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The linear programming (LP) approach to solve the Bellman equation in dynamic programming is a well-known option for
finite state and input spaces to obtain an exact solution. However, with function approximation or continuous state spaces,
refinements are necessary. This paper presents a methodology to make approximate dynamic programming via LP work
in practical control applications with continuous state and input spaces. There are some guidelines on data and regressor
choices needed to obtain meaningful and well-conditioned value function estimates. The work discusses the introduction of
terminal ingredients and computation of lower and upper bounds of the value function. An experimental inverted-pendulum
application will be used to illustrate the proposal and carry out a suitable comparative analysis with alternative options in
the literature.
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1. Introduction

Optimal control is a widely-used strategy in many
applications. These problems are stated as minimising an
infinite-time cost index or, in some cases, a finite-time
approximation of it, the latter being usually solved via
the so-called model predictive control (MPC) methods
(Allgower and Zheng, 2012). Another option is iterative
LQR setups (Armesto et al., 2015), which may be
used to approach the optimal solution by successive
linearisations. Additionally, convex optimisation (linear
matrix inequalities, LMIs) can be used to obtain
upper-cost bounds in some nonlinear systems (Ariño
et al., 2017), using Takagi–Sugeno models (Robles et al.,
2019).

At the core of many of these techniques lies dynamic
programming (DP) (Bertsekas, 2017; Lewis and Liu,
2013). DP solutions can either be off-line model-based
ones or on-line ones (with or without a model), giving rise
to adaptive DP/reinforcement learning paradigms (Liu
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et al., 2017; Sutton and Barto, 2018). DP estimates a
value function V (x) associated with each optimal control
problem. Policy iteration (PI) and value iteration (VI)
are popular paradigms (Lewis and Liu, 2013) to estimate
V (x). PI and VI converge to the optimal solution under
mild contraction mapping conditions (Busoniu et al.,
2010). However, such mild conditions are actually so
only in systems with a finite number of states and actions.
DP techniques applied to continuous states are commonly
known as approximate dynamic programming (ADP),
because of the need of using a function approximator
such as lookup tables (Busoniu et al., 2010), neural
networks (Munos et al., 1999; Dı́az et al., 2019) or
spline regressors (Marsh and Cormier, 2001; Cervellera
et al., 2007), among others.

Other approaches to address optimal control
problems include data-based learning strategies such as
policy search (Deisenroth et al., 2013), iterative learning
control (Tan et al., 2007; Preitl et al., 2007), or learning
by demonstration (Armesto et al., 2018). Additionally,
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the efficiency of RL algorithms may be influenced by
using epoch or active exploration methods in order to
update the policy (Zajdel, 2013; Zhao et al., 2019);
however, these are out of the scope of this paper, so
details on them are omitted.

This work will focus on off-line ADP (assuming a
batch of data to be available a priori). In a generic
ADP case, function approximation needs to be used
(Busoniu et al., 2010; Powell, 2011; Bertsekas, 2019);
however, with arbitrary parametrisations V (x, θ), PI and
VI might not converge. This is also the case for some
actor–critic schemes (Lewis and Liu, 2013). A way to
avoid PI/VI divergence is trying to minimise the so-called
mean-square Bellman error via gradient methods (Munos
et al., 1999) or other monotonic optimisation techniques.
However, such methods open up the possibility of getting
caught on local minima if they are not properly initialised.
In our other work (Dı́az et al., 2020), we propose
LMI-based solutions as a starting point for Bellman error
approaches.

As an alternative, De Farias and Van Roy (2003)
proposed a linear programming (LP) approach changing
equalities to inequalities in the Bellman equation, to
generate a lower bound of the value function.

The objective of this work is to propose a
methodology, derived from the ideas of De Farias and
Van Roy (2003), to approximately solve deterministic
optimal control problems with approximate dynamic
programming and LP (coined as ADP-LP) on a grid of
samples of state and action data points (as a continuous
state and input space is, in general, intractable). However,
in a continuous-state problem, the data and regressor
choices for the approximatorV (x, θ) may end up yielding
unbounded solutions or ill-conditioned ones. Our prior
work (Dı́az et al., 2019) discussed preliminary aspects
of this proposal. Here improvements are presented with
enhanced discussion, the addition of terminal ingredients
and upper bounds to the value function, and experimental
validation of the resulting controller.

Specifically, the contributions of this paper are (a) the
introduction of two terminal sets: an outer one to penalise
exiting the region with data availability and an inner
terminal set to avoid anomalous behaviour (such as offset)
close to the origin due to the approximation error and
control action gridding; (b) the analysis of the relationship
with the fuzzy Q-iteration using look-up-tables (LUTs)
proposed by Busoniu et al. (2010), showing that ADP-LP
can avoid the value iteration yielding identical results;
and (c) the computation of the upper bound of the
value function to determine a gap with respect to the
lower bound in order to check whether the regressors are
suitable.

In order to check the validity of the approach
in practice, an experimental setup with swing-up and
stabilisation of an inverted pendulum is presented.

The structure of the paper is as follows. The next
section will discuss preliminary definitions and basic
concepts. Section 2.3 will define the problem. Section
3 will discuss and define all relevant ingredients of the
problem setup. A discussion on approximation quality
as well as computational and implementation issues will
be given in Section 4. Section 5 will present examples
and experiments validating the proposal. Finally, the
conclusions will be given in Section 6

2. Preliminaries and the problem statement

Let us consider the discrete dynamic system

x+ = f(x, u), (1)

where x ∈ X is the state space, u ∈ U is the input and
x+ ∈ X denotes the successor state so that f : X×U �→ X,
and U denotes the set of valid control actions.

A policy u = π(x) is a function X → U

that represents the closed-loop controller of the system
achieving the dynamics x+ = f(x, π(x)).

