose of
this study, seven speakers were selected (Table 1). Four
of them are native English speakers with a British accent
(Standard Southern British or SBrE), Speaker D is native
with a South African accent, and Speakers A and F are
near-native phonology experts. As mentioned before, the
accent demonstrated by the phonology experts is also near
native SSBrE, and the articulation and distribution of dark
/l/ in South African English is the same as in SSBrE.

From the recorded dataset of over 600 words,
a list of 103 words containing the lateral phoneme
was compiled. The list includes 51 ‘dark’ (velarized)
allophonic realizations before a consonant or word-finally
and 52 ‘clear’ allophonic realizations before a vowel,
including different places of articulation and voicing
variants (Tables 2 and 3). A total number of 721 samples
was collected.

2. Parameterization

Before the parameterization phase took place, the first task
was to locate the individual allophones of /l/ in all selected
words, edit them, and then annotate them phonologically.
Therefore, the /l/ allophones were extracted from all
selected words. Indexation was performed manually
by a sound engineer experienced in dialogue editing
and familiar with English allophony. However, since
the accuracy of indexation may have influence on the
parameterization and final results, all measurements and
indexations were performed with meticulous care and
double checked. An automated segmentation system
could not be used (Makowski and Hossa, 2014) since there
was a need for allophone-focused editing. The duration
of extracted /l/ allophones ranges from 30 up to over 200
milliseconds. Such a very detailed analysis of a speech
phenomenon may also be useful in automatic detection
of voice pathologies (Panek et al., 2015), requiring the
editing process to be manual. The goal of the presented
study was to find a vector of features that are related to
differences between dark and clear variations in the lateral
phoneme /l/. Therefore, an extensive set of over 200
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parameters including mel-frequency cepstral coefficients
(MFCCs), as well as time and energy-based features was
calculated. A full list of calculated features is contained
in Appendix (Table A1).

Various sub-vectors were tested using automatic
classification methods (ANNs, the kNN and SOMs). The
analyzed parameters were chosen based on the approach
typical for audio analysis (Mermelstein, 1976; Kim et al.,
2006), also taking into consideration previous studies
performed by the authors (Kostek et al., 2011; Plewa and
Kostek, 2015). Features included in the course of the
presented study were chosen to describe spectral and time
characteristics which differentiate between allophones.
The variants of /l/ are characterized by different formant
values and their distribution in time, therefore both
domains should be represented. More details about the
specific features and their interpretation are included in
the summary below. Since they are presented in Appendix
along with their description, only those which need an
additional explanation are described more thoroughly
below.

Parameters 1–14 refer to the time domain and are
commonly used in sound analysis (Kostek et al., 2011;
Plewa and Kostek, 2015; Song et al., 2009). Parameters
5–14 are obtained through the analysis of the signal
samples distribution in relation to the RMS. Three
reference levels were defined: r1, r2, r3 (equal to RMS,
2×RMS and 3×RMS in the analyzed signal frame).
Parameters 5, 6 and 7 correspond to the number of
samples exceeding levels: r1, r2, r3, and are defined by
the formula

pn =
count samples exceeding rn

length(x(k))
, (1)

where n = 1, 2, 3 and x(k) represents the analyzed signal
fragment. In order to obtain a more thorough description
of the RMS (root mean square) energy changes in
the analyzed frame, Kostek et al. (2011) devised and
introduced another approach, where each frame is divided
into 10 smaller segments. In each of these, parameters pn
(Eqn. (1)) are calculated. As a result, the Pn sequence

Pn = (p1n, p
2
n, p

3
n, . . . , p

10
n ) (2)

is obtained, where n = 1, 2, 3.
In this way, six new features (parameters 8–13) were

defined on the basis of Pn sequences. The features are
denoted as the mean (qn) and variance (vn) of Pn and are
calculated as follows:

qn =
1

10

10∑

k=1

pkn, (3)

vn =
1

9

10∑

k=1

(pnk − qn), (4)

where n = 1, 2, 3. Index n is related to different reference
values of r1, r2 and r3. Parameter 14 is defined as the
‘peak to the RMS’ ratio, calculated as the ratio in the
entire frame. The additional parameters (15–16) are the
mean and variance values of the ‘peak to RMS’ ratio
calculated in 10 sub-frames.

