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An information based method for solving stochastic control problems with partial observation is proposed. First,
information-theoretic lower bounds of the cost function are analysed. It is shown, under rather weak assumptions, that
reduction in the expected cost with closed-loop control compared with the best open-loop strategy is upper bounded by a
non-decreasing function of mutual information between control variables and the state trajectory. On the basis of this result,
an information based control (IBC) method is developed. The main idea of IBC consists in replacing the original control
task by a sequence of control problems that are relatively easy to solve and such that information about the system state is
actively generated. Two examples of the IBC operation are given. It is shown that the method is able to find an optimal
solution without using dynamic programming at least in these examples. Hence the computational complexity of IBC is
substantially smaller than that of dynamic programming, which is the main advantage of the proposed method.
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1. Introduction

Optimal controller synthesis in stochastic systems with
partial observation can be performed by dynamic
programming (DP). Unfortunately, although the theory
of DP is well developed (see Zabczyk, 1996), its
computational complexity grows exponentially with the
number of variables and time steps. As a consequence,
the problem is practically intractable.

To overcome the curse of dimensionality, a number
of approximate methods have been developed. The sepa-
ration principle and the certainty equivalence assumption
have been used by Filatov and Unbehauen (2004), Åström
and Wittenmark (1995), Tse (1974) or BarShalom and
Tse (1976). As part of the theory of partially-observable
Markov decision processes (POMDPs), various policy-
iteration or value-iteration methods were developed by
Thrun (2000), Porta et al. (2006), Brechtel et al. (2013),
Dolgov (2017), Zhao et al. (2019), and many other
researchers. These methods were initially developed for
systems with a finite number of states and then adopted to
more general problems with smooth dynamics. Therefore,
as the numbers of variables and time steps increase, they
suffer from the curse of dimensionality. Thus, there is

still a need to develop methods of smaller computational
complexity.

Analysis of the known optimal solutions (Zabczyk,
1996; Filatov and Unbehauen, 2004; Åström and
Wittenmark, 1995; Tse, 1974; BarShalom and Tse,
1976; Bania, 2017) suggests that active exchange of
information between the controller and the system is a
distinctive feature of optimal controllers (Bania, 2018).
Relationships between control of dynamical systems and
available information are fundamental for understanding
stochastic control theory. Since the pioneering work
of Feldbaum (1965) the connections between control
and information theory have been intensively studied.
Hijab (1984) showed that the concept of entropy appears
naturally in dual control. The entropic formulation of
stochastic control was given by Saridis (1988) and Tsai
et al. (1992). The works of Banek (2010) as well as
Kozlowski and Banek (2011) suggest that information
exchange, entropy reduction and stochastic optimality are
related to one another.

An information and entropy flow in control systems
was analyzed in the papers of Mitter and Newton
(2005) as well as Sagawa and Ueda (2013). The

mailto:pba@agh.edu.pl


24 P. Bania

controllability, observability and stability of linear control
systems with limitations of information contained in
the measurements were investigated by Taticonda and
Mitter (2004). Touchette and Lloyd (2004) showed that
controllability and observability can be defined using the
concepts of information theory. One of the most relevant
results related to the subject of this article is the inequality
of Touchette and Lloyd (2000). They proved that the
one-step reduction in entropy of the final state is upper
bounded by the mutual information between the control
variables and the current state of the system. Delvenne
and Sandberg (2013) suggested how to extend this result
to more general cost functions.

The main contribution of this paper is as follows.
First, the open and closed-loop strategies are defined
in terms of mutual information between the system
trajectory and control variables. Next, it is proved, under
relatively weak assumptions, that

Jopen − Jclosed(ϕ) ≤ ρ(I(X ;U |ϕ)),
where Jopen is the expectation of the cost corresponding
to the best open-loop control, Jclosed is the expectation
of the cost corresponding to any closed-loop strategy ϕ,
and I(X ;U |ϕ) is the mutual information between the
system trajectory and control variables under the strategy
ϕ. Function ρ is non-decreasing and ρ(0) = 0.

Additionally, we prove that, under slightly stronger
assumptions, ρ is bounded by a linear function. Hence
the condition I(X ;U) > 0 is necessary for reduction in
the cost below the best open-loop cost. On the basis of
the above inequality, information based control (IBC) is
proposed for finding an approximate solution of stochastic
control problems. The phrase “approximate solution”
means that the proposed method is able to find a strategy
no worse than the open-loop feedback optimal (OLFO)
algorithm given by Tse (1974).

The main idea consists in replacing the original
control task by a sequence of control problems that
are relatively easy to solve and such that the condition
I(X ;U) > 0 can be fulfilled. This can be
done by introducing a penalty function for information
deficiency. As a penalty function, the predicted mutual
information between the system trajectory and the
measurements is used. A similar idea was proposed
by Alpcan et al. (2015), however, in this article,
the process noise (input disturbances) is completely
ignored, which is a very strong and often unrealistic
assumption. Additional contributions include sufficient
conditions for the above-mentioned bound, a one-step
information-theoretic bound for the quadratic cost and two
examples of the operation of IBC. In both examples, the
optimal solution is found analytically by DP and then
compared with the IBC solution. It is shown that IBC is
able to find an optimal solution without using DP, which
is the main advantage of the proposed method.

The rest of the paper is organized as follows.
Section 2 formulates the stochastic control problem.
Information-theoretic lower bounds of the cost are
given in Section 3. Section 4 presents IBC and
Section 5 contains examples of its application. A
Monte Carlo approximation of the cost function and some
computational issues are discussed in Section 6. The
paper ends with conclusions and a list of references.

