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The paper is devoted to a particular case of the nonlinear and nonautonomous control law design problem based on the
application of the optimization approach. Close attention is paid to the controlled plants, which are presented by affine-
control mathematical models characterized by integral quadratic functionals. The proposed approach to controller design
is based on the optimal damping concept firstly developed by V.I. Zubov in the early 1960s. A modern interpretation of
this concept allows us to construct effective numerical procedures of control law synthesis initially oriented to practical
implementation. The main contribution is the proposition of a new methodology for selecting the functional to be damped.
The central idea is to perform parameterization of a set of admissible items for this functional. As a particular case, a
new method of this parameterization has been developed, which can be used for constructing an approximate solution to
the classical optimization problem. Applicability and effectiveness of the proposed approach are confirmed by a practical
numerical example.

Keywords: feedback, stability, damping control, functional, optimization.

1. Introduction

The wide spread of various intelligent automatic control
systems now raises numerous problems related to their
performance, safety and reliability. In this respect, the
various approaches associated with the design of feedback
control laws have already been extensively researched
and presented in numerous publications (Sontag, 1998;
Khalil, 2002; Slotine and Li, 1991; Lewis et al., 2012;
Geering, 2007; Sepulchre et al., 1997). Nevertheless, the
complexity of the problem is now high because of the
presence of many dynamical requirements, restrictions,
and conditions to be satisfied by using control systems.

Among various dynamic systems, a special place
is occupied by affine-in-control plants with nonlinear
and nonautonomous mathematical models. This class
of plants primarily includes mobile objects such as
robots, marine vehicles, aircrafts, and cars (Khalil, 2002;
Slotine and Li, 1991; Fossen, 1994; Do and Pan, 2009).
Moreover, it was shown by Balakrishnan (1966) that any
controlled autonomous nonlinear system can be converted
to the affine-control form using a specific nonlinear
transformation of the state space vector. To be fair, it

should be noted that it is very difficult to find such a
transformation.

Let us note that one of the most effective analytical
and numerical tools for feedback connection design for
today is the optimization approach. This opinion is due
to the flexibility and adaptability of modern optimization
methods with respect to the relevant practical demands.
The most significant aspects of applicability of this
methodology for control systems design are reflected by
Lewis et al. (2012), Geering (2007) and Sepulchre et al.
(1997). A modern example of the practical application of
the optimization approach is given by Wasilewski et al.
(2019).

As for affine plants with integral quadratic
performance indices, there exist several methods to
find an optimal controller numerically. Nevertheless,
we cannot say that the optimization approach is treated
overall as a universal instrument for the practical
implementation. This can be explained by some
disadvantages connected with computational troubles.
In particular, using Bellman’s dynamic programming
principle, we face difficulties related to the numerical
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solution of the Hamilton–Jacobi–Bellman (HJB) equation
and the computer implementation of the resulting
solution.

Therefore, there exists a dire necessity to develop
persistently analytical and numerical methods of control
law design based on optimization methodology. The
essence of such a study should be especially aimed
at improving the computational effectiveness of these
methods.

This work is mostly devoted to the specific approach
which can be used to design stabilizing controllers based
on the theory of optimal damping (OD) in transient
processes. This theory, firstly proposed and developed by
Zubov (1962; 1966; 1978), allows constructing effective
methods for control calculation with essentially reduced
computational consumptions.

The main purpose of the paper is to develop a
method for an approximate solution of the affine-quadratic
optimization (AQO) problem, which can be put into
practice using the OD concept.

The main contributions of this paper are determined
by the following statements. First, we propose a
new methodology for selecting the functional to be
damped, taking into account the specific features of
the AQO-problem. The central idea is to provide a
parameterization of the set of admissible items for this
functional. Second, we develop, as a particular case, a
new method of such parameterization, using the control
Lyapunov functions from the set of the positive definite
quadratic forms. Hereby, the choice of these functions
as the basis is argued by the guaranteed asymptotic
stability and the desired quality of processes under small
deviations from the zero equilibrium position. The
practical applicability and effectiveness of the proposed
method is illustrated with a controller design for a
convey-crane system. The advantage of the proposed
approach is determined by the main features of the
OD concept, which allow calculating the control action
with essentially reduced computational load that is very
significant for a real-time implementation of the feedback.

The paper is organized as follows. In Section 2,
the AQO-problem is posed and the numerical scheme
of its solution based on Bellman’s optimality principle
is discussed. Section 3 is devoted to the specific
features of Zubov’s OD-concept and its connection
with the exact solution of the AQO-problem. In
Section 4, a numerical method is constructed for an
approximate solution of the above-mentioned problem.
This one is realized as a solution to the corresponding
OD-problem. Section 5 presents a numerical example of
the application of the proposed method to design a control
law for a convey-crane system. Section 6 concludes
the presentation by discussing the overall results of this
research.

2. Affine-quadratic optimization problem

Consider an affine-control mathematical model of the
plant given by the ordinary time dependent nonlinear
differential equations of the form

ẋ = f(t ,x) + g(t ,x)u, (1)

where x ∈ En is the state vector and vector u ∈
Em implies a control action. Here, t ∈ [t0,∞), g :=
(g1 g2 . . . gm), f ,gi : En+1 → En, i = 1,m, the
functions f and gi are continuously differentiable for any
x and t. Let us assume that the plant (1) is controllable by
the vector u.

