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The constrained regulation problem (CRP) for fractional-order nonlinear continuous-time systems is investigated. New
existence conditions of a linear feedback control law for a class of fractional-order nonlinear continuous-time systems un-
der constraints are proposed. A computation method for solving the CRP for fractional-order nonlinear systems is also
presented. Using the comparison principle and positively invariant set theory, conditions guaranteeing positive invariance
of a polyhedron for fractional-order nonlinear systems are established. A linear feedback controller model and the corre-
sponding algorithm of the CRP for fractional nonlinear systems are also proposed by using the obtained conditions. The
presented model of the CRP is formulated as a linear programming problem, which can be easily implemented from a
computational point of view. Numerical examples illustrate the proposed method.
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1. Introduction

Fractional order calculus and fractional differential
equations appear in many fields, including science
and engineering (Ma et al., 2019; Karthikeyan et al.,
2017; Yepez-Martinez and Gomez-Aguilar, 2018). They
have been more and more often applied to real-world
engineering problems such as mechanical systems,
signal processing and systems identification, control and
robotics and so on; for more applications, refer to the
works of Zhao et al. (2017) or Dastjerdi et al. (2019) and
the references therein.

The problem of stability analysis and control
synthesis of fractional-order systems is important in
theory and applications. Many stability conditions
have been proposed for fractional-order linear systems
(Kaczorek, 2018; Song and Zhen, 2013; Jiao et al., 2013;

∗Corresponding author

Chen et al., 2015; Ammour et al., 2015), fractional-order
nonlinear systems (Li et al., 2010; Fernandez-Anaya
et al., 2016; Kaczorek, 2019), fractional-order neural
networks (Zhang et al., 2017; 2015b), fractional-order
switched linear systems (Balochian, 2015; Hao and Jiang,
2016), fractional-order singular systems (Yin et al.,
2015; Liu et al., 2016), positive fractional-order systems
(Kaczorek, 2010; Shen and Lam, 2016; Yang and Jia,
2019; Si and Yang, 2021) and fractional-order chaotic
complex networks systems (Zhang et al., 2016).

On the other hand, the control input, the state and/or
the output variables have to be bounded in practice either
for safety reasons or because of physical limitations. The
most realistic representation of these limitations is by
considering hard constraints on these variables. New
stability conditions and methods of controller synthesis to
ensure the stability performance of the resulting system
under constraints, which is called the constraint regulation
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problem (CRP for brevity), are interesting topics in
fractional-order systems theory and applications.

In recent years, more attention has been paid to the
design of state feedback controllers for fractional order
nonlinear systems (Lenka and Banerjee, 2016; Zhang
et al., 2015a; Wang et al., 2016). Common methods
to derive the stability conditions for nonlinear systems
are mainly based on the Laplace transform (Lenka
and Banerjee, 2016), Mittag-Leffler functions (Zhang
et al., 2015a) and the Bellman–Gronwall inequality
(Wang et al., 2016). In those methods, linear matrix
inequalities (LMIs) play an important role. In the works of
Wang et al. (2014), Martinezfuentes and Martinezguerra
(2018) or Li et al. (2019), stability and stabilization of
fractional order nonlinear systems are studied via the
comparison principle. Benzaouia et al. (2014) propose
a linear programming method to determine stability and
to find a linear feedback controller under state and
control constraints. It is an interesting and appealing
method from the computational point of view in that
linear programming can be performed readily using any
mathematical software.

Based on the above observations and background,
research on the CRP for fractional order nonlinear
continuous systems is not only necessary, but also more
challenging than that on integer order systems. Motivated
by methods of Wang et al. (2014), Martinezfuentes
and Martinezguerra (2018), Li et al. (2019), Benzaouia
et al. (2014) or Yang and Hu (2020), the CRP for
a class of fractional order nonlinear continuous-time
systems is studied in this paper. Our main contribution
consists in establishing new conditions on the positive
invariance of a polyhedron for fractional order nonlinear
systems considered through the comparison principle
and positively invariant set theory; a model and the
corresponding algorithm of a linear feedback controller
for the CRP of fractional order nonlinear systems are also
proposed. Numerical examples show that our method is
effective.