Notation. The abbreviation ξ ∼ pξ means that the
variable ξ has a density pξ(ξ). The notation ξ ∼ N(m,S)
means that ξ has normal distribution with mean m and
covariance matrix S. If S > 0, then the density of
normally distributed variable is

N(x,m, S)

= (2π)−
n
2 |S|− 1

2 exp(−0.5(x−m)TS−1(x−m)).

The symbol col(a1, a2, . . . , an) denotes a column vector.
The trace of matrix A is denoted by tr(A). The inner
product of matrices A and B is defined as 〈A,B〉 =
tr(ATB). Let ξ ∈ R

n and let Q be a square matrix of
order n. The quadratic form ξTQξ is denoted by |ξ|2Q.
The entropy of variable ξ is denoted byH(ξ). The control
strategy is denoted by ϕ. The symbol H(ξ|ϕ) means
that the entropy of variable ξ is calculated with fixed
strategy ϕ.

2. Stochastic control task

Consider the following stochastic system:

xk+1 = f(xk, uk, wk), k = 0, 1, . . . (1)

yk = h(xk, vk), (2)

uk ∈ Uad = {u ∈ R
r : umin ≤ u ≤ umax}, (3)

where xk ∈ R
n, yk ∈ R

m, wk ∈ R
nw , vk ∈ R

nv , wk ∼
pw, vk ∼ pv. The inequalities in (3) are elementwise.
It is also possible, in some justified cases, that Uad =
R
r. Functions f, h are C2 with respect to all their

arguments. The initial distribution of x0 is denoted by
p−0 (x0). Variables x0, w0, w1, . . . , wk, v0, v1, . . . , vk are
mutually independent for all k. Measurements until time
k are denoted by Yk = col(y0, y1, . . . , yk) ∈ R

m(k+1).
Similarly, Xk = col(x0, x1, . . . , xk) ∈ R

n(k+1), Uk =
col(u0, u1, . . . , uk) ∈ R

r(k+1). The control horizon is
denoted by N ≥ 1. We also introduce the following
abbreviations: Y = YN−1, U = UN−1, X = XN−1.

Let B(RNm,RNr) be the set of all bounded maps
from R

Nm into R
Nr. If f1, f2 ∈ B, α, β ∈ R then αf1 +

βf2 ∈ B. Hence B is a linear space. The set B with the
norm ‖f‖B = supY ∈RNm ‖f(Y )‖RNr , is a Banach space,
which will be denoted by B and called the strategy space.
The measurable map

ϕk : Rm(k+1) → Uad, uk = ϕk(Yk) (4)
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is the control strategy at time k. Let UNad = (Uad ×
Uad×, . . . ,×Uad)N times. The map

ϕ : RmN → UNad ⊂ R
Nr, U = ϕ(Y ), (5)

where

ϕ(Y ) = col(ϕ0(Y0), . . . , ϕN−1(YN−1)), (6)

is an admissible control strategy. The set of all admissible
strategies is a denoted by Sad. It follows from (4)–(6) that
Sad is a bounded, closed and convex subset of B.

Let L : Rn → R be a measurableC2 function and let
J : Sad → R denote the cost functional. We are looking
for a strategy ϕ ∈ Sad that minimizes the functional

J(ϕ) = E{L(xN )|ϕ}, (7)

where the expectation is calculated with respect to x0,
w0, . . . , wN−1, v0, . . . , vN−1. The optimal strategy will
be denoted by ϕ∗ and the abbreviation J(ϕ∗) = J∗

will be used. We will assume that ϕ∗ exists. The
optimal control corresponding to a realization of Yk will
be denoted by u∗k = ϕ∗

k(Yk).

3. Information-theoretic lower bounds of
the cost function

If the strategy ϕ ∈ Sad is fixed, then relations between
random variables X,Y, U are described by their joint
density p(X,Y, U |ϕ). In particular, if p(X,U |ϕ) =
p(X |ϕ)p(U |ϕ), then X and U are independent and
information contained in measurements Y is not utilized.
This is an open loop control strategy. A reduction in the
cost (7), compared with the open-loop, is possible only if
X andU are dependent. A natural measure of dependency
is mutual information. We will show below that the cost
(7) is lower-bounded by some non-increasing function of
the mutual information between X and U .

3.1. General bounds. The mutual information
between X and U is given by

I(ϕ) = H(X |ϕ)−H(X |U,ϕ), (8)

where the entropiesH(X |ϕ), H(X |U,ϕ) are defined in a
usual way, i.e.,

H(X |ϕ) = E(− ln p(X |ϕ)), (9)

H(X |U,ϕ) = E(− ln p(X |U,ϕ)). (10)

The expected value in (10) is calculated with respect to X
and U .

Definition 1. The strategy ϕ is an open-loop strategy
if, and only if, I(ϕ) = 0. Otherwise, ϕ will be called a
closed-loop or feedback strategy.

Let s ∈ R, s ≥ 0. The set

Ω(s) = {ϕ ∈ Sad : I(ϕ) ≤ s} (11)

contains all strategies for which the information I(ϕ) is
no greater than s. Let ϕ ∈ Sad be a constant map. Since
ϕ is constant, U and Y are independent and I(ϕ) = 0.
Hence Ω(s) is non-empty for all s ≥ 0. Consider now a
family of optimization problems

inf
ϕ∈Ω(s)

J(ϕ). (12)

An optimal solution of (12) will be denoted by ϕ∗
s and it is

assumed that ϕ∗
s exists for all s. The minimum open-loop

cost is defined as

Jo = inf
ϕ∈Ω(0)

J(ϕ). (13)

Lemma 1. If the solution to (12) exists for all s ≥ 0,
then there exists a non-decreasing, bounded function ρ :
[0,∞) → [0, Jo − J∗], ρ(0) = 0, such that

Jo − J(ϕ) ≤ ρ(I(ϕ)) (14)

for all ϕ ∈ Sad.