Parameters 17–28 are based on the observation of the
zero crossing rate and the threshold crossing rate (TCR).
These values (similarly to other previously presented
parameters) are defined in three different ways: the value
for the entire frame and as the mean and variance of the
TCR calculated for 10 sub-frames.

Parameters 29–36 are related to the frequency domain,
which often refers to audible characteristics of the sound
(Misra et al., 2004).

Parameters 37–56: mel-frequency cepstral coefficients
(MFCCs). They were introduced by Mermelstein
(1976) as a tool for speech recognition and are among
the most widely used acoustic features in speech
and audio processing (Kłosowski, 2017; Kupryjanow
and Czyzewski, 2013). They are described as a
low-dimensional representation of the spectrum divided
according to the mel-scale, which reflects the nonlinear
frequency sensitivity of the human auditory system.

Parameters 57–172 represent audio spectral features.
They are similar to parameters 29–36, but the calculation
method is different. Since features extraction is to be
performed on an allophone signal divided into short-time
segments, in this study, the input signal is segmented into
frames of 1024 samples, and then, for each frame, the
Hamming windows are applied with an overlap of 50%.

Parameters 173–212 represent MFCC mean values and
variances. MFCC mean values given as averaged MFCC
were obtained from each segment. As in the case of
audio spectral features, the speech signal is divided into
short-time segments.

Parameters 213–232 are modified MFCCs. The MFCCs
are derived from discrete Fourier transform (DFT) spectra.
The spectrum is a combination of the source and a filtered
representation, and contains both speaker-dependent and
phoneme-dependent information. In order to achieve a
higher accuracy of phoneme separation, we may have to
eliminate information dependent on the speaker’s gender.
For this purpose, we consider the fundamental frequency
as the main discriminating factor between male and
female voices. The fundamental frequency determines
the distribution of harmonics, which consequently yields
a different distribution of energy through the frequency
values. Based on this principle, the boundary points of
the filter bank are constructed with regard to the extension
coefficient, which depends on the ratio of female and
male fundamental frequencies and is different for the
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female and male voices. The process of creating the
modified MFCC extraction is shown in Fig. 1, in which the
phoneme signal is denoted as s(n), where n = 1, . . . , N
(N is the number of samples).

In order to determine the extension coefficient, we
use values known from the literature, i.e., a typical male
adult has a fundamental frequency (F0) between 85 Hz to
180 Hz and an adult female has a fundamental frequency
in the range of 165 Hz to 225 Hz (Baken and Orlikoff,
2000). For further analysis, we choose mean values,
i.e., F0 = 132 for the male and F0 = 195 for female.
The extension coefficient (denoted by the symbol Ex) is
equal to the ratio of the female and male fundamental
frequencies, i.e., Ex = 1.45. Moreover, the analyses
performed show that the pitch is linear in low frequencies.
Therefore, we may assume that the frequency scale is
linear with a logarithmic spacing. In the literature, the
upper boundary of the frequency range above which the
scale becomes logarithmic is often set to 1000 Hz (Wang
and Van Hamme, 2011). In this paper, the fixed length of
the linear band F0 = 66.67 Hz is used.

The threshold between the linear and logarithmic
scale is defined by the number of linear bands. The
frequency scale used in MFCC calculation depends on
four variables: Ml (number of linear bands), Mnl (number
of nonlinear bands), fh (highest frequency of the filter
bank), and lb (length of the linear band). As a result of
the above, we propose the following definition of the filter
bank with M filters (M = Ml +Mnl):

Hm(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, k < f [m− 1],
k−f [m−1]

f [m]−f [m−1] , f [m− 1] ≤ k ≤ f [m],

f [m+1]−k
f [m+1]−f [m] , f [m] ≤ k ≤ f [m+ 1],

0, k > f [m+ 1],
(5)

where k is the linear frequency and m is the filter number
(1 ≤ m ≤ M ). The boundary points f [n] are

f [n] = D[n]×
{
1 if female,

Ex, if male,
(6)

where

D[n]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, n = 0,

f [n− 1] + lb, 1 ≤ n ≤ Ml + 1,

Mel−1
(

Mel(fl)

+nMel(fh)−Mel(fl)
M+1

)
, Ml+1 < n ≤ M+1.