The main practical problem connected with the plant
(1) is to design a feedback control law (controller) of the
form

u = u0(t,x), (2)

providing a zero equilibrium position for the closed-loop
connection (1), (2) and stabilizing this position, taking
into account certain desirable requirements for the
performance of the dynamical processes. In addition,
for any t, x, the vector u of control actions must be
admissible, i.e., u0(t,x) ∈ U ⊆ Em, where the compact
set U is initially given for plant (1).

Remark 1. As is known, usually, feedback is composed
using the vector of real measurements. However, the
construction of the state controller (2) serves as a
mandatory composite stage of the dynamic feedback
synthesis based on asymptotic observers.

In the range of stabilizing properties, uniform
asymptotic stability (UAS) is usually sufficient;
nevertheless, this requirement can be strengthened
to global stability (UGAS) for some practical cases.

As for practical performance requests, these
questions are usually reflected in the form of certain
additional requirements to be satisfied by the controller
(2). In most cases, these requirements can be presented as
follows:

x(t,x0,u0(·)) ∈ X, ∀t ≥ t0, ∀x0 ∈ Br, ∀u0 ∈ U,
(3)

where the function x(t,x0,u0(·)) is the trajectory of plant
(1), closed by controller (2), under the initial condition
x(t0) = x0, Br ⊆ En (r-neighborhood of the origin).
Here, X is an admissible set for the closed-loop system
motion: any violation of its bounds is forbidden.

To discuss the aforementioned problem, it is
possible to use different methods of its mathematical
formalization. The approach consists in formulating
certain optimization problems, which are solved by the
choice of the controller (2).

Most often, numerous scientific publications
(Geering, 2007; Sepulchre et al., 1997; Zubov, 1978)
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flatly connect our impressions of the process performance
with values of the integral functionals of the form

J = J(u(·)) =
∞∫

t0

F0(t,x,u) dt. (4)

Here, the integrand F0 is positive definite, i.e.,

F0(t,x,u) ≥ 0, ∀t ≥ t0, ∀x ∈ Br, ∀u ∈ U. (5)

Note that its zero values occur if and only if x = 0 and
u = 0 simultaneously for any time t. It is assumed
that, for the closed-loop systems considered, the improper
integral in (4) converges.

Let us particularly note that the choice of the function
F0, as a rule, can be made informally based on an expert’s
opinions in a certain connection with the requirement (3).

A significant role is played by the partial case of the
functional (4) in the form

J = J(u(·)) =
∞∫

t0

(
xTQ(t)x+ uTR(t)u

)
dt (6)

with initially given matrices, where R(t) is symmetric
and positive-definite, and Q(t) is symmetric and positive
semi-definite (Geering, 2007).

Such a choice of the functional has an intuitively
clear meaning: the control process is much better when
the value of the functional (6) is smaller.

In this respect, the following affine-quadratic
optimization problem

J(u(·)) → min
u∈U

, uc0(t,x) = argmin
u∈U

J(u(·)), (7)

J0 := J(uc0(·))

occupies the main position, and numerous well-known
approaches are widely used for its practical solution. In
particular, consider certain varieties of Bellman’s dynamic
programming methodology (Lewis et al., 2012; Geering,
2007; Zubov, 1966). As is known, to provide a feedback
control design, it is necessary to carry out the following
steps:

Step 1. Given the system (1), the performance index (6)
and an admissible set U , form the HJB-equation

∂V (t,x)

∂t
+min

u∈U

{
∂V (t,x)

∂x
[f(t ,x) + g(t ,x)u]

+xTQ(t)x+ uTR(t)u
}
= 0, (8)

where the Bellman function V (t,x) is initially unknown.

Step 2. In accordance with (8), establish the connection
between a control u and the Bellman function V (t,x),

providing the minimum of the expression in the brackets:

u = ũ [t,x, V (t,x)]

= argmin
u∈U

{∂V (t,x)

∂x
[f(t ,x) + g(t ,x)u]

+ xTQ(t)x+ uTR(t)u
}

(9)

= argmin
u∈U

{
∂V (t,x)

∂x
g(t ,x)u+ uTR(t)u

}
.

Additionally supposing that ũ is an inner point of U , we
obtain

ũ [t,x, V (t,x)] = −1

2
R−1(t)gT (t,x)

(
∂V

∂x

)T

. (10)

Step 3. Substitute the obtained function ũ into (8), getting
as a result an HJB-equation, which is not weighed down
by the minimum search operation:

∂V

∂t
+
∂V

∂x
f(t,x)−1

4

∂V

∂x
g(t,x)R−1gT (t ,x)

(
∂V

∂x

)T

+ xTQx = 0. (11)

One can easily see that (11) is a routine PDE with
respect to the initially unknown function V (t,x).

Step 4. If the solution V = Ṽ (t,x) of this equation is
computed, and if function Ṽ is continuously differentiable
and satisfies the conditions Ṽ (t,0) = 0, ∀t ≥ t0,
Ṽ (∞,x) = 0 ∀x ∈ Br, then after substitution
V = Ṽ (t,x) into (10) obtain a desired solution to the
AQO-problem as follows:

u0(t,x) = −1

2
R−1(t)gT (t,x)

(
∂Ṽ (t ,x)

∂x

)T

. (12)

As for practical implementation of the mentioned
scheme, we may face two difficulties: first, a solution
process for the PDE (11) can be computationally too
expensive; second, the obtained feedback (12) can be too
complicated for a practical realization.