Proof. Define

ρ(s) = sup
ϕ∈Ω(s)

(Jo − J(ϕ)) . (15)

For every t, s ≥ 0, we have Ω(s) ⊂ Ω(s + t). Hence ρ is
non-decreasing. If s = 0, then by (13) we have

ρ(0) = sup
ϕ∈Ω(0)

(Jo − J(ϕ)) = Jo − Jo = 0.

Since ϕ ∈ Ω(I(ϕ)),

Jo − J(ϕ) ≤ sup
ψ∈Ω(I(ϕ))

(Jo − J(ψ)) = ρ(I(ϕ)), (16)

which proves (14). �

It follows from (14) that J(ϕ) < Jo ⇒ I(ϕ) > 0,
but the function ρ in (14) can be very irregular. To obtain
a more accurate bound, additional conditions are needed.
Let

d(Ω(0), ϕ) = inf
ψ∈Ω(0)

||ψ − ϕ|| (17)

denote the distance between Ω(0) and ϕ.

Theorem 1. If there exist numbers LI , LJ > 0, such that

|J(ϕ)− J(ϕ1)| ≤ LJ ||ϕ1 − ϕ||, ϕ, ϕ1 ∈ Sad, (18)

I(ϕ) ≥ LId(Ω(0), ϕ), ϕ ∈ Sad, (19)

then there exists a number q > 0 such that

Jo − J(ϕ) ≤ qI(ϕ), ϕ ∈ Sad. (20)
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Proof. Let ϕ 
∈ Ω(0) and let ϕ1 ∈ Ω(0) be such that
||ϕ1 − ϕ|| = d(Ω(0), ϕ). If qLI − LJ ≥ 0, then on the
basis of (18), (19) and (13) we get

J(ϕ) + qI(ϕ)

≥ J(ϕ1)− LJ ||ϕ1 − ϕ||+ qLId(Ω(0), ϕ)

= J(ϕ1) + (qLI − LJ)||ϕ1 − ϕ||
≥ J(ϕ1) ≥ Jo, ϕ 
∈ Ω(0).

(21)

If ϕ ∈ Ω(0), then I(ϕ) = 0 and it follows from (13) that
J(ϕ) ≥ Jo. Hence (20) holds for all ϕ ∈ Sad. �

Remark 1. The data processing inequality (see Cover
and Thomas, 2006, p. 34) says that I(X ;F (Y )) ≤
I(X ;Y ), for any function F . Since U = ϕ(Y ),

I(ϕ) = I(X ;U |ϕ) ≤ I(X ;Y |ϕ). (22)

As a consequence, Lemma 1 and Theorem 1 will still
be true if we use I(X ;Y |ϕ) instead of I(ϕ).

Since Sad is bounded and closed, then the Lipschitz
continuity assumption (18) is not very restrictive. The
assumption (19) says that information must grow linearly
with the distance from the set Ω(0), which seems quite
natural and not very restrictive. Let us also note that I(ϕ)
need not to be continuous.

3.2. Entropy reduction of the final state. Assume
that the cost functional has the form

J(ϕ) = E{− ln p(xN |ϕ)}. (23)

We shall call J(ϕ) the closed-loop entropy and will write
H(ϕ) = J(ϕ). The minimum open-loop entropy of
the final state is denoted by Ho = J(ϕ∗

0). Touchette
and Lloyd (2000; 2004) showed that one-step (i.e.,
N = 1) entropy reduction as compared to the best
open-loop strategy is upper bounded by I(x0;u0|ϕ).
Their inequality (in our notation) has the form

Ho −H(ϕ) ≤ I(ϕ), ϕ ∈ Sad. (24)

It is a fundamental limitation in control systems but,
unfortunately, the multi-step (N > 1) version of (24) is
very weak (cf. Touchette, 2000, p. 47, Eqn. (3.74)). It
only says that there exists a strategy ϕ such that

Ho −H(ϕ) ≤
N−1∑

k=0

I(xk;uk|ϕ). (25)

Since correlations between previous measurements and
current control are omitted in (25), it may not be fulfilled
for some ϕ. However, it is still possible on the basis of
(24) to construct some one-step bound for (7).

Theorem 2. Let J(ϕ) = E{L(x1)|ϕ}, x1 ∈ R
n. If

L(x1) ≥ c|x1|2, c > 0 then

J(ϕ) ≥ cn(2πe)−1e2n
−1(Ho−I(ϕ)). (26)

Proof. Let us fix S = cov(x1, x1|ϕ). Matrix S fulfils the

inequality tr(S) ≥ n|S| 1n (cf. Cover and Thomas, 2006,
Thm. 17.9.4, p. 680). Since the Gaussian distribution
maximizes entropy over all distributions with the same
covariance, it can be proved that |S| ≥ (2πe)−ne2H(ϕ)

(Cover and Thomas, 2006, Thm. 8.6.5, p. 254). On
the basis of these two inequalities and by using (24), we
obtain

J(ϕ) ≥ cE|x1|2 ≥ c tr(S) ≥ cn|S| 1n
≥ cn(2πe)−1e2n

−1H(ϕ)

≥ cn(2πe)−1e2n
−1(Ho−I(ϕ)).