The paper is organized as follows. Section 2
gives some preliminaries and the problem formulation.
Positively invariant sets and existence conditions of a
controller for the fractional order nonlinear systems
considered is investigated in Section 3; we also propose
a new method to find the comparison system for the
fractional order system. By virtue of the comparison
system, the CRP for the fractional nonlinear systems
considered is formulated as a linear programming one in
Section 4, which can be easily implemented because of
its intrinsic quality. Section 5 presents two numerical
examples to illustrate the method proposed in this paper.
Section 6 contains conclusions and future research topics.

Notation. Rn is the n dimensional space of real vectors,
R

n×n is the space of n×n matrices with real entries. For

ρ ∈ R
n, ρ > 0 (resp. ρ ≥ 0) means all components

of ρ are positive (nonnegative). Mn is the set of Metzler
matrices with their off-diagonal elements nonnegative;
rank(A) denotes the rank of the matrix A.

2. Preliminaries and problem formulation

In this section, some definitions and lemmas are presented
for fractional-order nonlinear dynamical systems.

2.1. Class of fractional-order nonlinear continuous-
time systems. Consider the following class of
fractional-order nonlinear continuous-time systems:{

0D
α
t x(t) = Ax(t) +Bu(t) + f(x(t)), t > 0,

x(t) = x0, −∞ < t ≤ 0,

(1)
where 0 < α < 1, x(0) = x0, x(t) ∈ R

n , u(t) ∈ R
m is

the pseudo state and control input, respectively, f(x(t)) ∈
R

n is a continuous function such that f(0) = 0, A ∈
R

n×n, B ∈ R
n×m. Throughout the paper, we assume that

the system (1) satisfies the conditions of solution existence
and has a unique solution with the given initial condition
x(0).

Definition 1. The expression 0D
α
t x(t) represents

the Riemann–Liouville fractional-order derivative of x(t)
defined by

0D
α
t x(t) =

1

Γ(1 − α)

d

dt

( ∫ t

0

x(τ)

(t− τ)α
dτ
)
, (2)

where 0 < α < 1 is the order of the fractional derivative,
while the Gamma function is defined by

Γ(z) =

∫ ∞

0

e−ttz−1 dt, Re(z) ∈ R+.

Definition 2. A nonempty set P ⊆ R
n is a positive in-

variant set of the system (1) if and only if x0 ∈ P implies
x(t; 0, x0) ∈ P, t > 0, where x(t; 0, x0) is the trajectory
of the system with the initial conditions (0, x0).

Definition 3. (Athanasopoulos et al., 2010) A function
h(y), h : Rm → R

m is said to be monotone nondecreas-
ing if all of its components are nondecreasing with respect
to all the components of the vector y.

2.2. Constrained regulation problem. In practice, the
control input, the state and/or the output variables have
to be bounded by considering hard constraints on these
variables. For the fractional-order nonlinear system (1),
suppose that the initial state x0 belongs to the polyhedral
set defined by

P (Q, ρ) = {x0 ∈ R
n : Qx0 ≤ ρ}, (3)
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where Q ∈ R
q×n with rank(Q) = n, q ≥ n, and

ρ > 0. The state constraints x(t) are constituted by the
polyhedral set

P (M, c) = {x(t) ∈ R
n :Mx(t) ≤ c}, (4)

where M ∈ R
s×n with rank(M) = n, s ≥ n, and c > 0.

Suppose that the control input u(t) is subject to linear
constraints of the form

− ω ≤ u(t) ≤ ω, (5)

where ω and ω are real vectors with positive components.
If there exists a state feedback control law K and an input
u(t) = Kx(t) for the system (1), let A = A + BK; then
the system (1) becomes{

0D
α
t x(t) = Ax(t) + f(x(t)), t > 0,

x(t) = x0, −∞ < t ≤ 0,
(6)

where 0 < α < 1, x(0) = x0.