The aforementioned circumstances motivate us to
proceed to an approximate solution of the AQO-problem,
which can be implemented using the OD-concept. In
general, this allows reducing computational consumption,
and simplifying the control law.

3. Foundations of optimal damping control

Taking into account the presence of the difficulties
mentioned above, turn to an alternative approach to a
solution of the AQO-problem. This approach is based
on the concept of optimal transient processes damping,



8 E.I. Veremey

which was first proposed by Zubov (1962; 1966; 1978).
The essence of this concept is built upon the functional

L = L(t,x,u) = V (t,x) +

t∫

t0

F (τ,x,u) dτ, (13)

which is defined on the trajectories of the plant (1). This
functional is introduced to check the performance of the
closed-loop connection (1), (2).

Here, the scalar function V = V (t,x) can be used to
define a distance from the current state x of the plant (1) to
the origin. Let us assume that this function is continuously
differentiable and satisfies the conditions

α1(‖x‖) ≤ V (t,x) ≤ α2(‖x‖), (14)

∀t ≥ t0, ∀x ∈ Br, and for some functions α1, α2 ∈ K
(Khalil, 2002; Slotine and Li, 1991; Hahn and Baartz,
1967).

Note that the integral item in (13) determines
inherently a penalty for the closed-loop system with the
help of the additionally given function F connected with
the performance of the motion. Assume that this function
is positive definite in the sense of (5).

The problem of optimal damping (OD) with respect
to the functional (13) can be posed in the following form:

W = W (t,x,u) → min
u∈U

, (15)

u = ud(t,x) := argmin
u∈U

W (t,x,u),

where the function W defines a rate of the functional L
change in the motions of the plant (1) as follows:

W (t,x,u) :=
dL

dt

∣∣∣∣
(1)

=
dV

dt

∣∣∣∣
(1)

+ F (t,x,u)

=
∂V (t,x)

∂t
+

∂V (t,x)

∂x

[
f(t ,x)

+ g(t ,x)u
]
+ F(t,x,u).

(16)

It is clear that the solution

u = ud(t,x) (17)

of the OD-problem (15) determines a feedback control
(OD-controller) for the plant (1). Let us call the
corresponding closed-loop system (1), (17), having a zero
equilibrium, as a closed-loop OD-system.

Remark 2. The setting of the OD-problem for the
functional (13) of a general form and for an arbitrary
plant (1) is discussed in detail by Veremey and Sotnikova
(2019).

The optimal damping concept is based on the
following simple idea: the more rapidly the functional
(13) decreases based on the motions of the closed-loop
connection, the more significantly the process improves.

Let us particularly note that the computational
scheme of the OD-problem solution is considerably
simpler than the above presented dynamical programming
scheme for the AQO-problem. The main advantage
consists in the possibility to calculate the values of
u = ud(t,x) numerically, directly using the pointwise
minimization of the function W (t,x,u) with the choice
of u ∈ U for the current values of the variables t,x.

The aforementioned advantage is the first reason for
the OD-theory application to lessen computational load.
The second reason is determined by a coincidence of
the mentioned problem solutions under certain conditions,
which are determined by the following result.

Theorem 1. Let the function Ṽ (t,x) be a solution to
the HJB-equation (11) for the plant (1), and let there ex-
ist a unique optimal controller (12) with respect to the
AQO-problem discussed above. Then this controller is
simultaneously a solution to the OD-problem (15) with
respect to the functional (13), where V (t,x) ≡ Ṽ (t,x),
F (t,x,u) = xTQ(t)x+ uTR(t)u.

Proof. This statement is a particular case of the
corresponding Zubov (1962; 1966; 1978) theorem on a
connection between the two problems. Nevertheless, let
us prove the theorem, using its simple setting.

The functional (13) to be damped takes the form

L(t,x,u) ≡ Ṽ (t,x) +

t∫

t0

[
xT (τ)Q(τ)x(τ) (18)

+ uT (τ)R(τ)u(τ)
]
dτ.

Then, in accordance with (16), we arrive at the equality

W (t,x,u) =
dL

dt

∣∣∣∣
(1)

=
∂Ṽ (t,x)

∂t
+

∂Ṽ (t,x)

∂x
[f(t ,x) + g(t ,x)u]

+ xTQ(t)x+ uTR(t)u.

Assuming that the values of variables t and x are
fixed, we obtain

u = ud(t,x) := argmin
u∈U

W (t,x,u)

= argmin
u∈U

{
∂Ṽ (t,x)

∂x
g(t ,x)u+ uTR(t)u

}
.

From the last equality, by analogy with (9) and (10),
we obtain the OD-optimal controller

ud(t,x) = −1

2
R−1(t)gT (t,x)

(
∂Ṽ (t ,x)

∂x

)T

, (19)
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which coincides with (12), i.e., ud(t,x) ≡ u0(t,x). �

Let us particularly note that Theorem 1 formally
reduces the AQO-problem to a solution of an essentially
simpler OD-problem. However, it is natural that the
direct utilization of such a transformation has no practical
sense, since we need to have a solution Ṽ (t,x) of the
HJB-equation (11) to formulate the OD-problem; but
the solution of the HJB-equation is the essence of the
AQO-problem.