(7)

Mel(f) = 2595 log

(
1 +

f

700

)
, (8)

fl = Ml × (lb + 1). (9)

DFT

Extension
coefficient

Filter bank

Log |.|

DCT

MFCC

Frame the 
signal

s(n)

window

Fig. 1. Modified MFCC extraction process.
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Fig. 2. Values of parameter 7 (number of samples exceeding the
r3 threshold) for dark and clear lateral allophones aver-
aged for all speakers, and males and females separately.
Clear allophones are marked with the bold line.
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Fig. 3. Values of parameter 166 (audio spectrum kurtosis vari-
ance) for dark and clear lateral allophones averaged for
all speakers, and males and females separately. Clear
allophones are marked with the bold line.

The log-magnitude is calculated in order to obtain
the real cepstrum. The energies from filters to cepstral
coefficients are converted by the discrete cosine transform
(DCT). To calculate modified MFCC features, the speech
signal is divided into short-time segments.
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3. Analysis

The starting point of the analyses was the
parameterization of all audio samples and subsequent
optimization of features in the context of their separability
and usability in the allophone recognition process. In
order to perform the analysis of features, they should be
normalized first. It was decided to normalize the values
to the range [0, 1]. The maximum and minimum values
were found for each feature. The normalized values were
calculated using the following formula:

zi =
xi −min(x)

max(x)−min(x)
, (10)

where x = (x1, . . . , xi) is the vector of non-normalized
values for the selected feature, zi is the normalized value,
i is the number of samples.

An analysis of average values for dark and clear
allophones was performed for each feature. Some of
parameters clearly differentiate between these two groups
(the number of samples exceeding threshold r3 in Fig. 2),
while for others (i.e., the audio spectrum kurtosis variance
presented in Fig. 3) these trends are not observed.

Also, the difference of averaged values between clear
and dark /l/ was calculated for every parameter as follows:

difference = dark/l/− clear/l/. (11)

Selected results are included in Figs. 4–6. A positive
value of the difference indicates that values of a parameter
are higher for dark /l/, while negative that values are
higher for clear allophones. For some features, the
difference is positive (Fig. 4) or negative (Fig. 5) for all
speakers while for others (i.e., Fig. 6) it varies between
speakers.

Principal component analysis was performed to
achieve possibly most orthogonal dimensions (Smith,
2017). The PCA was applied to the set consisting of
232 parameters (Table A1) calculated for all samples.
As a result, we arrived at 120 components that are
sufficient to contain 99% of the information. All of
the PCA calculations were performed in the MATLAB
environment. In addition, a correlation analysis was
performed. Based on the correlation coefficient (>0.5),
sets of features correlated with all speakers, male and
female groups, were created. The various sets of
features presented in Table 4 were used in the allophone
recognition stage employing the ANN, kNN and SOM
algorithms. Some of the examined vectors are based on
our previous research (Piotrowska et al., 2018), while
others were introduced specifically for this study.