Remark 1. Information of x(t) at t = 0 is not
sufficient to predict the future behavior of the system. The
description of (1) and (6) is thus not strictly a state-space
description and is termed a pseudo state-space (Sabatier
et al., 2013). Under the condition of x(t) = ϕ(t) for
t ∈ (−∞, 0], the solution of the system (6) is given by

x(t) = −
∫ t

0

eA(t−τ)
α ψ(x, α,−∞, 0, τ) dτ

+

∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(x(τ)) dτ.

It was demonstrated by Sabatier et al. (2013) with
a counterexample (Sabatier et al., 2010) that Caputo’s
definition does not permit one to obtain the pseudo
trajectories of the exact system if an initial condition such
as x(t0) = x0, t0 > 0 is taken into account in (1) and (6).
We study the system (6) with a constant history, that is,
x(t) = x0 for t ∈ (−∞, 0], for which the initialization
function is given by (Lim and Ahn, 2013)

ψ(x, α,−∞, 0, τ) = − x0t
−α

Γ(1− α)
.

Thus, the solution of (6) is given by

x(t) = Eα(At
α)x0

+

∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(x(τ)) dτ.

The constrained regulation problem of
fractional-order nonlinear continuous-time system
(1) consists in determining a state feedback control law
K and an input u(t) = Kx(t) such that, for all the initial
states x0 satisfying the inequality (3), the system (6) is
asymptotically stable, while the corresponding trajectory
x(t; 0, x0) of (6) does not violate the state constraint (4)
as well as the control input constraint (5) for any t ≥ 0.

3. Positively invariant sets and the existence
condition for a controller

In this section, conditions guaranteeing the positive
invariance of a polyhedron for fractional-order nonlinear
systems and the existence conditions for a constrained
controller are investigated by means of the comparison
principle and positively invariant set theory.

3.1. Positively invariant sets of a fractional-order
nonlinear system. Consider a continuous vector-valued
function v(x) : Rn → R

q and a monotone nondecreasing
function h(y) : Rq → R

q such that

0D
α
t v(x(t)) = v(Ax(t) + f(x(t))) ≤ h(v(x(t))). (7)

Then the system

0D
α
t y(t) = h(y(t)) (8)

is called the comparison system of (6), where

hi(y(t)) ≥ hi(v(t))

= max
v(x(t))≤y(t)

{vi(Ax(t) + f(x(t)))},

i = 1, 2, . . . , q.

Definition 4. A vector-valued function v(x) : Rn → Rs

is said to be of class B if, for any y ≥ 0, the set {x ∈ R
n :

v(x) ≤ y} is closed. We assume that v(x) in this paper is
of class B, which guarantees the existence of h(y) in this
paper.

Lemma 1. (Yan et al., 2010; Lenka, 2018) Let
0D

α
t y(t) ≥ 0D

α
t v(x(t)) and y(0) = v(x(0)), where

0 < α < 1. Then y(t) ≥ v(x(t)).

Remark 2. From the proof of the fractional comparison
principle (Yan et al., 2010), we find that Lemma 1 also
holds when y(0) ≥ v(x(0)). This conclusion can also
be obtained with the proof of the fractional comparison
principle (Lenka, 2018). By applying

0D
α
t x(t) = 0D

α
t x(t) +

x0t
−α

Γ(1− α)
,

Lemma 1 can be stated as follows: If (8) is a comparison
system of (6), then v(x(0)) ≤ y(0) implies v(x(t)) ≤
y(t) for all t ≥ 0.