Nevertheless, this fundamental feature can be used
both for theoretical investigations, and for construction of
computational methods. For example, the aforementioned
coincidence was applied by Zubov (1962; 1966; 1978) for
the minimum-time problem solution carried out with the
help of OD-theory.

Next, let us assume that the exact solution Ṽ (t,x) of
the HJB-equation (11) is not known, but we have some
approximation V (t,x) of this function. One of the most
convenient variants of the choice of V is its representation
by the positive definite quadratic form

V (t,x) = xTP(t)x (20)

with a symmetric matrix P(t) .
Consider the OD-problem (15) with the functional

L(t,x,u)

= xTP(t)x+

t∫

t0

[
xT (τ)Q(τ)x(τ)

+ uT (τ)R(τ)u(τ)
]
dτ (21)

to be damped. The rate function W for this case has the
following form:

W = W (t,x,u) =
dL

dt

∣∣∣∣
(1)

(22)

=
(
ẋTPx+ xTPẋ+ xT Ṗx

)
(1)

+ xTQx

+ uTRu = fTPx+ xTPf + xT Ṗx

+ 2xTPgu+ xTQx+ uTRu.

Supposing that the extreme is achieved at an interior
point of U , we obtain with necessity

dW (t,x,u)

du
= 2uTR+ 2xTPg = 0

⇔ Ru+ gTPx = 0, (23)

which gives us the following expression for the
OD-optimal controller:

u = ud(t,x) = −R−1(t)gT (t ,x)P(t)x. (24)

Note that, in contrast to the exact solution (19), the
controller (24) does not guarantee the stability of the

origin for the closed-loop connection (1), (24). In other
words, not for all matrices P and R this system is stable.

To discuss this question in detail, recall (Khalil,
2002; Slotine and Li, 1991; Hahn and Baartz, 1967) that,
if the conditions (14) hold for some function V (t,x), and
if we have

min
u∈U

[
dV (t,x,u)

dt

]
(1)

+ α3(‖x‖) ≤ 0,

∀t ≥ t0, ∀x ∈ Br, (25)

where α3 ∈ K , then this function is said to be a local
control Lyapunov function (local CLF) for the plant (1).

It is known that if the CLF for the system exists,
then this system is uniformly asymptotically stabilizable
(UGAS or UAS) (Slotine and Li, 1991).

Evidently, any choice of the function V for the
functional (13) to be damped should be treated as a
choice of the Lyapunov function candidate. Moreover, the
following statement gives a concrete expression for this
choice.

Theorem 2. Let the condition

Wd0(t,x) := W (t,x,ud(t,x)) ≤ −α4(‖x‖),
∀t ≥ t0, ∀x ∈ Br (26)

hold for the feedback control (24), where α4 ∈ K . Then
the function V (t,x) = xTP(t)x is the CLF for the plant
(1), and the zero equilibrium for the closed-loop system
(1), (24) is locally uniformly asymptotically stable, i.e.,
the feedback (24) serves as a stabilizing controller for the
plant (1).

Proof. Assume that the condition (26) holds for controller
(24), i.e., we have

W (t,x,ud(t,x))

= min
u∈U

W (t,x,u)

= min
u∈U

[
dV

dt

∣∣∣∣
(1)

+ xTQx+ uTRu

]
(27)

≥ min
u∈U

[
dV (t,x,u)

dt

]
(1)

+min
u∈U

(
xTQx+ uTRu

)

≤ −α4(‖x‖).
Since −(xTQx+ uTRu) ≤ 0 , in accordance with

(27), we obtain

min
u∈U

[
dV (t,x,u)

dt

]
(1)

≤ −α4(‖x‖)−min
u∈U

(
xTQx+ uTRu

)

≤ −α4(‖x‖),
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which corresponds to the definition of the local CLF V for
the plant (1).

We can additionally note that, in accordance with
(22) and based on (26), we have

W̃d(t,x) := min
u∈U

[
dV (t,x,u)

dt

]
(1),u=ud(t,x)

= fTPx+ xTPf

+ xT Ṗx+ 2xTPgud

≤ −α4(‖x‖)− (xTQx+ uT
d Pud )

≤ −α4(‖x‖).

This means (Slotine and Li, 1991) that the zero
equilibrium point of the closed-loop system (1), (24) is
UAS, i.e., (24) is a stabilizing controller for the plant (1).

�

Remark 3. If all the mentioned conditions of Theorem 2
are fulfilled for the whole space, i.e., if Br = En, U =
Em, and if all the aforementioned above functionsαi, i =
1, 4, belong to the class K∞, then the zero equilibrium
point for the closed-loop system is globally uniformly
asymptotically stable (UGAS) (Khalil, 2002; Slotine and
Li, 1991).

4. Approximate optimal control design

As can be seen from the reasoning presented above,
the choice of the matrices Q and R in (6) for the
AQO-problem uniquely determines the function V = Ṽ
as a solution to the HJB-equation (11). If this function is
used together with the function F (t,x,u) ≡ xTQ(t)x+
uTR(t)u for the functional (13) in the OD-problem (15),
then the OD-controller u = ud(t,x) provides the same
optimal value J = J0 as the AQO-controller u =
u0(t,x).