The cost Vπ : X �→ R, associated with a policy π(x)
starting from an initial state x0 will be defined as

Vπ(x0) :=
∞∑

k=0

γkL(xk, π(xk)) (2)

xk of being the state at time instant k, L(x, u) is a scalar
function X × U → R, also known as “immediate cost”
and 0 < γ < 1 a discount factor. In the sequel, we will
assume L(x, u) ≥ 0 for all (x, u) ∈ X× U.

The aim of optimal control is to find an optimal
policy π∗(x) minimizing Vπ(x). For an optimal policy to
exist and have a finite value function, some assumptions
regarding stabilizability and positive-definiteness of L
need to hold, which are well studied in a linear case
(Lewis et al., 2012). In a general case, directly using (2)
in the optimisation problem is intractable, as it involves
summing an infinite number of terms. In order to provide
a tractable approach, it is well-known that the cost of
an arbitrary policy must satisfy the Bellman equation
(Bertsekas, 2017):

Vπ(x) = L(x, π(x)) + γVπ(f(x, π(x))), (3)

and the value function of the optimal policy, denoted as
V ∗(x), satisfies

V ∗(x) = TV ∗(x), (4)

where the Bellman operator T is defined as

TV (x) := min
u∈U

(L(x, u) + γV (f(x, u))) (5)

Now, from V ∗(x), the optimal policy can be obtained,

π∗(x) = argmin
u∈U

(L(x, u) + γV ∗(f(x, u))) . (6)
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2.1. Approximate dynamic programming. Consider
a function approximator V (x, θ), where θ is a vector of
adjustable parameters. Based on Bellman’s equation (3),
given a policy π(x), if we define the Bellman residual
(Lagoudakis and Parr, 2003) as

επ(x, θ) :=Vπ(x, θ) − L(x, π(x))

− γVπ(f(x, π(x)), θ)
(7)

then the approximate least-squares solution to the “policy
evaluation” problem, given policy π(x), is

θ∗π := argmin
θ

‖επ(x, θ)‖2, (8)

where ‖επ(x, θ)‖2 :=
∫
X
επ(x, θ)

2 dx. The integral
should be understood as a sum in discrete state spaces;
also, in continuous state-spaces, to avoid numerical
integration steps, the integral is often understood as the
sum of ε(xk, θ)

2 over a set of fitting points {x1, . . . , xN}.
The motivation for the above optimisation problem

(8) lies in the fact that, if επ = 0, then (3) is fulfilled so
we have successfully computed the value function of the
policy.

Consider now a parametrisation of Vπ linear in θ, i.e.,

Vπ(x, θ) = φT (x)θ, (9)

where the elements of vector φ(·) are called regressors.
With parametrisation (9), the above minimisation (8)

is a least-squares problem because

επ(x, θ) = (φ(x) − γφ(f(x, π(x)))
T
θ − L(x, π(x)).

(10)
Other nonlinear parametrisations might need computing
gradients to carry out the minimisation in (8), with the
risk of being trapped in local minima.

Analogously, given the value function Vπ(x, θ
∗
π), we

can obtain an approximate policy improvement by solving

π+(x, θ
∗
π) := argmin

u∈U

(L(x, u) + γVπ(f(x, u), θ
∗
π)) .

(11)
The (fitted) policy iteration (PI) and (fitted) value

iteration (VI) are two popular algorithms to solve the
ADP problem. They execute iteratively the policy eval-
uation and policy improvement steps until they converge
to the optimal policy under special conditions (Lewis and
Vrabie, 2009; Lagoudakis and Parr, 2003; Munos and
Szepesvári, 2008).

PI/VI convergence. It is well-known that PI and
VI algorithms, in their discrete implementation
(non-approximated), where the parameters are indeed
implemented with tables (Sutton and Barto, 2018),
converge to the optimal value function and policy. Also,
it is well-known that, in a general case (the approximated
version, with continuous states), convergence is not

guaranteed anymore. Only in very particular scenarios,
where contractivity of the composition of the Bellman
operator T plus projection onto the regressor’s column
space is satisfied, can we guarantee convergence to a
given “fixed point” (Busoniu et al., 2010). The main
issue is that proving contractivity for a given functional
approximator V (x, θ) is difficult or even impossible
because theorems are not usually constructive.

Contractivity can be proved only in very particular
cases, such as using a look-up-table with as many
regressors as available data (see Busoniu et al., 2010). In
practice, this requires a regular discretisation of the state
space, which easily falls into the curse of dimensional-
ity for high-dimensional systems. It is also obvious that
a large number of regressors can represent a drawback
in many real scenarios. As an alternative option to
avoid convergence issues, monotonic gradient-descent
minimisation of the residual (7) may be pursued; however,
a good initialisation to avoid local minima, as well as an
efficient computation of the gradient of (11), is needed
(Dı́az et al., 2020).

2.2. Linear programming approaches. Linear
programming can be used to get solutions for exact
DP in discrete state/input spaces (Manne, 1960). In
approximate programming, to avoid PI/VI convergence
problems, De Farias and Van Roy (2003) propose a lower
bound of the value function that satisfies

V (x, θ) ≤ L(x, u)+ γV (f(x, u), θ), ∀(x, u) ∈ X×U.
(12)

Obviously, (12) is equivalent to

V (x, θ) ≤ min
u∈U

(L(x, u) + γV (f(x, u), θ)) . (13)

i.e., V (x, θ) ≤ TV (x, θ) for all x ∈ X, which
is consistent with (4), but replacing equalities with
inequalities. As X × U is finite, we can write (12) as a
finite set of inequalities.

Any V (x, θ) fulfilling (12) is a lower bound of the
optimal cost function, i.e., V (x, θ) ≤ V ∗(x) in the case
γ < 1; indeed, T is a monotonic and contractive operator,
so V ≤ TV ≤ T 2V ≤ · · · ≤ T∞V = V ∗. If the function
approximator is linear in parameters, then maximization
of a weighted average of V over the state space, subject to
(12), is an LP problem, because (12) can be written as

(
φT (x)− γφT (f(x, u))

)
θ ≤ L(x, u),

∀(x, u) ∈ X× U. (14)

In this way, the solution of the LP problem tries to
approach the actual V ∗ (which can be considered the
largest possible lower bound). The reader is referred to the
work of De Farias and Van Roy (2003) for further details.
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2.3. Problem statement. As previously discussed,
PI/VI have convergence issues, which might be difficult
to know in advance for a given parametrisation;
gradient-descent minimisation of the Bellman residual can
be trapped in local minima, so initialisation may be a
crucial decision. On the other hand, the LP approach to
ADP provides theoretically guaranteed lower bounds for
finite state spaces.