Theorem 1. The polyhedral set

P (v, ρ) = {x(t) ∈ R
n : v(x(t)) ≤ ρ},

with v(x(t)) : Rn → R
q, ρ ∈ R

q and ρ > 0 , is a posi-
tively invariant set for the fractional-order nonlinear sys-
tem (6) if and only if there exists a comparison system

0D
α
t y(t) = h(y(t)) (9)
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such that
h(ρ) ≤ −ερ, ε ∈ [0, 1], (10)

where
Ax(t) = y(t),

hi(y(t)) ≥ hi(v(t))

= max
v(x(t))≤y(t)

{vi(Ax(t) + f(x(t)))},

i = 1, 2, . . . , q.

Proof. For the set P (v, ρ) = {x(t) ∈ R
n : v(x(t)) ≤ ρ},

we have that, for the trajectory of v(x(t)),

vi(Ax(t) + f(x(t))) ≤ yi(t) ≤ ρi, i = 1, 2, . . . , q,

for all x(t) ∈ P (v, y(t)) and y(t) ≤ ρ.

Let Ax(t) = y(t). Consider functions h(y) such that

hi(y(t)) ≥ hi(v(t))

= max
v(x(t))≤y(t)

{vi(Ax(t) + f(x(t)))},

i = 1, 2, . . . , q.

There must exist h(y) for all y(t) ≤ ρ from the
assumption of Definition 4. Since h(y) is a monotone
nondecreasing function and v(Ax(t) + f(x(t))) ≤
h(v(x(t))), there exists a comparison system 0D

α
t y(t) =

h(y(t)).

Moreover, if h(ρ) > 0, then, for the initial state x(0),
which v(x(0)) ≤ ρ, we have the trajectory v(x(t)) of the
following comparison system:

0D
α
t v(x(t))

= max
v(x(t))≤y(t)

{v(Ax(t) + f(x(t)))}

= h(ρ) > 0,

while it is in contradiction with the fact that the polyhedral
set P (v, ρ) is a positively invariant set. Hence, the
polyhedral set P (v, ρ) is a positively invariant set of the
fractional-order nonlinear system (6) if and only if h(ρ) ≤
−ερ, ε ∈ [0, 1]. �

Remark 3. Suppose v(x(t)) is a Lyapunov function
such that v(x(t)) ≤ ρ if 0D

α
t v(x(t)) ≤ h(v(x(t))) and

h(ρ) < 0; then the system (8) is asymptotically stable.

Let v(x(t)) = Qx(t). We obtain a condition
guaranteeing the positive invariance of a polyhedron for
the fractional-order nonlinear system (6).

Theorem 2. The polyhedral set

P (Q, ρ) = {x(t) ∈ R
n : Qx(t) ≤ ρ},

with Q ∈ R
q×n, ρ ∈ R

q and ρ > 0 , is a positively invari-
ant set of the system (6) if and only if there exists a matrix
H ∈Mm, such that

QA = HQ (11)

and
h(ρ) ≤ −ερ, ε ∈ [0, 1], (12)

where

hi(y(t)) ≥ hi(v(t))

= max
Qx(t)≤y(t)

{(HQx(t) +Qf(x(t)))i},

i = 1, 2, . . . , q.

Proof.
(Sufficiency) Let v(x(t)) = Qx(t). From (11), we have

0D
α
t vi(x(t)) = {Q(0D

α
t x(t)}i

= {QAx(t) +Qf(x(t))}i
= {HQx(t) +Qf(x(t))}i.

(13)

Then 0D
α
t y(t) = h(y(t)) is the comparison system of (6),

where

hi(y(t)) ≥ hi(v(t))

= max
Qx(t)≤y(t)

{(HQx(t) +Qf(x(t)))i},

i = 1, 2, . . . , q, such that

h(ρ) ≤ −ερ, ε ∈ [0, 1].

Hence, from Theorem 1, the polyhedral set P (Q, ρ)
is a positively invariant set of the system (6).

(Necessity) From (8), we have

0D
α
t v(x(t)) = QAx(t) +Qf(x(t)) ≤ h(v(x(t))).