However, if some function V �≡ Ṽ is used
in (13) instead of Ṽ (t,x), keeping the identity
F (t,x,u) ≡ xTQ(t)x + uTR(t)u, then the
corresponding OD-controller (24) is not a solution to the
AQO-problem, i.e., this controller provides a value J ≥
J0 of the performance index (6).

In that case, solving the OD-problem (15) for
different functions V , one could ask a question about the
choice of the function V to approximate the HJB-solution
Ṽ (t,x) in the best way. Here, the OD-problem can be
treated as an instrument for dragging the function V to the
mentioned optimal solution Ṽ , yielding the convergence
J → J0 .

As noted above, this idea is justified only for
a situation when a direct AQO-problem solution is
connected with the above-mentioned difficulties: either
solution of the PDE (11) is too expensive computationally,

or the AQO-controller (12) is not convenient for a
practical realization.

The aforementioned circumstances motivate
us to proceed to an approximate solution of the
AQO-problem, which can be put into practice using
the OD-concept. In general, this allows reducing
computational consumptions, and simplifying the control
law.

To construct a specialized method of synthesis,
consider the AQO-problem (7) with the functional (6),
which is defined on the trajectories of the closed-loop
system (1), (2).

As mentioned above, this problem is equivalent to
the OD-problem of the form (15) with respect to the
functional (18), where the function Ṽ (t,x) is a solution
to the HJB-equation (11).

The choice of the aforementioned approximation
can be realized as a solution to the corresponding
OD-problem. For this purpose, let us consider the
space 0 of continuously differentiable functions V (t,x)
satisfying the conditions (14).

Given the function V ∗(t,x), solve the OD-problem
(15), deriving the OD-controlleru∗

d(t,x) := ud(t,x, V
∗).

Since this controller is not AQO-optimal, we obtain

J∗ := J(V ∗) (28)

:= J (ud(t,x, V
∗)) ≥ J (u0(t,x)) = J0.

If the obtained controller satisfies the conditions of
Theorem 2 and if

ΔJ =
J∗ − J0

J0
≤ εJ (29)

for a given value εJ of the admissible functional J
degradation, then the controller u = u∗

d(t,x) can be
accepted as an approximate solution for the problem (15).
Note that its approximation quality is interpreted as in
(29).

Continuing this line of reasoning, it is natural to
apply an optimization approach to construct the function
V ∗. Actually, formulate the minimization problem

J = J(V ) := J(ud(t,x, V )) → inf
V ∈�0

, (30)

such that numerical methods of its solution generate the
minimizing sequence {Vk(t,x)} ∈ 0. It is obvious
that the above-mentioned function V ∗ should be searched
among the elements of the specified sequence.

Consider the set of positive definite quadratic forms
(20) as 0: it is known that all the functions V (t,x) =
xTP(t)x satisfy the conditions (14) for any symmetrical
matrix P ≥ 0.

In many practical situations, it is convenient to
narrow this set by introducing its certain parameterization.
To this end, one should fix a structure of the functions V ,
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extracting the vector h ∈ Ep of parameters to be varied:
V = V (t,x,h). It is supposed that parameterization is
done such that

h ∈ Hv ⊂ Ep ⇒ V (t,x,h) ∈ 0, (31)

where Hv is a compact set.
Note that there are no formalized suggestions for

accepting the vector h ∈ Ep . However, in most
cases, this vector should include diagonal components of
the matrix P (possibly, their common multiplier), which
significantly affect the magnitude of the components of
the control signals. This allows us to influence energy
consumptions in the control processes.

By analogy with (30), it is now possible to pose the
optimization problem so that its solution with respect to h
results in an approximate optimal controller.

Given the initial conditions x(t0) = x0 ∈ Br for the
plant (1), consider the following computational steps

Step 1. Set the vector h ∈ Hv ⊂ Ep of tunable
parameters.

Step 2. Specify the function V (t,x,h) = xTP(t ,h)x.

Step 3. Solve the OD-problem with the following
functional to be damped:

L(t,x,u,h) = xTP(t ,h)x+

t∫

t0

[
xT (τ)Q(τ)x(τ)

+ uT (τ)R(τ)u(τ)
]
dτ ; (32)

this gives the OD-controller

u = ud(t,x,h) = −R−1(t)gT (t ,x)P(t ,h)x.

Step 4. From the equations of the closed-loop system,

ẋ = f(t ,x) + g(t ,x)ud(t,x,h). (33)

Step 5. Solve the Cauchy problem for the system (33)
with the given initial conditions x(t0) = x0 that result in
the motion xd(t,h).

Step 6. Specify the function

ũd(t,h) = ud(t,xd(t,h),h).

Step 7. Calculate the value of the function Jd(h)
determined by the expression

Jd = Jd(h)

=

∞∫

t0

(
xT
d (t,h)Q(t)xd(t,h) (34)

+ũT
d (t,h)R(t)ũd(t,h)

)
dt.

Step 8. Minimize the function Jd(h) on the set Hv , i.e.,
solve the problem

Jd = Jd(h) → min
h∈Hv

, hd := arg min
h∈Hv

Jd(h), (35)

Jd0 := Jd(hd),

repeating Steps 1–7 of this scheme.
The solution h = hd of the problem (35) allows us

to construct the following approximation of the Bellman
function:

V ∗(t,x) = xTP(t ,hd )x. (36)

Correspondingly, the control law

u = ud(t,x,hd)

= −R−1(t)gT (t ,x)P(t ,hd)x
(37)

represents the approximate optimal controller for the
initial AQO-problem.