�

3.3. Elementary example. To illustrate the problem,
consider a one-dimensional system

x1 = x+ u, y = x+ v. (27)

Variables x and v are Gaussian, i.e., x ∼ N(0, sx), sx >
0, v ∼ N(0, sv), sv > 0. The cost functional has the form

J(ϕ) = E{x21|ϕ}. (28)

The best open-loop strategy is ϕ∗
0 = 0 and Jo = sx. The

optimal strategy is given by a linear function of y,

ϕ∗(y) = − sx
sx + sv

y, (29)

and the minimum cost is equal to

J(ϕ∗) =
sxsv
sx + sv

< sx = Jo. (30)

Since x1 is Gaussian, its open-loop entropy is given by
Ho =

1
2 ln(2πeJo) and the inequality (26) yields

J(ϕ) ≥ Joe
−2I(ϕ) (31)

for all ϕ. One can check by direct calculation that

I(ϕ∗) = 1
2 ln

(
1 +

sx
sv

)
, (32)

and then J(ϕ∗) = Joe
−2I(ϕ∗). Hence the bound (31) is

tight. The entropy of x1, under the optimal strategy, is
given by H(ϕ∗) = 1

2 ln(2πeJ(ϕ
∗)), and one can check

that Ho − H(ϕ∗) = I(ϕ∗). Hence, the strategy (29) is
also optimal for entropy reduction.

4. Information based control

Minimum of J(ϕ) can be found by dynamic programming
(DP), but the computational complexity of DP grows
exponentially with the number of time steps and control
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variables. As a consequence, DP is often impractical and
there is a need to construct approximate methods with a
lower computational complexity (Filatov and Unbehauen,
2004, pp. 14–32; Åström and Wittenmark, 1995, pp.
354–370). It is possible, on the basis of the previous
section, to construct such an approximate method. The
easiest way to simplify the problem is to replace the
original control task with a sequence of open-loop control
problems. These control problems consist in minimization
of

Jk(u
(k)) = E{L(xN )|Yk, u(k)}, (33)

where u(k) = col(uk, . . . , uN−1) denote the future
control sequence.

The minimizer of (33) will be denoted by ū(k)(Yk).
To control the system, only the first element of ū(k) is used
and the procedure is repeated in subsequent steps. Hence,
the control strategy generated by sequential minimization
of (33) has the form

ϕk(Yk) = ū
(k)
1 (Yk), (34)

and this may or may not be feedback in the sense
Definition 1.

The above simplification is known as open loop feed-
back optimal (OLFO), and it is well known that does not
generate information and cannot be optimal, except linear
Gaussian systems (cf. Section 3.3; Example 2; Tse, 1974;
Filatov and Unbehauen, 2004). On the other hand, it
follows from Section 3, and particularly from (20) and
(22), that

J(ϕ) ≥ Jo − qI(X ;Y |ϕ), (35)

which implies that every controller better than the
open-loop one must actively generate information. This
can be enforced by adding to (33) a penalty function
for information deficiency. Such a penalty function can
be constructed by using the mutual information between
future states and measurements. It is also possible to use
I(X ;U) as a penalty; however, calculation of I(X ;U) is
much more difficult than that of I(X ;Y ). Therefore it is
computationally more convenient to use I(X ;Y ). This is
the basic idea of information based control (IBC).

A practically realizable implementation of IBC
is as follows. Let X+

k = col(xk+1, . . . , xN−1),
Y +
k = col(yk+1, . . . , yN−1) denote the future states and

observations. Define, for k = 0, 1, . . . , N − 2,

Ik(u
(k)|Yk)

=

∫
p(X+

k , Y
+
k |Yk)ln p(X+

k , Y
+
k |Yk)

p(X+
k |Yk)p(Y +

k |Yk)
dX+

k dY
+
k .

(36)

This is the mutual information between X+
k and Y +

k ,
predicted at time k and conditioned on Yk. Since yN is
irrelevant from the control point of view, one can assume

that IN−1 = 0. Now, at every time instant, we are looking
for the minimum of the functional

Jk(u
(k)) = E{L(xN )|Yk} − νkIk(u

(k)|Yk), (37)

where

u
(k)
i ∈ Uad, νk ≥ 0,

k = 0, . . . , N − 1, N ≥ 2. (38)

The expectation in (37) is calculated with respect
to x0 and wk, . . . , wN−1, but not with reference to
vk, . . . , vN−1, which substantially simplifies the problem.
The minimizer of (37) will be denoted by ū(k). To
control the system, only the first element of ū(k) is
used and the whole procedure is repeated in subsequent
steps. Note that ū(k) depends on Yk as required in (4).
As a consequence, X depends on U and it is possible
that IBC generates a feedback strategy in the sense of
Definition 1. The minimizer of (37) can be considered
a compromise between open-loop control (first term) and
learning (second term). The intensity of learning is given
by νk. If νk = 0, then IBC becomes an open-loop feed-
back strategy, which is generally not optimal.

Remark 2. If the system (1), (2) is linear and the
disturbances are additive Gaussian white noise signals,
then the mutual information in (37) does not depend on
control (Bania, 2018, Thm. 3.1). As a consequence,
application of IBC to linear Gaussian systems with
quadratic cost gives a well-known result, i.e., the Kalman
filter and the LQ controller.