Let

hi(y(t)) ≥ hi(v(t))

= max
Qx(t)≤y(t)

{(QAx(t) +Qf(x(t)))i}, (14)

i = 1, 2, . . . , q, and the comparative system of (6) is
obtained.

P (Q, ρ) is a positively invariant set of the system (6).
Then

Qx(0) = 0 ⇒ QAx(t) +Qf(x(t)) = 0. (15)

Since

lim
‖x(t)‖→0

‖f(x(t))‖
‖x(t)‖ = 0,

from (15) we have

Qx(0) = 0 ⇒ QAx(t) = 0. (16)
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Then there exists a matrix H such that QA = HQ. Thus,

hi(y(t)) ≥ hi(v(t))

= max
Qx(t)≤y(t)

{(HQx(t) +Qf(x(t)))i},

i = 1, 2, . . . , q. Moreover, by Theorem 1, h(ρ) ≤
−ερ, ε ∈ [0, 1]. �

Let

H+
ij =

{
hij for i = j,

max(Hij , 0) for i 
= j,

H−
ij =

{
0 for i = j,

max(−Hij , 0) for i 
= j.

(17)

Then, a direct consequence of Theorem 2 is the following
result.

Theorem 3. The polyhedral set

U(K,−w,w) = {x(t) ∈ R
n : −w ≤ Kx ≤ w},

with K ∈ R
m×n, w ∈ R

m, w ∈ R
m and w > 0, w > 0,

is a positively invariant set of the system (6) if and only if
there exists a matrix H ∈Mm, such that

KA−HK = 0 (18)

and
h(ŵ) ≤ −εŵ, ε ∈ [0, 1], (19)

where

hi(y) ≥ hi(v(t))

= max
Kx(t)≤y

{
(HKx(t) +Kf(x(t)))i
(−HKx(t)−Kf(x(t)))i

}
,

i = 1, 2, . . . ,m

and

ŵ =

[
w
w

]
.

Proof. From (17) we get

H = H+ −H−. (20)

Replace H in (18) with H in (20), so that

KA = HK = (H+ −H−)K,

−KA = H(−K) = (H+ −H−)(−K)

= (H− −H+)K.

Hence [
K
−K

]
A =

[
H+ H−

H− H+

] [
K
−K

]
. (21)

Let

Q =

[
K
−K

]
, ρ = ŵ =

[
w
w

]
.

Then

hi(y) ≥ hi(v(t))

= max
Qx(t)≤y

{(HQx(t) +Qf(x))i},

i = 1, 2, . . . ,m,

from (19) and (21), and there exists a matrix

Ĥ =

[
H+ H−

H− H+

]
∈M2m,

such that

QA = ĤQ, h(ρ) ≤ −ερ, ε ∈ [0, 1].

By means of Theorem 2, the polyhedral set P (Q, ρ) =
{x(t) ∈ R

n : Qx(t) ≤ ρ} is a positively invariant set
of system (6). Furthermore, the set U(K,−w,w) can
be reformulated in the form of P (Q, ρ). We have the
conclusion that U(K,−w,w) is a positively invariant set
of the system (6). �

By virtue of the Farkas lemma, we obtain the
condition of P (Q, ρ) ⊆ U(K,−w,w).
Theorem 4. The polyhedral set P (Q, ρ) and
U(K,−w,w) satisfy

P (Q, ρ) ⊆ U(K,−w,w)

if and only if there exists a nonnegative matrix L ∈
R

2m×2q such that

L

(
Q
Q

)
=

(
K
−K

)
,

L

(
ρ
ρ

)
≤
(
w
w

)
.

(22)

Proof. This theorem has a different form in the work of
Athanasopoulos et al. (2010), and the proof in that work is
based on the Farkas lemma. We give a simple proof here
since the set has a different form P (Q, ρ) ⊆ U(K,w) is
equivalent to the existence of a nonnegative matrix L1 ∈
R

m×q such that L1Q = K and L1ρ = w. On the other
hand, P (Q, ρ) ⊆ U(−K,w) is equivalent to the existence
of a nonnegative matrix L2 ∈ R

m×q such that L2Q =
−K and L2ρ = w.