This paper will exploit the LP approach. It
needs some refinements (Dı́az et al., 2019) to provide
meaningful and numerically reliable solutions in practice,
to be here discussed in depth. Note that an actual
application-specific regressor choice is not in the
objectives of this paper: we will only provide validation
guidelines to check whether the LP problems are well
conditioned and numerically reliable for a given choice
of regressors.

Terminal ingredients when the trajectories leave the
region of interest will also be incorporated into the
methodology (otherwise, the infinite-time problem would
be ill-defined unless the region of interest is invariant).
In addition to this, an upper bound estimate is a useful
enhancement to be discussed in this work: with both
upper and lower bounds, we can have a reasonable guess
on the accuracy of our value function and, consequently,
decide whether or not the regressors are appropriate for
our application.

When the number of regressors approaches that of
data points, our proposal will encompass earlier ones
based on interpolative lookup tables; the relationship with
them and the PI/VI options used for its adjustment will be,
too, subject to scrutiny.

3. ADP via a linear programming setup

In the sequel, we will assume that a dataset D ⊆ D×U×
X, consisting on N triplets of data,

D :={(x1, u1, x1+), (x2, u2, x2+), . . . ,

(xN , uN , xN+)},
(15)

is available, where xk+ = f(xk, uk) and the set D ⊆ X

will be understood as a “region of interest” in the state
space with data availability, i.e., assuming that the dataset
covers D “densely enough.” We will denote by T := X ∼
D the state space region with no data availability.

The elements of the triple ξ := (x, u, x+) ∈ D will
be called, from left to right, as ‘source state’, ‘action’ and
‘successor state’. When speaking about x+, we will refer
to x as its ‘predecessor.’ A symbolic representation of the
sets X, D and T, jointly with a few data points in D, is
shown in Fig. 1. We will assume that X, T and D are such
that the successor of any source state in D lies in X.

Note that the dataset can be obtained either from
simulation, if a theoretical model of (1) is available, or
via experimental data acquisition.

Fig. 1. Illustration of the different sets involved in an optimal
control problem (X = T ∪ D). Light grey circles in
the data-availability region D indicate source states, grey
ones indicate successor ones (three cases, to avoid clut-
ter).

3.1. Terminal ingredients. In this paper, the ADP
objective is learning an estimate of the value function of
the optimal control problem in the region of interest D.

Outside D, we will understand T as a set of terminal
states (terminal set), so the value function V (x) for x ∈
T will be known, by assumption, as equal to VT(x), to
be termed as the terminal cost, and not approximated by
V (x, θ).

The use of terminal sets is common in model
predictive control (MPC) (Allgower and Zheng, 2012);
terminal states are also commonplace in discrete dynamic
programming problems where a final reward/punishment
is received when reaching some absorbing states. These
problems end up posing an optimal control problem of
reaching T while minimising

Vπ(x0) = VT(xτ ) +

τ−1∑

k=0

γkL̄(xk, π(xk)),

where final time τ is the reaching time, i.e., xk ∈ D for
k < τ and xτ ∈ T, or infinity if T is not reached under
policy π. With no loss of generality, the terminal cost
VT(x) can be added to the immediate cost when reaching
T, i.e., defining

L(x, u)

=

⎧
⎪⎨

⎪⎩

L̄(x, u), x ∈ D, f(x, u) ∈ D,

L̄(x, u) + γVT(f(x, u)), x ∈ D, f(x, u) ∈ T,

0, x ∈ T,

(16)

and assuming absorbing terminal states, i.e., f(x, u) := x
for x ∈ T an we have that Vπ(x) ≡ 0 for all x ∈ T for any
policy. Thus, with this notation we can express the above
reaching control problem as an equivalent infinite-time
one with cost L as stated in Section 2.
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In a control problem, the “inner” ellipsoidal terminal
set in Fig. 1 represents a region where a good performance
controller is known (for instance, a linearised LQR one
is the standard option in stable linear MPC). The “outer”
terminal set would have a “large” terminal cost associated
with, say, constraint violations.

3.2. LP constraints and the cost index. With
the above-defined dataset and terminal ingredients,
constraints (12) will be stated, over the data set, for k =
1, . . .N , either as

V (xk, θ) ≤ L(xk, uk) + γV (xk+, θ) (17)

if xk+ ∈ D or, otherwise, if xk+ ∈ T as

V (xk, θ) ≤ L(xk, uk), (18)

assuming that the terminal cost has been embedded in L;
see (16).

Under the above inequality constraints, the cost index
to maximize will be redefined to be

M(θ) =

∫

X

ϑ(x)V (x, θ) dx, (19)

where ϑ(x) is an arbitrary positive weighting to
emphasize adjustment in given regions of the state space.

ADP-LP problem. Once regressors φ(x) for the
function approximator are chosen, the cost (19) can be
expressed as a linear-in-parameter expression:

M(θ) =

(∫

X

ϑ(x)φT (x) dx

)
θ := cT θ, (20)

where the term between the parentheses is just a vector,
once the integral is evaluated. The integral may be
considered a “symbolic” expression to be approximated
by a finite sum or, alternatively, it can be directly evaluated
with numerical or symbolic software for a given choice of
X, ϑ(·) and φ(·).