5. Examples

Example 1. To illustrate the main idea of IBC, let us
start from the very simple example of the integrator with
unknown gain. Let

xk+1 = xk + θuk, yk = xk,

θ ∈ {−1, 1}, x0 = 1. (39)

The cost function is given by

J(ϕ0, ϕ1) = E(x22).

The initial distribution of θ has the form P (θ = −1) = p,
P (θ = 1) = 1 − p, p ∈ [0, 1]. Since θ can be treated as a
second component of the state vector, (39) can be viewed
as a special case of (1) and (2).

The optimal solution, obtained by dynamic
programming, has the form

ϕ∗
0 
= 0, ϕ∗

1(y1) =
ϕ∗
0y1

1− y1
. (40)
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It follows from (39) and (40) that x2 = 0. Hence the
minimal value of the cost is J∗ = 0. The observation
y1 contains information about θ if, and only if, u0 
= 0.
Hence I(y1; θ) > 0 if, and only if, u0 
= 0.

Let ν0 = 1. According to (37), in the first step the
cost

J(u0, u1) = E(x22|y0)− I(y1; θ)

should be minimized. Calculation of the expectation gives

J(u0, u1) = (u0 + u1)
2 + 2(1− 2p)(u0 + u1)

+ 1− I(y1; θ).

We know that I(y1, θ) > 0 if, and only if, u0 
= 0. Hence
the optimal solution in the first step is

u0 
= 0, u1 = 2p− 1− u0.

In the second step we minimize

J(u1) = E{x22|(y0, y1)} = (y1 + θ̂u1)
2,

where

θ̂ =
y1 − 1

u0

denotes the estimate of θ obtained on the basis of u0 and
y0. Minimization gives

u1 =
u0y1
1− y1

,

which is exactly the optimal solution given by (40). Thus,
the IBC method allowed us to find an optimal solution,
without using dynamic programming. �

Example 2. Due to various modelling inaccuracies, in
real-life applications the parameters are not constant, but
they are rather stochastic processes. As an example of
a system with parametric noise we will first consider the
one-dimensional deterministic system

η̇(t) = −acη(t) + (bc + ε(t))u(t) + g2cζ(t), (41)

where ε(t) and ζ(t) represent changes in the gain and
the input disturbances, respectively. The control input is
denoted by u(t) ∈ R. If we assume that ε is a Wiener
process and ζ is white noise, then (41) can be written as a
system o two Ito equations,

dx = (Ac(u)x+Bcu)dt+Gc dw, (42)

Ac(u) =

[
0 0
u −ac

]
, Bc =

[
0
bc

]
,

Gc =

[
g1c 0
0 g2c

]
.

(43)

Processes w1(t) and w2(t) are mutually independent
standard Wiener processes. Parameters ac, bc, g1c, g2c are
positive numbers. The observation equation has the form

yk = x2(tk) + vk, k = 0, 1, 2, . . . , (44)

where vk = N(0, sv), sv > 0, tk = kT0, T0 > 0.
If control is piecewise constant, i.e., u(t) = uk, t ∈
[tk, tk+1), then the discrete-time version of (42) and (44)
is given by

xk+1 = A(uk)xk +Buk +
√
D(uk)wk, (45)

yk = Cxk + vk, (46)

where

A(uk) = A0 +A1uk, (47)

D(uk) = D0 +D1uk +D2u
2
k, (48)

A0 =

[
a1 0
0 a2

]
, A1 =

[
0 0
a3 0

]
, (49)

D0 =

[
d1 0
0 d3

]
, D1 =

[
0 d2
d2 0

]
, (50)

D2 =

[
0 0
0 d4

]
, B =

[
0
b

]
, C =

[
0 1

]
. (51)

The matrices A,B,D can be calculated by using the
well-known discretization rules:

A = eAcT0 ,

B =

T0∫

0

eAcτBc dτ,

D =

T0∫

0

eAcτG2
ce
AT

c τ dτ.

The input noise is a sequence of mutually independent
Gaussian random variables, i.e., wk ∼ N(0, I2×2), where
I2×2 denotes the identity matrix of order 2. The initial
condition is given by x0 ∼ N(m−

0 , S
−
0 ).

The cost functional is given by

J(ϕ) = 1
2E{q1x21,2 + r0ϕ

2
0 + q2x

2
2,2 + r1ϕ

2
1}, (52)

where xk,2 denotes the second component of xk and
qk ≥ 0, rk > 0. Since this problem is solved by Bania
(2017), only the main results will be presented and some
laborious transformations will be omitted. To simplify the
notation, we will skip some of the function’s arguments;
in particular, instead of mk(Yk, Uk), Sk(Uk), ϕk(Yk), we
will write briefly mk, Sk, ϕk etc. It is shown by Bania
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(2018) that the joint density of xk, Yk and the conditional
density of xk+1 are given by

p(xk, Yk) = N(xk,mk, Sk)

×
k∏

i=0

N(yi, Cm
−
i ,Wi), (53)

p(xk+1|Yk) = N(xk+1,m
−
k+1, S

−
k+1), (54)

where

Wi = (sv + CS−
i C

T ), (55)

Si = S−
i − S−

i C
TW−1

i CS−
i , (56)

mi = m−
i + SiC

T s−1
v (yi − Cm−

i ), (57)

m−
i+1 = A(ui)mi +Bui, (58)

S−
i+1 = A(ui)SiA(ui)

T +D(ui), (59)

i = 0, 1, . . . , k.

Note that Eqns. (55)–(59) describe the Kalman filter for
(45) and (46).