If the optimal value J0 is known, one can estimate the
following measure of the functional J degradation due to
the approximate solution

ΔJ =
Jd0 − J0

J0
≤ εJ . (38)

Let us formulate certain recommendations for a
practical solution of the optimization problem (35). If
the dimension of the vector h is not large, it is possible
to enumerate possibilities on the finite net Hfv ⊂ Hv .
However, in any case, any modern method can be applied
to provide finite-dimensional minimization.

To consider the computational advantages of the
presented scheme in comparison with the existing
methods, note that dynamic programming and the model
predictive control (MPC) can be interpreted as nearest
alternative directions. Both of them are quite popular
when considering the AOC-problem.

As noted above, the exact implementation of the first
direction is supposed to be either unacceptable or not
convenient for practical use. To solve the HJB-equation
(11), it is necessary to use approximate numerical
methods with a significant amount of computations.
The proposed computational scheme is free from these
drawbacks. The most complicated computational
operation here is to solve the finite-dimensional problem
(35). The situation is simplified cardinally if tunable
vectors h are of small dimensions, where we can use an
enumeration of possibilities on a finite net.

As for the MPC-approach, its most significant
disadvantage is the large dimension of the minimization
problem that is solved at each step of the control
process. The larger the prediction horizon and the
higher the accuracy, the greater this dimension. There
is no aforementioned difficulty in the framework of the
OD-approach. This determines the advantage of the
proposed scheme.
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Publications using approximate methods to solve
the HJB-equation hold a special position. For example,
Lukes (1969) uses a power series representation of a
solution. Nevertheless, the approximation, which is
directly based on the value of the functional, seems to be
more natural and effective in comparison with using the
direct approximate solution of the HJB-equation (11).

5. Practical example of approximate
synthesis

Based on the results of the approximate synthesis
presented above, consider a specification of the proposed
approach to design control laws of a convey-crane, which
transports a load suspended from a cart while minimizing
the oscillations of the load. The mathematical model
of the crane and the examples of the traditional control
laws are taken after Fantoni and Lozano (2002) as well
as Collado et al. (2000). A more detailed model of the
convey-crane system is presented by Aguilar-Ibanez and
Suarez-Castanon (2019).

As a controlled plant, consider the convey-crane
system with the simplified scheme presented in Fig. 1.
This system consists of the cart with mass M of the
pendulum and the load of the crane with mass m. The
angle between the pendulum and the vertical axis will be
denoted by θ, while the parameter l represents the length
of the rod.

Using the notation

q :=

(
x
θ

)
,

M(q) :=

(
M +m −ml cos θ
−ml cos θ ml2

)
,

C(q, q̇) :=

(
0 ml sin θθ̇
0 0

)
,

G(q) :=

(
0

mgl sin θ

)
,

τ :=

(
u
0

)
,

we can present the system dynamics with the equation

M(q)q̈+C(q, q̇)q̇ +G(q) = τ, (39)

where x is the longitudinal displacement of the cart, g
is the acceleration due to gravity, u is the control action,
defined by the longitudinal force applied to the cart. Here
matrix M(q) is symmetric and positive definite. It is
obvious that Eqn. (39) can be converted to

q̈ = M−1(q) [−C(q, q̇)q̇−G(q) + τ ] , (40)

where

M−1(q) =
1

ΔM (q)

(
ml2 ml cos θ

ml cos θ M +m

)
,

M

0 x
l θ

m

Fig. 1. Convey-crane simplified scheme.

ΔM (q) := det(M−1(q))

= Mml2 +m2l2 sin2 θ > 0.

Next, Eqn. (40) can be rewritten in the following
scalar form:

ẍ =
1

M +m sin2 θ

[
u−m sin θ(lθ̇2 + g cos θ)

]
, (41)

θ̈ =
1

l(M +m sin2 θ)

×
[
− sin θ

(
(M +m)g +ml cos θθ̇2

)

+ cos θu
]
.

Introducing the new notation

x1 := ẋ, x2 := x, x3 := θ̇, x4 = θ,

x = (x1 x2 x3 x4)
T ∈ E4,

we can present (41) as a mathematical model of the
following autonomous affine control system:

ẋ = f0(x) + f0(x)u, (42)

where

f0(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−m sinx4

(
lx2

3 + g cosx4

)
M +m sin2 x4

x1

− sinx4

(
(M +m)g +ml cosx4x

2
3

)
l(M +m sin2 x4)

x3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

g0(x) =

⎛
⎜⎜⎜⎜⎜⎝

1

M +m sin2 x4
0
1

l(M +m sin2 x4)
0

⎞
⎟⎟⎟⎟⎟⎠

.
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For a numerical example, set the following values of
the parameters:

M = 1 kg, m = 1 kg, l = 1 m, g = 9.8 m/s2.

Next, let us introduce the integral quadratic
functional

J =

∞∫

0

(
xTQ0x+ r20u

2
)
dt, (43)

which is given on the trajectories of the controlled plant
(42), where

Q0 :=

⎛
⎜⎜⎝
0.350 0 0 0
0 0.200 0 0
0 0 1.65 0
0 0 0 1.90

⎞
⎟⎟⎠ , r20 = 0.01.