Again, if the linear-in-parameter expression of
(17)–(18) is written as

(
φT (xk)− γφT (xk+)

)
θ ≤ L(xk, uk), (21)

if xk+ ∈ D, and

φT (xk)θ ≤ L(xk, uk), (22)

if xk+ ∈ T, then, from the above discussion, the
value function approximation will be carried out by
solving the approximate dynamic programming problem
of maximising (20) subject to (21)–(22), which, trivially,
can be expressed in a compact notation as Aθ ≤ b for
some matrix A and column vector b.

In the sequel, we will assume that regressors are
non-negative, i.e., φ(x) ≥ 0 for all x ∈ D. Without loss
of generality, we will assume, too, that maxx∈D φ(x) = 1,
i.e., they are normalised to a maximum value of one over
the region D.

Under these assumptions, θ = 0 will always
be a feasible solution, because of the assumption
that L(x, u) ≥ 0 for all x and u. Also, the
non-negativeness assumption (common in many neural
network arrangements) will help understand some of the
issues arising due to an incorrect regressor choice, thus
avoiding ill-posed LP problems, as discussed next.

3.3. Regressor choice and regularisation. Obviously,
regressors should be placed in such a way that they
cover the source state data points with high activation.
However, in our specific ADP-LP setup, the temporal
difference appearing in (21) might produce additional
issues if regressors are not carefully arranged,

High successor state activation. If

max
1≤k≤N

(φj(xk)− γφj(xk+)) ≤ 0, (23)

then parameter θj in the LP problem will be multiplied
by a negative number in all the inequalities. Thus, the
ensuing LP problem would end up with an unbounded
solution; this should, obviously, be avoided.

The interpretation of (23) is that, for all available
data points, the regressor φj is active with larger intensity
on the successor state than on the source state. In order
to resolve this issue, a source data point must be added
at the point x̂ ∈ D, where the problematic regressor
attains a maximum value, i.e., φj(x̂) = 1, which exists
by assumption. If the data collection phase is finished
and that extra data point cannot be gathered, then the peak
activation of the regressor should be shifted to, say, the
nearest existing data point in D.

Flat regressors, low input excitation. Even if the
condition (23) does not occur for a given set of
regressors, we might be “close” to it: a possible cause of
badly-conditioned setups is having too “flat” regressors.
If

max
1≤k≤N

(φj(xk)− γφj(xk+)) ≤ β1, (24)

β1 being a design parameter (small, positive), then the
difference in activation between a state and its successor
for regressor φj is very small, i.e., the regressor takes
almost the same value for the source states in the dataset
and their successors. Another cause of the problem (24)
can be unsuitable input excitation: maybe all tested u are
too “small” to move xk to a successor state sufficiently
separated from it to yield significant differences in
regressor values.
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The result will be undesirably large1 estimation of
parameter θj . Decreasing spread parameters in, for
instance, Gaussian regressors may solve the problem. If
deficient input excitation is suspected, then adding data
obtained using larger input excitation is recommended.

3.4. Case of interpolative regressors. This section
studies the lookup-table regressor proposals found in, for
instance, the work of Busoniu et al. (2010), and their
relationship to the previously-presented ideas. Let us
denote by Dx ⊆ D the finite set of source states in the
dataset D, with cardinality, say, Nx. Thus, by definition,
for any state in Dx there is a triplet in the dataset D
containing it as a first element, so Dx := {x̃ : ∃ ξ =
(x̃, u, x+) ∈ D}.

Let us define the matrix P := [φ(x̃1) . . . φ(x̃Nx)],
xi being now the enumeration of the Nx elements of Dx

in arbitrary order, with a slight abuse of notation. If P is
square (i.e., M = Nx, as many regressors as source states)
and invertible, then, if we define

Ṽ := (V (x̃1), . . . , V (x̃Nx))
T
, (25)

we can set up the linear, invertible, change of variables
given by Ṽ = Pθ. Thus, with these regressors we can
think of the value function at source states Ṽ as being the
vector of adjustable parameters. This type of regressors
will be denoted as interpolative regressors.

The above motivates the use of LUTs as function
approximators for ADP-LP, which is, indeed, a sensible
option in optimal control applications. This idea
has a close relationship with LUT-based options in
discrete dynamic programming problems and the fuzzy
Q-iteration using LUT found in the work of Busoniu
et al. (2010) for approximated learning in continuous
state spaces. The latter work proposes a standard
value-iteration algorithm to adjust the LUT parameters,
proving its convergence based on contractive mapping
argumentations. Notwithstanding, we will next prove
in Section 3.4 that, if contractiveness assumptions hold,
the optimal converged value-iteration solution coincides
with the one found by solving our ADP-LP problem.
Thus, our ADP-LP approach seems, in principle, better
than the VI-LUT one, because, apart from providing
an identical solution in this LUT case, it can find
feasible solutions for alternate regressors even if the
contractiveness assumptions fail.

Value iteration under interpolative regressors. In the
rest of this section we will assume Ṽ defined in (25) to

1If large parameter values are present, “small” values for the value
function estimate V (x, θ) may be a result of subtraction of large val-
ues. Say, if V (1) = 3 = 5002φ1(1) − 5032φ2(1), then errors in the
estimate of any of these parameters would entail large variations in the
estimate of V (x). This situation will produce heavy distortion on value
function estimates, so it should be avoided.

be the vector of adjustable parameters and V (x, Ṽ ) the
function that interpolates between them.

The asynchronous value iteration (Busoniu et al.,
2010) is expressed as

Ṽ
[l+1]
k := TkV (x̃k, Ṽ

[l]), k = 1, . . . , Nx, (26)

l being the iteration number and operator Tk defined as

TkV (x̃k, Ṽ )

:= min
u∈U(x̃k)

(
L(x̃k, u) + γV (f(x̃k, u), Ṽ )

)
, (27)

where U(x̃) denotes the set of actually tested control
actions for the source state x̃ ∈ Dx in the given dataset,
i.e., U(x̃) := {u : ∃ξ s.t. (x̃, u, ξ) ∈ D}.