Optimal solution. According to (4)–(6), the strategy
ϕ consists of two mappings, u0 = ϕ0(y0) and u1 =
ϕ1(y0, y1). The optimal solution can be found by dynamic
programming. It is shown by Bania (2017) that the
optimal strategy is given by

ϕ∗
0(y0) = arg min

u0∈R

R0(u0, y0), (60)

ϕ∗
1(u0, y0, y1) = −β1(u0, y0, y1)

α1(u0, y0, y1)
, (61)

where

R0(u0, y0) =
1
2α0u

2
0 + β0u0 + γ0 + V1(u0, y0), (62)

V1(u0, y0) =

∫
N(y1, Cm

−
1 ,W1)

×R1(u0, y0, y1, ϕ
∗
1(u0, y0, y1)) dy1,

(63)

R1(u0, y0, y1, ϕ1) =
1
2α1ϕ

2
1 + β1ϕ1 + γ1, (64)

α0(y0) = (A1m0 +B)TQ1(A1m0 +B)

+ 〈A1S0A
T
1 +D2, Q1〉+ r0,

β0(y0) = (A1m0 +B)TQ1A0m0

+ 1
2 〈A0S0A

T
1 + A1S0A

T
0 +D1, Q1〉,

γ0(y0) =
1
2m

T
0 A

T
0Q1A0m0

+ 1
2 〈AT0 S0A0 +D0, Q1〉,

α1(u0, y0, y1) = (A1m1 +B)TQ2(A1m1 +B)

+ 〈A1S1A
T
1 +D2, Q2〉+ r1,

β1(u0, y0, y1) = (A1m1 +B)TQ2A0m1

+ 1
2 〈A0S1A

T
1 +A1S1A

T
0 +D1, Q2〉,

γ1(u0, y0, y1) =
1
2m

T
1 A

T
0 Q2A0m1

+ 1
2 〈AT0 S1A0 +D0, Q2〉,

Qk = diag(0, qk), k = 1, 2.

Matrices Sk and vectors mk are given by (56) and (57),
respectively. The inner product of matrices A and B is
denoted by 〈A,B〉 = tr(ATB).

Information based solution. We will first calculate the
conditional expectation. Write ξ = q1x

2
1,2 + r0u

2
0 +

q2x
2
2,2 + r1u

2
1. After calculation of the integrals we get

E(ξ|Y0) =
2∑

i=1

(
μTi Qiμi + ri−1u

2
i−1 + tr(QiΣi)

)
,

(65)
where

μi+1 = A(ui)μi +Bui, μ0 = m0, (66)

Σi+1 = A(ui)ΣiA(ui)
T +D(ui), Σ0 = S0, (67)

Qi = diag(0, qi), i = 0, 1. (68)

The conditional mean m0 and covariance S0 are given by
(56) and (57), where S−

0 , m−
0 are known a priori.

Now the mutual information will be calculated. It
follows from (53) that

p(x1, y1|y0) = N(x1,m1, S1)N(y1, Cm
−
1 ,W1). (69)

According to Section 4, we have X+
0 = x1, Y +

0 = y1,
Y0 = y0, u(0) = (u0, u1)

T . Hence p(X+
0 , Y

+
0 |Y0) =

p(x1, y1|y0) and calculation of the integral (36) yields

I0(u0|y0) = 1
2 ln

(
1 +

CΣ1(u0)C
T

sv

)
. (70)

By assumption we have I1(u(1)|Y1) = 0. According
to (37), in the first step, we minimize the cost

J0(u0, u1, y0) =
1
2

2∑

i=1

(|μi|2Qi
+ ri−1u

2
i−1 + tr(QiΣi)

)

− ν0I0(u0|y0).
(71)

After performing calculations we get

J0(u0, u1, y0) =
1
2

(|μ1|2Q1
+ r0u

2
0 + tr(Q1Σ1(u0))

)

− ν0I0(u0|y0) + 1
2 ᾱ0u

2
1

+ β̄0u1 + γ̄0,

(72)
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where

ᾱ0(u0, y0) = (A1μ1 +B)TQ2(A1μ1 +B)

+ 〈A1S1A
T
1 +D2, Q2〉+ r1,

β̄0(u0, y0) = (A1μ1 +B)TQ2A0μ1

+ 1
2 〈A0S1A

T
1 +A1S1A

T
0 +D1, Q2〉,

γ̄0(u0, y0) =
1
2μ

T
1 A

T
0Q2A0μ1

+ 1
2 〈AT0 S1A0 +D0, Q2〉.

The optimal value of u1 as a function of u0 and y0 is
found by minimization of (72) with respect to u1,

u1(u0, y0) = − β̄0(u0, y0)

ᾱ0(u0, y0)
. (73)

Substitution of (73) into (72) gives an analogue of
Eqn. (62),

Ψ(u0, y0) = J0(u0, u1(u0, y0), y0)

= 1
2

(
μT1 Q1μ1 + r0u

2
0

+ tr(Q1Σ1(u0))
)

− ν0I0(u0|y0) + γ̄0 − β̄2
0

2ᾱ0
,

(74)

where, for simplicity, the function J0(u0, u1(u0, y0), y0)
is denoted by Ψ(u0, y0). Minimization of (74) with
respect to u0 gives ū0(y0), which is the information-based
strategy in the first step. After this, new information
contained in y1 is used by the filter (53)–(59) and the new
state and covariance estimates (m1 and S1) are available.
Thus, according to Section 4, in the second step we
minimize

J1(u1, Y1) =
1
2

(
μT2 Q2μ2 + r1u

2
1 + tr(Q2Σ2)

)
, (75)

where

μ2 = A(u1)m1 +Bu1, (76)