Given Eqn. (42) and the functional (43), it is possible
to formulate the following affine-quadratic optimization
problem:

J(u(·)) → min
u∈E1

, uc0(x) = arg min
u∈E1

J(u(·)), (44)

J0 := J(uc0(·))
to synthesize the nonlinear autonomous controller

u = uc0(x), (45)

which stabilizes the plant (42) and minimizes the
functional (43).

From the physical point of view, this AQO-problem
corresponds to the synthesis of the controller returning the
cart and the pendulum into a zero equilibrium position
with the maximum suppression of oscillations.

Believing that a direct solution to this problem is too
complicated, resort to OD-theory in accordance with the
proposed approach.

The OD-problem associated with (44) can be posed
as follows:

W = W (x, u) → min
u∈E1

, (46)

u = ud(x) := arg min
u∈E1

W (x, u),

W = W (x, u) :=
dL

dt

∣∣∣
(42)

, (47)

L = L(t,x, u)

= V (x) +

t∫

0

(
xTQ0x+ r20u

2
)
dτ,

(48)

V = V (x,h) = xTP(h)x. (49)

Here, the matrix P (h) is positive definite for any
vector h ∈ Hv ⊂ Ep , where Hv is a compact set.

It is a matter of simple calculations to verify that the
OD-controller for problem (46) has the following form:

u = ud(x,h) = − 1

r20
gT
0 (x)P(h)x. (50)

To specify the matrix P (h), apply a special
procedure.

First, it is possible to linearize the system (42) in the
neighborhood of the origin. As a result, we obtain

ẋ = Amx+ bmu, (51)

where

f0(x) =

⎛
⎜⎜⎝
0 0 0 −mg/M
1 0 0 0
0 0 0 −(M +m)g/(lM)
1 0 1 0

⎞
⎟⎟⎠ ,

bm =

⎛
⎜⎜⎝

1/M
0

1/(lM)
0

⎞
⎟⎟⎠ .

Based on the system (51), consider the following
algebraic Riccati equation:

SAm +AT
mS− Sbmr−1

m bT
mS+Qm = 0, (52)

where

Qm :=

⎛
⎜⎜⎝
0.350 0 0 0
0 0.200 0 0
0 0 h2

2 0
0 0 0 1.90

⎞
⎟⎟⎠ , rm = h2

1.

Note that the selection of the parameter values was
realized by the trial and error approach. In this case, the
parameter h1 affects the rate of the angle theta change,
and the parameter h2 affects the intensity of the control
action.

The solution S = S(h) of this equation is a function
of the vector h = (h1 h2)

T ∈ E2. Note that the matrix
S(h) is symmetric and positive definite: this allows us to
a set P(h) ≡ S(h), i.e., the OD-controller (50) takes the
form

u = ud(x,h) = − 1

r20
gT
0 (x)S(h)x. (53)

Let us also introduce an admissible box

Hv =
{
h = (h1 h2)

T ∈ E2 :

0.100 ≤ h1 ≤ 0.140, (54)

1.00 ≤ h2 ≤ 1.80} ,

for the vector h of tunable parameters.
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Next, it is possible to specify the function

Jd = Jd(h) (55)

=

∞∫

0

(
xT (t,h)Q0x(t,h) + r20u

2(t,h)
)
dt,

where x(t,h) and u(t,h) represent the motion of
the closed-loop connection (42), (53) under the initial
conditions x(0) = x0 = (0 − 5 0 − π/4)T . Note
that these conditions are taken after Fantoni and Lozano
(2002).

Solving the following optimization problem:

Jd = Jd(h) → min
h∈Hv

, hd := arg min
h∈Hv

Jd(h), (56)

Jd0 := Jd(hd),

we obtain the best vectorhd = (0.130 1.55)T of tunable
parameters. A solution to the problem (56) is found by
minimizing on a finite net covering the admissible box
Hv. The obtained vector determines the approximate
optimal controller for initial AQO-problem as follows:

u = ud0(x) (57)

:= ud(x,hd) (58)

= − 1

r20
gT
0 (x)S(hd)x

with the matrix

S(hd) =

⎛
⎜⎜⎝

0.625 0.499 −0.473 1.31
0.499 0.971 −0.390 0.665
−0.473 −0.390 0.577 −0.884
1.31 0.665 −0.884 9.28

⎞
⎟⎟⎠ .

Figure 2 represents the transient process for the
closed-loop system (42), (57) under the aforementioned
initial conditions x0, providing the value Jd0 :=
Jd(hd) = 28.0 of the minimized functional (43).

For comparison, Fig. 3 shows a similar process
provided by the controller

u = uf(x) = (−4.30 − 3.00 0 0)x, (59)

which was proposed by Fantoni and Lozano (2002): this
controller gives the value Jf = 42.9 for the functional
(43). Note that for the presented example the energetic
costs for both controllers are almost identical.

One can easily see that the OD-controller (57)
provides a much higher quality for the control process
than the PD-controller (59). This can be explained by the
fact that the energy approach used by Fantoni and Lozano
(2002) is initially focused on ensuring stability, but not on
control quality.
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Fig. 2. Transient process for the controller (57).
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Fig. 3. Transient process for the controller (59).