4. Automatic classification of allophones

Extracting an allophone from the audio signal containing a
whole word or a sentence is an arduous process, resulting

in uncertain data. In addition, the basic difficulties lie in
identifying a set of features that are unique for a selected
allophone. Parameterization of allophones is still not
a well-researched area, as an allophone is a very short
utterance; thus typical descriptors used in the automatic
speech recognition domain may not be applicable. Such
conditioning leads to two conclusions: first of all, the
machine learning approach is a good choice to deal with
uncertain data, and secondly, for finding an appropriate
feature vector, parameters from the speech and the music
domain should be applied, modified according to the
needs and tested along with several machine learning
algorithms.
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Fig. 4. Difference between dark and clear /l/ calculated for indi-
vidual speakers for parameter 186 (MFCC 14 average).
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Fig. 5. Difference between dark and clear /l/ calculated for in-
dividual speakers for parameter 36 (spectral brightness).
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Fig. 6. Difference between dark and clear /l/ calculated for in-
dividual speakers for parameter 6 (number of samples
exceeding the level r2).
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For the purpose of the present study three algorithms
were chosen: artificial neural networks, the k-nearest
neighbor and self-organizing maps. The ANN algorithm
has an excellent generalization capability to learn from the
set of data and has been used for decades in automatic
speech recognition. Moreover, recently ANNs have been
employed in automatic phoneme recognition, hence the
research very closely related to allophone extraction and
classification (Mitterer et al., 2018; Kozierski et al.,
2016).

The kNN algorithm is very simple and versatile.
Moreover, its main feature is that it is a non-parametric
learning algorithm. Thus it does not make any
assumptions on the underlying data distribution.
Moreover, it is often utilized as a kind of benchmark
for more complex classifiers such as ANNs. Thus this
was the motivation behind employing the kNN in the
experiment. The last mentioned algorithm was chosen,
since the editing process involved both a sound engineer
and a phonology expert.

Contrarily to what was said before, the editing
process was highly controlled in the present study. All
extracted allophone samples after the editing process
were evaluated, corrected if necessary and then approved
by the expert as correct. Thus, even though the
editing process remains to be to some extent subjective
and uncertain, still it enables us to employ SOMs for
unsupervised learning to organize objects in the form of
a low-dimensional map. As this method is data driven
and finds clusters without any external guidance, such
properties have led to the implementation of SOMs in

Table 4. Sets of features used in the analyses.
Set label Features

232 All

PCA
120 components achieved
from PCA analysis

time 2–28
time+SPEC 2–36,159–172
time+ SPEC +MFCC 2–36,159–212
time+ SPEC +ASE 2–36,159–172, 57–116
time+ SPEC +SFM 2–36, 117–172
time+ SPEC
+modMFCC

2–36, 159–172, 213–232

ASE 57–116
SFM 117–158
SPEC 29–36, 159–172

C_All
Set based on correlation for
all speakers

C_Male
Set based on correlation for
all male speakers

C_Female
Set based on correlation for
all female speakers

related areas, among others, to speech (Venkateswarlu and
Kumari, 2011; Wang and Van Hamme, 2011) and music
information retrieval (Pampalk et al., 2002). Moreover,
SOMs are strongly related to human perception; thus
they are especially adequate for discerning speech
elements, automatically. Lastly, selected algorithms
enabled performing a comparison between learning and
the self-driven approach.

4.1. Feedforward neural network-based classifi-
cation. The ANN-based classification was performed
using the nntool within the Matlab environment. The
created set was divided randomly into three subsets:
training (70%), validation (15%) and testing (15%). A
feed-forward ANN with one hidden layer was trained to
classify clear/dark /l/ allophones. Various feature vectors
listed in Table 4 were fed to the input of the ANN.
Various configurations of ANNs were tested, but the best
results were obtained for a network with 10 neurons in
the hidden layer. The PCA did not improve the results for
the analyzed set and was therefore removed from further
analysis. The analyses were performed for the whole
group of speakers, for male and female separately, as well
as for individual ones (see Tables 5 and 6).

4.2. k-Nearest neighbor results. In the presented
study, the value k was set to 7. The optimum value for
k was established by performing a series of preliminary
tests. An experiment was repeated 50 times for each case,
and the arithmetic mean was calculated. The results for
various sets of features are presented in Tables 7 and 8.

The accuracy tests for particular speakers were also
performed. The highest result of 97% was achieved for

Table 5. ANN accuracy results for all speakers for various sets
of features (the feature vectors are labeled according to
Table 4).