Now, (26) will be shorthanded to

Ṽ [l+1] := TDṼ [l] (28)

in order to emphasize the application of the
dataset-dependent Bellman operator, so its action
transforms a value estimate over the source states, Ṽ [l],
to another one Ṽ [l+1]. Evidently, if the dataset D were
“complete” (i.e., containing all possible transitions in it,
in a finite case), then the dataset-dependent operator TD
would actually be the standard Bellman operator.

Obviously, if TD were contractive, the iterations (28)
will converge to a fixed point Ṽ ∗ = TDṼ ∗. Now,
recall that the ADP-LP constraints, under the D-complete
regressors, can be equivalently stated as

Ṽ ≤ TDṼ . (29)

Hence, we can assert that, if TD is contractive, the fixed
point Ṽ ∗ = TDṼ ∗ of the value iteration (28) is a feasible
solution of the ADP-LP problem posed in Section 3.2. If
all coefficients multiplying Ṽ in the cost index M(Ṽ ) are
positive, then the optimal ADP-LP solution coincides with
Ṽ ∗, as maximisation would enforce the decision variables
in Ṽ up to equality.

Note that contractiveness of TD, plus positive
weights, is a sufficient condition for the ADP-LP solution
to obtain in one shot (no iterations) the converged VI
solution. But, actually, it is straightforward to realise that,
if weight coefficients are positive, under the constraints
(29), LP will obtain a bounded fixed point Ṽ ∗ = TDṼ ∗

in all cases in which the LP problem renders feasible and
bounded, without the explicit need of contractiveness: our
LP proposal succeeds even in situations where the value
iteration fails.

In summary, as a conclusion of the section, if VI
works with interpolative regressors, so will ADP-LP,
yielding exactly the same result; however, ADP-LP will
work in other cases, too.
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3.5. Upper bound to the value function. As it stands
now, we have computed a sensible lower approximation
V (x, θLB) to the optimal value function. However, it
would be desirable to known how “precise” our estimation
is with a particular regressor structure. Computation of
an “upper” bound to the value function would be, then,
helpful: if the gap between upper and lower bounds is
large, a denser set of regressors may be advisable.

An option is using the ideas of Rantzer (2006),
where relaxed upper and lower bounds are computed via
iterations in the form

θk+1 =min
ξ

(νL(x, ξ) + γV (f(x, ξ), θk−1))

≤ V (x, θk) ≤ νL(x, u) + γV (f(x, u), θk),

∀(x, u) ∈ X× U, (30)

with ν ≤ 1 ≤ ν being relaxation parameters, trading off
complexity of V (x, θ) against the gap between ν and ν.
In this way, (30) embeds (12) in value-iteration settings.
The cited works prove that, after k iterations,

min
{u0,...,uk}

k∑

i=0

γiνl(xi, ui) ≤ V (x, θk).

Thus, if a converged solution is found, denoting its
parameters with θ∞, we have

νV ∗(x) ≤ V (x, θ∞) ≤ νV ∗(x).

However, these iterations may end up yielding
infeasible constraints. Convergence or feasibility can only
be guaranteed if the approximator precision is very high;
see the work of Rantzer (2006, Th. 3) for further details.

As an alternative, we propose to evaluate
upper bounds via a linear-programming version
of policy iteration, with the standard policy
evaluation/improvement steps in an inequality-based
version, to be detailed next.

LP policy evaluation (upper bound). Considering an
arbitrary policy π(x), an LP-based policy evaluation can
be stated as

L(x, π(x)) + γV (f(x, π(x)), θπ) ≤ V (x, θπ). (31)

Indeed, if a feasible value of θπ can be found, then
V (x, θπ) ≥ V ∗(x), by monotonicity and contractiveness
of the Bellman operator, proven as in the work of
De Farias and Van Roy (2003, Lemma 1), reversing signs.
In this case, minimisation of (20), instead of maximisation
when computing lower bounds, will be now carried out, to
obtain the lowest (on average) feasible upper bound.

These inequalities will always be rendered feasible
under the assumptions in Section 3, with γ < 1. Indeed,
in such a setting we can prove that there exists a constant

Vmax that fulfils (31) as follows. First, note that the
successor state f(x, u) can either lie in D or in T. In each
case, Vmax should fulfil

L(x, u) + γVmax ≤ Vmax if f(x, u) ∈ D,
(32)

L(x, u) + γVT(f(x, u)) ≤ Vmax if f(x, u) ∈ T.
(33)

Thus, define

VD,max :=
1

1− γ
max

(x,u)∈D×U

L(x, u),

VT,max := max
(x,u,f(x,u))∈D×U×T

(L(x, u) + γVT(f(x, u))) ,

so that we can assert that any constant Vmax such that

Vmax ≥ max(VD,max, VT,max) (34)

fulfils (31).
As a conclusion, if the chosen regressor arrangement

can fit a constant function, the policy evaluation (31)
will always be feasible, providing an upper bound of the
optimal value function.

Policy improvement. Once a feasible upper bound for
the policy evaluation is available, obviously, the new
policy arising from (11) will for sure achieve a better
upper bound; formally,

L(x, π+(x)) + γV (f(x, π+(x)), θπ)

≤ L(x, π(x)) + γV (f(x, π(x)), θπ)

≤ V (x, θπ). (35)

LP iteration scheme. Based on the above discussion,
we propose, given a starting policy π0(x) and its
associated upper bound (31) V (x, θ0), to carry out the
iterations, starting with k = 0, of a policy improvement
step,

πk+1 := argmin
u∈U

(L(x, u) + γV (f(x, u), θk)) (36)

and a policy evaluation one,

L(x, πk+1(x))+γV (f(x, πk+1(x)), θk+1) ≤V (x, θk+1)
(37)

V (x, θk+1) ≤ V (x, θk),
(38)

where the action of inequality (38) has been added to
force an actual “point-wise” improvement of the bound
(otherwise, the optimisation index (20) will make the
bound decrease “on average”, but a point-wise increase
cannot be excluded unless V (x, θk+1) ≤ V (x, θk) is, too,
enforced).
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4. Methodology and a discussion

From the previous considerations, our proposal is to

1. solve the lower-bound ADP-LP setup in Sections 3
and 3.3, obtaining a parameter vector θLB;

2. compute the policy π0 with (11) from the
lower-bound value function estimate;

3. evaluate an upper bound (31) for such a policy,
yielding the initial parameter vector θ0;

4. iterate (37)–(38) and (36) until a suitable stopping
criterium is met. Denote the last parameter vector as
θUB .