Σ2 = A(u1)S1A(u1)
T +D(u1), (77)

and the control value u0 (optimal or not) is treated as a
fixed parameter. Completing the calculations in much the
same way as above, we get

J1(u1) =
1
2 ᾱ1u

2
1 + β̄1u1 + γ̄1, (78)

where

ᾱ1(u0, y0, y1) = (A1m1 +B)TQ2(A1m1 +B)

+ 〈A1S1A
T
1 +D2, Q2〉+ r1,

β̄1(u0, y0, y1) = (A1m1 +B)TQ2A0m1

+ 1
2 〈A0S1A

T
1 +A1S1A

T
0 +D1, Q2〉,

γ̄1(u0, y0, y1) =
1
2m

T
1 A

T
0 Q2A0m1

+ 1
2 〈AT0 S1A0 +D0, Q2〉.

The optimal information-based solution in the
second step is given by

ū1 = − β̄1(u0, y0, y1)

ᾱ1(u0, y0, y1)
. (79)

Comparing (61) and (79), we conclude that ū1 will equal
the optimal control ϕ∗

1(y0, y1), provided that ū0 is equal
to the optimal control ϕ∗

0(y0). If this last condition is
fulfilled, then the optimal strategy can be recovered by
IBC. We will show below that this is possible provided
that parameter ν0 in (71) is appropriately chosen.

Numerical example. The parameters of the
continuous-time system (41)–(43) were ac = 1,
bc = 1, g1c = g2c =

√
2, sv = 0.01, T0 = 0.1. The

parameters of the corresponding discrete-time system
(45)–(51) were equal to a1 = 1.0, a2 = 0.90483,
a3 = b = 0.09516, d1 = 0.2, d2 = 9.674 10−3,
d3 = 0.18126, d4 = 6.189 10−4. The weights were
r0 = r1 = 10−3, q0 = 0, q1 = 1. The initial conditions
were equal to m0 = (0, 0)T , S0 = diag(s0,1, s0,2),
s0,1 = 5, s0,2 = 0.1. For simplicity, an assumption was
made that y0 = 0. The results of numerical calculations
of functionsR0, (62) and Ψ, (74), are shown in Fig. 1.

The optimal control ū0 is ambiguous and equal to
±2.0352. Although the initial condition is concentrated
around zero, the optimal control is non-zero. This is a
dual effect, described first by Feldbaum (1965). Let us
observe that parameter ν0 can be chosen such that function
Ψ; cf. (74), has minima at the same points as function
R0; cf. (62). This implies the main conclusion that
optimal feedback can be realized by information based
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Fig. 1. Graph of functions R0, (62), and Ψ, (74), for three val-
ues of ν0. If ν0 ≈ 0.7816, then function Ψ has minima
at the same points as R0 and the optimal strategy (60),
(61) can be recovered by IBC. For clarity, the graphs of
both the functions are scaled and shifted vertically.
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control, at least in this example. It is important to that
the information based solution has been found without
using dynamic programming, which substantially reduces
computational complexity. �

6. Computational issues and practical
implementation of IBC

Minimization of the cost (37) requires in advance the
solution of the following problems:

1. calculation of the filtering distribution p(xk|Yk),
2. calculation of the expectation in (37),

3. calculation of the mutual information (36).

The filtering distribution can be calculated by an
unscented Kalman filter (UKF), a particle filter (PF) or a
Gaussian sum filter (GSF) (see the works of Särkä (2013),
Alspach and Sorenson (1972) for details). Since both
the theory and practical implementations of these filters
are well developed, we will assume below that p(xk|Yk)
or its approximation is known. Let xk,i, i = 1, . . . , ns,
denote samples from p(xk|Yk), and let xN,i, Y

+
k,i denote

the final state and observations generated by (1), (2) with
the initial condition xk,i. Then it is easy to observe that
samples xN,i, Y

+
k,i are drawn from p(xN |Yk, u(k)) and

p(Y +
k |Yk, u(k)), respectively. Hence, the Monte Carlo

approximation of the expectation in (37) is given by

E{L(xN )|Yk} ≈ 1

ns

ns∑

i=1

L(xN,i). (80)

Calculation of the mutual information (36) cannot be
easily done without additional simplifications. Therefore,
below we will briefly discuss special cases that are
relatively easy to solve. Let us assume that Eqn. (2) has
the form

yk = h(xk) + vk, (81)

where vk ∼ N(0, Sv). By direct calculation we get

Ik(u
(k)|Yk) = Hk(u

(k)|Yk)− nk
2

ln 2πe|SV |, (82)

where nk denotes the size of Y +
k and

Hk(u
(k)|Yk)

= −
∫
p(Y +

k |Yk, u(k)) ln p(Y +
k |Yk, u(k))dY +

k

(83)

is an entropy of Y +
k , predicted at time k. The kernel

density estimator (KDE) of p(Y +
k |Yk, u(k)) has the form

p̂ns(Y
+
k |Yk, u(k)) = 1

ns

ns∑

i=1

N(Y +
k , Y

+
k,i, σ

2Ink
), (84)

where Ink
is the identity matrix of order nk and the

bandwidth parameter is given by

σ =

(
4

ns(nk + 2)n2
k

) 1
nk+4

. (85)

Now, the entropy estimator can be constructed as
follows:

Hk(u
(k)|Yk) = E(− ln p(Y +

k |Yk, u(k)))

≈ − 1

ns

ns∑

i=1

ln p̂ns(Y
+
k,i|Yk, u(k))

=
nk
2

ln(2πσ2)

− 1

ns

ns∑

i=1

ln

(
1

ns

r∑

j=1

e−Di,j

)
,

(86)

where

Di,j =
1

2σ2
||Y +

k,i − Y +
k,j ||2. (87)

Combining (86) and (82), we get

Ik(u
(k)|Yk)

≈ nk
2

ln
σ2

e|SV | −
1

ns

ns∑

i=1

ln

(
1

ns

r∑

j=1

e−Di,j

)
.