Set of parameters
All
[%]

Male
[%]

Female
[%]

232 features 97 95 98
PCA (120) 96 95 97

C_All/ C_Male/
C_Female

98 99 99

Time-related 89 86 92
ASE 82 88 78
SFM 61 60 67
Spec 75 80 82

time+SPEC 92 94 94
time+SPEC+MFCC 95 96 94
time+SPEC+ASE 94 97 95
time+SPEC+SFM 91 93 94

time+SPEC+
modMFCC

98 97 98
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Table 6. ANN-based classification accuracy for single-speaker
dark/clear /l/ distinction for different sets of features
(the feature vectors are labeled according to Table 4).

Speaker
232
[%]

C_All [%]
C_Male/

C_Female
[%]

A 98 98 98
B 94 94 93
C 94 94 94
D 97 96 96
E 93 92 91
F 89 89 90
G 90 90 90

Speaker D, while Speaker F scored only 86% (Table 7).

4.3. Self-organized map clusterization. The
SOM-based clusterization was performed using the
Matlab Neural Networks Tool. A network with a
rectangular topology and two output classes were defined.
A training including 500 iterations was performed. The
results of SOM classification are included in Tables 9
and 10. Different SOM input feature vectors were tested.
In addition to the feature vectors of 232 parameters and
components obtained from the PCA, some specially
created sets were also used. The features were selected
on the basis of large and coherent differences for all
the speakers. The feature sets are described in detail in
Table 4. The PCA did improve the results by only 2–3%
for the set analyzed and was therefore excluded from
further analysis. The analyses were performed for the
whole group of speakers, as well as for male and female

Table 7. kNN accuracy results for all speakers for various sets
of features (the feature vectors are labeled according to
Table 4).

.

Set of parameters
All
[%]

Male
[%]

Female
[%]

232 features 93 94 92
C_All/ C_Male/

C_Female
93 95 91

Time-related 94 94 91
ASE 74 79 90
SFM 82 87 77
SPEC 82 80 86

time+SPEC 94 91 94
time+SPEC+MFCC 93 92 93
time+SPEC+ASE 94 91 94
time+SPEC+SFM 93 92 93

time+SPEC+
modMFCC

95 94 95

Table 8. kNN classification accuracy for single-speaker dark-
clear /l/ distinction for different sets of features (the
feature vectors are labeled according to Table 4).

Speaker
232
[%]

C_All
[%]

C_Male/
C_Female

[%]

A 91 92 94
B 94 94 95
C 93 93 95
D 95 95 97
E 93 91 91
F 84 86 86
G 93 93 93

ones separately.

4.4. Comparison of results. Various sets of features
were tested during the course of the present study. The
best results for all classifiers were obtained for vector
time+SPEC+modMFCC (Figs. 7–9), which includes
time- and spectral-based features along with the modified
MFCCs proposed by the authors. This comparison is
presented in Table 11. The highest accuracy results were
obtained using the ANN, although for the Time+SPEC
feature vectors the kNN and ANN returned very similar
scores. Still, for the whole group of features, kNN
accuracy was the highest (94% compared with 92% for
the ANN and 72% for the SOM). For all feature sets, the
lowest accuracy was achieved with SOMs (between 70%
and 80%), which can be explained by its characteristic
feature, namely, the lack of supervised training.

Table 9. SOM accuracy results for all speakers for various sets
of features (the feature vectors are labeled according to
Table 4).

Set of parameters
All
[%]

Male
[%]

Female
[%]

232 features 75 75 87
PCA (120) 77 73 80

C_All/ C_Male/
C_Female

61 81 79

Time-related 61 80 70
ASE 63 72 58
SFM 54 54 58
Spec 65 74 81

time+SPEC 72 76 85
time+SPEC+MFCC 80 77 86
time+SPEC+ASE 66 74 87
time+SPEC+SFM 71 74 85

time+SPEC+
modMFCC

81 77 87
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Table 10. SOM classification results for different sets of fea-
tures (the feature vectors are labeled according to Ta-
ble 4).