As discussed in Section 3.4, if we have interpolative
and contractive regressors (say, the LUTs in the work of
Busoniu et al. (2010)), upper and lower bounds in (39)
coincide; actually, they are the fixed-point solution of
standard value iteration. Our proposal can obtain separate
upper and lower bounds in case contractiveness fails and
VI does not converge.

Incorporating the above four steps into a general
setup involving regressor choice and refinement for
practical applications, a flowchart of the methodology
presented in this paper is shown in Fig. 2.

As a result of the above steps, we can approximately
guarantee (see Section 4.1 below for a discussion on the
meaning of such approximation)

V (x, θLB) ≤ V ∗(x) ≤ V (x, θUB), (39)

so, if the gap between the upper and lower bounds is
deemed excessive for a particular application, a regressor
rearrangement (and increasing the number of them,
possibly) is recommended. The difference between the
associated upper/lower control policies may also be useful
to pinpoint regions where an increase in regressor density
is recommended.

Note that, nevertheless, the actual choice of new
regressors in the case of unsuccessful experimental
performance, as well as the analysis of the gap between
the upper/lower value functions and the difference in
control policies generated by each of them to guide such
regressor modification, is out of the scope of this paper,
and possibly application-dependent. In summary, the
proposals of this paper concentrate on the stages inside
the dashed region of the referred flowchart.

4.1. Approximation properties. As there exist a finite
number of data points and regressors, the results of linear
programming optimization are only an approximation of
the optimal value function. Indeed,

(a) granularity in control actions u makes the computed
value function sub-optimal with respect to a
continuous space of control;

(b) finite granularity in x forces the fulfilment of the
Bellman inequality only at the available data points.

Thus, if we added more data points or more tested control
actions at each state to a given dataset, more restrictions
on the value function would appear so the obtained result
of the LP optimization would be lower: if we denote
by M∗(D, φ) the optimal cost solution of the ADP-LP
problem with a dataset D and regressors φ, we have, given
two datasets D2 ⊇ D1, then M∗(D2, φ) ≤ M∗(D1, φ).

Hence, if we define D as the complete dataset
containing all elements of X×U and their successors, we
can assert M∗(D, φ) ≤ M∗(D, φ) for any D.

Now, recalling that the number of regressors is also
limited, we can assert that adding more regressors would
increase our ADP-LP estimate, i.e., if φ[2] ⊇ φ[1], then
M∗(D, φ[1]) ≤ M∗(D, φ[2]).

If we had the complete dataset D and a regressor
set able to fit any arbitrary function over X, we would
then be in the non-approximated LP case of the dynamic
programming problem. This idealistic regressor will be
denoted as ΦD. The following diagram can be made:

Scarce dataset Complete dataset
Poorer regressor M∗(D, φ[1]) ≥ M∗(D, φ[1])

≥ ≥

Richer regressor M∗(D, φ[2]) M∗(D,ΦD).

In summary, in a finite setting, the bottom-right
option would be the exact DP solution and the top-right
one would be the proven lower bound proposed by
De Farias and Van Roy (2003); on the other hand, in
an infinite state/action space, the two options on the
right would be elusive unattainable possibilities, to be
approximated with a “sufficiently high” number of data
triplets and a “sufficiently expressive” set of regressors.

Regarding the upper bound policy evaluation (31),
parallel argumentations can be made; so, a diagram
similar to the above can be set up, changing the signs
of the inequalities. As discussion details are completely
analogous, they are omitted.

Implementation issues. Compared with the ordinary
least-squares based policy or value iteration in, say, the
works of Busoniu et al. (2010) or Lewis and Vrabie
(2009), our proposal has two distinctive advantages:
first, convergence issues are avoided without the need of
contractiveness guarantees; second, we provide explicit
state-dependent upper and lower bounds of the value
function to assess the accuracy of our computations.

The result of the ADP-LP methodology is a value
function estimate V (x, θ∗). As discussed earlier, in order
to build the control action, the optimal one is a result of
the computation (11). That computation can be carried out
on-line if computational resources allow for it, or off-line
and stored, say, on a control-map LUT.
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Fig. 2. Flowchart of the proposed methodology.

5. Examples and experimental results

In this section, we show results regarding stabilisation
of an inverted pendulum both in simulation and in
experimental validation of the resulting controllers.

The goal is stabilising the unstable equilibrium point
of an inverted pendulum (see Fig. 3(a)), whose model is

α̇ = ω, (40)

ω̇ =
1

J

(
mgl sin(α)− bω +

K

R
u

)
, (41)

where α is the pendulum angle, u is the applied voltage, J
is the inertia, m is the mass, l is the distance between the
rotation axis and the centre of mass, g is the gravity, b is
the Coulomb friction, R is the motor electrical resistance
and K is the current-torque gain. The available sensor is
a Hall-effect encoder measuring angle α. Data acquisition
is performed with an NI myRIO-1900 device. Dead-zone
compensation was added to compensate for Coulomb
friction phenomena in the motor and gears.

The objective is to apply the learnt controller to an
actual pendulum prototype shown in Fig. 3(b). Thus,
the parameters of the model (40)–(41) will be identified
first from the experimental data. Such data are shown
in Fig. 4, which consists of a given input profile (bottom
plot), generated from two sequences of a swing-up control
law (increasing kinetic energy with u = sign(ω) plus a
random low-pass filtered signal), a PD controller activated
when the position is close to the unstable equilibrium,
and a disconnection letting the pendulum fall to the
bottom stable equilibrium. The control action used in the
identification stage is in the interval [−1, 1] V.