(88)

On the basis of (37), (80) and (88), we have

Jk(u
(k))

= E{L(xN )|Yk} − νkIk(u
(k)|Yk)

≈ 1

ns

ns∑

i=1

(
L(xN,i) + νk ln

(
1

ns

r∑

j=1

e−Di,j

))

− νknk
2

ln
σ2

e|SV | .

(89)

Since the last term in (89) does not depend on u(k), finally,
the cost function to be minimized is given by

J̄k(u
(k))

=
1

ns

ns∑

i=1

(
L(xN,i) + νk ln

(
1

ns

r∑

j=1

e−Di,j

))
.

(90)

Convergence conditions for (84) and (86) are given
by Jiang (2017) and Joe (1989). These conditions can be
fulfilled assuming that pw, pv, f , h are sufficiently regular.
In particular, if p(Y +

k |Yk, u(k)) is bounded, globally
Lipschitz, C4 and its second order partial derivatives are
all upper bounded by an integrable function, then (84)
converges uniformly and the variance of (86) tends to
zero as ns → ∞. The convergence rate is O(n−α),
α ∈ (0, 1/2].
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Since f, h, L are C2, then cost (90) is also
C2 with respect to u(k) and its gradient can be
effectively calculated by solving the associated adjoint
equation. Then minimization of (90) can be performed
by combining global search algorithms (e.g., differential
evolution, simulated annealing, genetic algorithms) with
stochastic quasi-Newton methods as local solvers Byrd
et al. (2016).

Control of a linear system with a finite number of
unknown parameters and with a quadratic cost function is
another special case that is tractable by IBC. Analytical
formulas describing the cost function and the filtering
distribution were given by Bania (2018). Various types
of recursive filters are also analyzed by Bania and
Baranowski (2016; 2017) or Baranowski et al. (2017).
A computationally effective lower bound to the mutual
information (36) that can be utilized to construct an upper
bound to the cost is given by Bania (2019). Thus, in
this particular case, the cost (37) and its gradient can be
calculated without using Monte Carlo sampling, and the
control problem is relatively easy to solve.

7. Conclusions

Lower bounds of the cost function in stochastic optimal
control problems were analysed in terms of information
exchange between the system and the controller. It was
proved, under weak assumptions, that the cost function
is lower bounded by some decreasing function of mutual
information between the system trajectory and control
variables. Under some additional regularity conditions,
the lower bound obtained above is a linear function of
information, but the constant q appearing in (20) depends
on system dynamics. It also follows from Theorem 1 and
(22) that the minimum value of the cost is determined
by the capacity of the measurement channel (i.e., the
maximal value of I(X ;Y )). Next, on the basis of the
Touchette–Lloyd inequality, a new one-step lower bound
(26) was established, provided that the cost function is
quadratic. This bound is independent of system dynamics
and in that sense universal.

The inequalities (20) and (22) indicate that
restrictions in communication between parts of the
system prevent certain states from being reached. One of
the examples of such a phenomenon is synchronization
in dynamical networks. Since the synchronization
problem can be interpreted as a stochastic control task,
communication constraints of the form I(X ;Y ) < C
imply that Jo − J(ϕ) ≤ C. In consequence,
synchronization may be lost if C is too small. This
was confirmed by Huang et al. (2012).

The conclusion resulting from the analysis of
information-theoretic bounds is that the feedback
controller must actively (if possible) generate information
about the state of the system. On the basis of these

results, the information based control approach to
stochastic control was proposed. The main idea of IBC
consists in replacing the original control problem with
a sequence of simpler, auxiliary control problems. The
cost function to be minimized in these auxiliary problems
consists of two parts: the predicted expectation of the cost
conditioned on available measurements and the penalty
function for information deficiency. As the penalty
function, the predicted mutual information between the
trajectory and measurements was used. Hence the method
enforces active generation of information about the
system state and is able to generate a feedback strategy.
The IBC method can be also viewed as a modification
of the OLFO (Tse, 1974) algorithm or as a compromise
between control and state estimation.

It follows from Section 6 that minimization of the
cost (37) can be performed by standard optimization
algorithms, without using dynamic programming. Hence
the computational complexity of the IBC is substantially
smaller than that of DP. This feature of IBC introduces
the possibility of solving large-scale tasks, which is
impossible with DP. It was shown that IBC is able to
find optimal solutions, provided that learning intensity
(parameter νk) is appropriately selected. The optimal
value of νk can be tuned experimentally but, at the current
stage of research, this problem is not resolved. The ability
of IBC to find an optimal solution is surprising but, due to
the complexity of the problem, convergence to an optimal
solution is difficult to investigate and is not proven.

Effective calculation of the mutual information or the
development of its approximation is a crucial issue and
some methods from optimal experimental design and fault
detection theory can be adopted here (see Bania, 2019;
Uciński, 2004; Korbicz et al., 2004). It is also possible to
use the information lower bound proposed by Kolchinsky
and Tracey (2017).

Application of the IBC method to solve more
realistic control problems and development of
information-based model predictive control algorithms is
planned as a part of future works.
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