Speaker
232
[%]

C_All
[%]

C_Male/
C_Female

[%]

A 87 87 87
B 88 91 92
C 83 90 92
D 90 90 93
E 90 91 92
F 62 64 65
G 91 91 91

Table 11. SOM, ANN and kNN highest accuracy results
for set of features with the highest accuracy
(time+SPEC+modMFCC)).

Classifier All [%] Male [%] Female [%]

ANN 98 97 98
kNN 95 94 95
SOM 81 77 87

Table 12. List of words containing the dark /l/ allophone used
in the final stage of the experiment.

Dark /l/
also, hell, shell, sick girl, kill, feel,

steal, jail, shield, field

Table 13. Results of automatic evaluation of dark lateral allo-
phones.

Classifier ANN [%] kNN [%] SOM [%]

Accuracy 83 52 62
Precision 85 78 82

Recall 95 73 65
F1 score 89 75 73

5. Automatic evaluation of dark /l/
pronunciation

At this stage of the experiment, dark /l/ performances
of non-native English speakers were analyzed using
Time+SPEC+modMFCC vector of features. Recordings
for nine non-native speakers of 11 words containing dark
/l/ listed in Table 12 were executed.

The performance of speakers was evaluated by a
phonology expert and treated as a ground truth for
automatic classification. The data set consisted of 190
dark /l/ performances, including 44 incorrect trials. The
conducted study allowed determining the set of features
describing correct dark and clear lateral allophones; the
ANN, kNN and SOM methods were implemented to
analyze whether non-native performances fit into dark
/l/ criteria. The accuracy of these analyses is presented

97% 95% 98%
93% 94% 92%

75% 75%

87%
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Fig. 7. Comparison of accuracy results for various automatic
classification methods using the 232 vector of features.
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Fig. 8. Comparison of accuracy results for various automatic
classification methods using the Time+SPEC vector of
features.
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Fig. 9. Comparison of accuracy results for various
automatic classification methods using the
Time+SPEC+modMFCC vector of features.

in Table 13. As can be seen, apart from accuracy,
three additional performance measures were calculated.
Precision and recall give us exactness and completeness
of the classifiers, respectively, while the F1 score shows
us the balance between precision and recall.

In order to determine whether the apparent
differences in performance of the algorithms are
statistically significant, McNemar’s test is used
(McNemar, 1947). Gillick and Cox (1989) recommend to
use it in comparison of algorithms that classify isolated
words. This was the main reason for choosing this test.
The results of McNemar’s test are given in Table 14.

The obtained p-values of Table 14 are compared
with the test significance level α. In the experiment, α
equals 0.05. According to the test results, the differences
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Table 14. Results of McNemar’s test for the ANN, kNN and
SOM methods.

Classifiers
ANN/kNN

ANN/SOM
SOM/kNN

p-value <0.0001 <0.0001 0.0525

between the ANN and SOM as well as between the
ANN and kNN are considered to be extreme cases
of statistical significance. Meanwhile, the differences
between the SOM and kNN are considered to be
statistically insignificant. This means that the SOM and
kNN algorithms have more errors in common compared
with ANNs.

6. Conclusions

The results obtained in this study show that utilizing
parameterization as a pre-processing stage in the
classification process enables an automatic assignment
of selected allophones of lateral /l/ to appropriate
phonological group with high accuracy, i.e., over 98% for
the ANN, 95% for the kNN and over 80% for the SOM.

Also, the results demonstrate that the proposed set
of parameters represents differences between dark and
clear /l/ allophones. The ANN, kNN and SOM accuracy
for all speakers, male and female, was the highest for
the selected time and frequency domain-based parameters
supplemented with the modified MFCCs constructed by
the authors. Phonetic experiments showed that dark /l/
is characterized by observable convergence of formants
F1 and F2 compared with clear /l/. This is in line with
the current automatic classification, which uses energy
distribution in consecutive signal bands. The study
shows that the PCA did not improve the SOM clustering
accuracy for the performed study. However, this should
be further checked with other group of allophones, as the
PCA typically helps to constrain data redundancy and at
the same time improves accuracy.