The control sampling period is Δt = 0.01 s. In
order to carry out state-feedback control, “measurements”
of ω are needed; in this application, a suitably tuned
Kalman filter for a double-integrator model was running

with tenfold oversampling, and the speed estimate every
10 samples was used for control. Nevertheless, as the only
actual measurement is the position one, identification was
carried out exclusively with position data. The resulting
identified model, Euler discretisation of (40)–(41) is

α+ = α+Δt · ω, (42)

ω+ = ω +Δt · (42.27 sin(α)− 2.27ω + 24.21u). (43)

It achieved a 96.5% fit of the measured position over
the validation data segment in Fig. 5 (the command
idnlgrey from Matlab R2017b System Identification
Toolbox R© was used).

ADP-LP problem setup. The optimal control problem
was set in order have the standard LQR immediate cost,

L̄(x, u) = xTQx+ uTRu,

with

Q =

(
10 0
0 0.1

)
, R = 1.

The discount factor was set to γ := 0.99.
An ADP-LP problem will be posed and solved based

on a dataset D originating from a uniform gridding 43×43
of the state space [−π, π]×[−15π, 15π], and 11-point grid
of the control action space U := [−1, 1]. The successor
states in D are generated by simulation of the identified
model (42)–(43).

Terminal ingredients. The linearisation of (42)–(43)
will be used to obtain a discounted-LQR terminal control
law, with an associated quadratic value function

VLQR(x) = xTSx,
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(a)

(b)

Fig. 3. Inverted pendulum schematic (a) and an actual pic-
ture (b).
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Fig. 4. Test data for identification.
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Fig. 5. Validation data and identified model output.

where

S =

(
265.61 19.96
19.96 2.47

)

is the solution to

K =
(
γBTSB +R

)−1
γBTSA, (44)

S = γATS (A−BK) +Q, (45)

and the state feedback policy u = − [4.7117 0.5737]x.
In addition to this, we chose the ellipsoid T1 := {x :

VLQR(x) < 12.10} as an inner terminal region in which
we will assume as optimal the discounted LQR solution;
this ellipsoidal region is depicted in the latter value
function and control map figures, in the centre. Indeed,
this region provides a non-saturated LQR control-law. On
the other hand, if trajectories exit the gridded state-space
region, we will assume that they enter an “outer” terminal
region T2 := {x ∈ R

2 : x �∈ [−π, π]× [−15π, 15π]} and
that an instant penalisation of VT2 := 10000 is considered,
basically forcing the system to avoid entering T2. Thus,
the terminal set will be defined as T := T1 ∪ T2, and the
terminal cost VT(x) will be defined as equal to VLQR(x)
if x ∈ T1, and VT2 if x ∈ T2. With these ingredients, the
ADP-LP immediate cost (16) can be built.

Regressor choice. Two regressor choices were tested:

1. a two-dimensional 43 × 43 LUT (triangular
membership functions);

2. a 15 × 15 uniform grid of RBF neurons, φj(x) =

e−(x−μj)
TΣ−1(x−μj), normalised to unit sum.

The first regressor, with 1849 adjustable parameters,
will be assumed to be close to a “ground-truth”
value function, albeit with the error sources discussed
in Section 4 due to the finiteness of the grid.
However, our objective is testing how the RBF setup
with 225 parameters can provide a reasonable value
function estimate, in case the 1849-parameter LUT were
unattainable due to its memory footprint, as would happen
in higher-dimensional problems or with denser grids.

We generated the data gridding and uniformly
distributed the RBF centroids so that a neuron centroid
coincided with one of each of the three consecutive source
states in the dataset. Also, we have removed the regressors
(in both the neural network and LUT) whose centroid
(interpolation point) belongs to T; otherwise unbounded
solutions of the ADP-LP problem would have been
obtained. A last decision in the regressor arrangement
involved tuning the variance parameter Σ of the RBF
neurons so that flat-regressor issues were absent; the
finally chosen value was Σ = diag(0.0542, 12.1847).
All criteria discussed in Section 3.3 were satisfactorily
checked with this regressor proposal. Indeed, we
intentionally generated other defective arrangements with
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different neuron centroid placement/overlap and neurons
inside the inner terminal ellipsoid, and they produced the
issues discussed in Section 3.3.

Value function and the control map. The proposed
ADP-LP lower bound computations, as well as the
subsequent upper bound ones, yielded two estimates
V (x, θLB) and V (x, θUB). As discussed in Section 3.4,
for LUT regressors, both bounds coincide.

We, too, tried standard policy/value iteration setups;
the 43×43 LUT was indeed contractive and worked
perfectly; see Section 3.4. However, the 15×15 RBF
and other RBF and LUT arrangements with a similar
number of adjustable parameters failed to converge
under the referred widely-used algorithms, illustrating the
advantages of the LP approach proposed here.

Figure 6 compares the value function of the 43×43
LUT (the closest we can reasonably get to the ellusive
“ground-truth” optimal value function with the given
dataset) with the estimates V (x, θLB) and V (x, θUB)
with our 15×15 RBF. Note that the value function peaks
at the lower equilibrium (−π, 0), which is intuitively
expected. Even if the white surface LUT result was
not available, if the gap between the light gray and
gray surfaces was deemed excessive, that would advise
increasing the flexibility of the regressors with more
neurons.

The control map derived from V (x, θUB) appears in
Fig. 7. It resembles swing-up controllers which increase
the mechanical energy until it is enough to reach the upper
position. Figure 8 depicts the 43×43 LUT control map,
showing that the 15×15 RBF achieved a control map that
is close to it.

Time simulation and experiments. Figure 9 depicts
a representative example of the system trajectories
with both simulated (discontinuous line) and actual
experiments (continuous line) with the controller arising
from the value function V (x, θUB) estimated by the
15×15 RBF. The simulated pendulum produces a
swing-up control law as previously discussed, where we
can clearly appreciate that the system commutes to the
terminal LQR control law at time instant t ≈ 4 s. The
real pendulum produces a similar response.