6. Conclusions

This work aimed at discussing some questions connected
with stabilizing controller synthesis for affine-control
nonlinear and nonautonomous plants. Such dynamic
plants are widely used in numerous areas of human
activities: as a rule, these plants have controlled inputs
and require the use of automatic controllers.

One of the commonly used approaches to design
control laws for the affine plant is based on the
AQO-problem, which consists of integral-quadratic
functional minimization. The well-known method to
find the corresponding optimal controller is based on
Bellman’s principle. Nevertheless, its application can
be essentially hampered by the large computational load
connected with a solution of the HJB-equations and with
a practical realization of the optimal controllers.

As an alternative, it is proposed to employ a different
approach based on Zubov’s (1962; 1966; 1978) concept
of optimal damping. It is shown that the exact solutions
to the aforementioned problems coincide under certain
conditions. This coincidence allows us to construct the
method of an approximate solution to the AQO-problem,
which can be implemented using OD-theory, which
reduces the computational load and simplifies the control
law.

In the framework of the proposed method, an
approximate optimal controller is designed as the
OD-controller with respect to the specific functional to be
damped. The choice of this functional can be realized as
a solution to the special auxiliary optimization problem.
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Finally, applicability and effectiveness of the
proposed method is illustrated with a practical example
of a controller design for a convey-crane system, which
transports a load suspended from a cart minimizing the
oscillations of the load.

The results of the above research could be expanded
to include robust features of the optimal damping
controller, and to take into account transport delays
in both the input and the output of a controlled
plant. It is intended to apply the obtained results for
studies which are intensively carried out in the range
of multipurpose control of marine vehicles (Vermey,
2019; 2017; Sotnikova and Veremey, 2013; Vermey and
Sotnikova, 2019). Special attention is supposed to be paid
to reinforcement learning methods.

Acknowledgment

This work was supported by the Russian Foundation
for Basic Research (RFBR) (research project no.
20-07-00531), supervised by the Government of the
Russian Federation.

References
Aguilar-Ibanez, C. and Suarez-Castanon, M.S. (2019). A

trajectory planning based controller to regulate an
uncertain overhead crane system, International Jour-
nal of Applied Mathematics and Computer Science
29(4): 693–702, DOI: 10.2478/amcs-2019-0051.

Balakrishnan, A. (1966). On the controllability of a nonlinear
system, Proceedings of the National Academy of Sciences
of the USA 55(3): 465–468.

Collado, J., Lozano, R. and Fantoni, I. (2000). Control
of convey-crane based on passivity, Proceedings of the
American Control Conference, ACC 2000, Chicago, USA,
pp. 1260–1264.

Do, K. and Pan, J. (2009). Control of Ships and Underwater
Vehicles. Design for Underactuated and Nonlinear Marine
Systems, Springer-Verlag, London.

Fantoni, I. and Lozano, R. (2002). Non-linear Control
for Underactuated Mechanical Systems, Springer-Verlag,
London.

Fossen, T.I. (1994). Guidance and Control of Ocean Vehicles,
John Wiley and Sons, New York.

Geering, H.P. (2007). Optimal Control with Engineering Appli-
cations, Springer-Verlag, Berlin/Heidelberg.

Hahn, W. and Baartz, A.P. (1967). Stability of Motion, Springer,
London.

Khalil, H. (2002). Nonlinear Systems, Prentice-Hall, Englewood
Cliffs.

Lewis, F.L., Vrabie, D.L. and Syrmos, V.L. (2012). Optimal
Control, John Wiley and Sons, Hoboken.

Lukes, D.L. (1969). Optimal regulation of nonlinear dynamic
systems, SIAM Journal on Control and Optimization
7(1): 75–100.

Sepulchre, R., Jankovic, M. and Kokotovic, P. (1997). Construc-
tive Nonlinear Control, Springer, New York.

Slotine, J. and Li, W. (1991). Applied Nonlinear Control,
Prentice-Hall, Englewood Cliffs.

Sontag, E.D. (1998). Mathematical Control Theory: Determin-
istic Finite Dimensional Systems, 2nd Edition, Springer,
New York.

Sotnikova, M.V. and Veremey, E.I. (2013). Dynamic positioning
based on nonlinear MPC, IFAC Proceedings Volumes
9(1): 31–36.

Veremey, E.I. (2017). Separate filtering correction of
observer-based marine positioning control laws, Interna-
tional Journal of Control 90(8): 1561–1575.

Veremey, E.I. (2019). Special spectral approach to solutions of
SISO LTI h-optimization problems, International Journal
of Automation and Computing 16(1): 112–128.

Veremey, E.I. and Sotnikova, M.V. (2019). Optimization
approach to guidance and control of marine vehicles, WIT
Transactions on the Built Environment 187(1): 45–56.

Wasilewski, M., Pisarski, D., Konowrocki, R. and Bayer, C.I.
(2019). A new efficient adaptive control of torsional
vibrations induced by switched nonlinear disturbances, In-
ternational Journal of Applied Mathematics and Computer
Science 29(2): 285–303, DOI: 10.2478/amcs-2019-0021.

Zubov, V.I. (1962). Oscillations in Nonlinear and Controlled
Systems, Sudpromgiz, Leningrad, (in Russian).

Zubov, V.I. (1966). Theory of Optimal Control of Ships
and Other Moving Objects, Sudpromgiz, Leningrad, (in
Russian).
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