The results obtained in this study lead to the
conclusion that a separate analysis for male and female
speakers is possible. Noteworthy is the fact that better
accuracy was achieved for female speakers, although due
to the limited number of speakers these observations
cannot be considered a general rule. The analysis
conducted separately for individual speakers shows
remarkable differences among them. It was also observed
that some speakers’ utterances were more difficult for
all classifiers (e.g., Speaker F). Although the lowest
accuracy was achieved with SOMs, they still returned a
high accuracy between 70% and 80%. Compared with
the ANN and kNN methods, which require supervised
training (92–98% accuracy for best performing feature
vectors), the SOM-based results are promising and will
be included in further research.

An application of deep learning is also planned,
although it would need a recording of a much larger
spoken material volume, and this, in turn, entails big
effort required for its annotation. Finally, making the
annotating process along with feature space extraction
automatic would also need approaches used in big data
analytics. As described by Stefanowski et al. (2017), deep
neural networks may help in automating tasks such as
feature space construction, as this becomes an inherent
part of the training process. However, this is true from
the big data perspective: in the case of a classical
approach to automatic speech recognition (ASR), instead
of performing feature extraction, it is possible to use
2D feature spaces derived from signal spectrograms. In
this way the data representation grows considerably and
it makes it possible to use a 2D feature representation
along with convolutional neural networks (CNNs) in the
speech/allophone automatic recognition process (Korvel
et al., 2019). We will work on these issues in the future.
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Appendix

Audio features

A full list of 232 features employed in the presented
research is included in Table A1.

Table A1. List of calculated features.
No. Feature

1 Number of samples
2 Temporal centroid
3 Zero crossing rate
4 Root mean square energy

5–7
Normalized number of samples exceeding
r1/r2/r3 threshold

8–13
Normalized mean values and variations of
samples exceeding r1/r2/r3, averaged for 10
frames

14 Peak to the RMS ratio

15–16
Normalized mean values and variations of the
peak to the RMS ratio averaged for 10 frames

17–20
Normalized number of signal crossings in
relation to 0/r1/r2/r3

21–28
Normalized mean values and variations of
0/r1/r2/r3 crossing averaged for 10 frames

29 Centroid (first moment of the spectrum)
30 Spread (standard deviation of the data)

31
Skewness (third central moment of the
spectrum)

32
Kurtosis (fourth standardized moment of the
spectrum)

33
Flatness (ratio between the geometric mean
and the arithmetic mean)

34
Entropy (the relative Shannon entropy of the
input)

35
Rolloff (the frequency such that a certain
fraction (here 0.85) of the total energy is
contained below that frequency)

36
Brightness (fixing the cut-off frequency, and
measuring the amount of energy above that
frequency)

37–56 20 Mel-frequency cepstral coefficients

No. Feature

57–85
Audio spectrum envelope (ASE) mean values
in 29 frequency bands)

86
ASE mean value (averaged for all frequency
bands)

87–115 ASE variance values in 29 frequency bands
116 Mean ASE variance parameters

117–136
Spectral flatness measure (SFM) mean values
for 20 frequency bands

137
SFM mean value (averaged for all frequency
bands)

138–157
Spectral flatness measure (SFM) variance
values for 20 frequency bands

158 Mean SFM variance parameters

159–160
Audio spectrum centroid (mean value and
variance)

161–162
Audio spectrum spread (mean value and
variance)

163–164
163-164 Audio Spectrum Skewness (mean
value and variance)

165–166
Audio spectrum kurtosis (mean value and
variance)

167–168 Spectral entropy (mean value and variance)
169–170 Spectrum rolloff (mean value and variance)
171–172 Spectral brightness (mean value and variance)

173–192
20 Mel-frequency cepstral coefficients (mean
values)

193–212
20 Mel-frequency cepstral coefficients
(variance)

213–232
20 Modified mel-frequency cepstral
coefficients (mean values)
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