A phase plane of the trajectory starting at point x =
(−π, 0) is shown, together with a trajectory starting at x =
(−π, 40), in Fig. 10, showing satisfactory experimental
behaviour: the mechanical energy is being reduced by
braking until the system has the correct amount of energy
to enter the LQR terminal region.

6. Conclusions

Based on earlier linear-programming approaches to
approximate dynamic programming, this paper has
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Fig. 6. Value function estimates: 43×43 LUT (white), 15×15
lower bound V (x, θLB) (light grey), 15×15 upper
bound V (x, θUB) (grey).
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Fig. 7. Control policy, 15×15 RBF neurons using θUB , plus
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Fig. 9. Simulation and experimental responses with a 15×15
RBF: position, speed and control action (top to bottom).
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Fig. 10. Phase planes of two trajectories with a 15×15 RBF
controller. Background image corresponds to Fig. 7,
inner LQR terminal set outlined with its boundary el-
lipsoid.

presented a methodology to produce well-conditioned
and reasonably accurate solutions to optimal control
problems. The methodology includes terminal ingredients
and the regressor regularisation. The results are lower and
upper bounds of the value function, so the gap between
them can guide the choice of the regressors . The validity
of the approach has been experimentally tested. Even if
equally-spaced RBF neurons and LUTs have been used
in the examples in this work, other neuron distributions
(or problem-specific regressors) may also be employed in
order to obtain good controllers with a reduced number of
parameters. Future work will address the extension of the
approach to Q-function approximation and, additionally,
the use of efficient/sparse regressor arrangements in
higher-dimensional spaces.
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Informática industrial 16(3): 273–283.

Dı́az, H., Armesto, L. and Sala, A. (2020). Fitted
Q-function control methodology based on Takagi–Sugeno
systems, IEEE Transactions on Control Systems Technol-
ogy 28(2): 477–488.

Lagoudakis, M.G. and Parr, R. (2003). Least-squares
policy iteration, Journal of Machine Learning Research
4(Dec): 1107–1149.

Lewis, F.L. and Liu, D. (2013). Reinforcement Learning and Ap-
proximate Dynamic Programming for Feedback Control,
Wiley, Hoboken, NJ.



A linear programming methodology for approximate dynamic programming 375

Lewis, F.L. and Vrabie, D. (2009). Reinforcement learning
and adaptive dynamic programming for feedback control,
IEEE Circuits and Systems Magazine 9(3): 32–50.

Lewis, F., Vrabie, D. and Syrmos, V. (2012). Optimal Control,
3rd Edn, John Wiley & Sons, Hoboken, NJ.

Liu, D., Wei, Q., Wang, D., Yang, X. and Li, H. (2017). Adap-
tive Dynamic Programming with Applications in Optimal
Control, Springer, Berlin.

Manne, A.S. (1960). Linear programming and sequential
decisions, Management Science 6(3): 259–267.

Marsh, L.C. and Cormier, D.R. (2001). Spline Regression Mod-
els, Number 137, Sage, Thousand Oaks, CA.

Munos, R., Baird, L.C. and Moore, A.W. (1999). Gradient
descent approaches to neural-net-based solutions of the
Hamilton–Jacobi–Bellman equation, International Joint
Conference on Neural Networks, Washington, DC, USA,
Vol. 3, pp. 2152–2157.

Munos, R. and Szepesvári, C. (2008). Finite-time bounds for
fitted value iteration, Journal of Machine Learning Re-
search 9(May): 815–857.

Powell, W.B. (2011). Approximate Dynamic Programming:
Solving the Curses of Dimensionality, 2nd Edn, Wiley,
Hoboken, NJ.

Preitl, S., Precup, R.-E., Preitl, Z., Vaivoda, S., Kilyeni, S. and
Tar, J.K. (2007). Iterative feedback and learning control.
servo systems applications, IFAC Proceedings Volumes
40(8): 16–27.

Rantzer, A. (2006). Relaxed dynamic programming in switching
systems, IEE Proceedings: Control Theory and Applica-
tions 153(5): 567–574.

Robles, R., Sala, A. and Bernal, M. (2019).
Performance-oriented quasi-LPV modeling of nonlinear
systems, International Journal of Robust and Nonlinear
Control 29(5): 1230–1248.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement Learning:
An Introduction, 2nd Edn, MIT Press, Cambridge, MA.

Tan, K., Zhao, S. and Xu, J. (2007). Online automatic tuning
of a proportional integral derivative controller based on
an iterative learning control approach, IET Control Theory
Applications 1(1): 90–96.

Zajdel, R. (2013). Epoch-incremental reinforcement learning
algorithms, International Journal of Applied Mathe-
matics and Computer Science 23(3): 623–635, DOI:
10.2478/amcs-2013-0047.

Zhao, D., Liu, J., Wu, R., Cheng, D. and Tang, X.
(2019). An active exploration method for data efficient
reinforcement learning, International Journal of Applied
Mathematics and Computer Science 29(2): 351–362, DOI:
10.2478/amcs-2019-0026.

Henry Dı́az received his BSc degree in elec-
tronics and control engineering from the National
Polytechnic School, Quito, Ecuador, in 2011, his
MSc degree in automation and industrial infor-
matics in 2015 and his PhD degree in automa-
tion, robotics and industrial computing in 2020,
both from the Polytechnic University of Valencia,
Spain. His current research interests include re-
inforcement learning, approximate dynamic pro-
gramming, control systems, and robotics.

Antonio Sala was born in 1968. He received
his MSc degree in electrical engineering and his
PhD degree in control engineering from the Poly-
technic University of Valencia (UPV), Spain, in
1993 and 1998, respectively. He has been the
chair professor with the Systems and Control En-
gineering Department, UPV, since 2009. He has
published over 75 journal papers and more than
140 conference ones. Professor Sala has served
as an associate editor of IEEE Transactions on

Fuzzy Systems, Fuzzy Sets and Systems and Revista Iberoamericana de
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