Hence, P (Q, ρ) ⊆ U(K,−w,w) if and only if there
exists a nonnegative matrix L ∈ R

2m×2q such that (22)
holds. �
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3.2. Existence conditions for a constrained controller.
For a state feedback control u = Kx(t), by means of the
inequality (5), we have

U(K,−w,w) = {x ∈ R
n : −w ≤ Kx(t) ≤ w}.

It is obvious that a control law u = Kx(t) is a
solution to the CRP for the fractional-order nonlinear
continuous-time system (1) if and only if the closed-loop
system (6) is asymptotically stable at the origin for all
initial states x0 satisfying (3), while the corresponding
trajectory x(t; t0, x0) does not violate the state constraint
(4) as well as the control input constraint (5) for any
t ≥ t0.

We formulate this conclusion as the following result.

Theorem 5. The control law u = Kx(t) with K ∈
R

m×n is a solution to the CRP for the system (1) if and
only if

(i) u = Kx(t) stabilizes the system (1);

(ii) there exists a positively invariant set Ω ∈ R
n of the

closed-loop system (6) such that P (Q, ρ) ⊆ Ω ⊆
P (M, c) and Ω ⊆ U(K,−w,w).

Proof. Determine a state feedback control law K
and input u(t) = Kx(t) such that the system (6) is
asymptotically stable at the origin for all initial states x0
satisfying the inequality (3) if and only if u = Kx(t) can
stabilize the system (1).

The corresponding trajectory x(t; 0, x0) violates
neither the state constraint (4) nor the control input
constraint (5) for any t ≥ 0 if and only if there exists
a positively invariant set Ω ∈ R

n for the closed-loop
system (6) such that P (Q, ρ) ⊆ Ω ⊆ P (M, c) and
Ω ⊆ U(K,−w,w).

Thus, if the conditions (i) and (ii) are satisfied, the
control law u(t) = Kx(t) is a solution to the CRP for
system (1). �

If P (Q, ρ) is a positively invariant set of the system
(6), from Definition 2, it must satisfy P (Q, ρ) ⊆ P (M, c),
if P (Q, ρ) is equal to Ω. Then we have the following
result:

Corollary 1. The control law u = Kx(t) with K ∈
R

m×n is a solution to the CRP if

(i) u = Kx(t) stabilizes the system (1);

(ii) P (Q, ρ) is a positively invariant set of the closed-
loop system (6) and P (Q, ρ) ⊆ U(F,−w,w).
This condition can also be in the form of the

following theorem.

Theorem 6. The control law u(t) = Kx(t) is a solution
to the CRP for the system (1) if and only if there exist
matrices K ∈ R

m×n, a nonnegative matrix L ∈ R
2m×2q

and H ∈Mm such that

QA = HQ,

Hρ+ η(ρ) < −ερ,

L

(
Q
Q

)
=

(
K
−K

)
,

L

(
ρ
ρ

)
≤
(
w
w

)
.

(23)

Proof. If there is a state feedback control lawK such that
A = A+BK, then the system (1) becomes (6). If

ηi(y(t)) ≥ max
Qx(t)≤y(t)

{Qf(x(t))}i,

by virtue of (13), we have

0D
α
t v(x(t)) = {HQx(t) +Qf(x(t))}

≤ max
Qx(t)≤y(t)

{HQx(t) +Qf(x(t))}

= h(v(x(t)))

≤ max
Qx(t)≤y(t)

{Hy(t) + η(y(t))}

= h(y(t)) = 0D
α
t y(t)

(24)

and h(ρ) = Hρ + η(ρ) < −ερ. By virtue of Remark 3,
system (6) is asymptotically stable, which means that u =
Kx(t) stabilizes system (1).

From Theorems 2 and 4, (23) and (24), P (Q, ρ) is a
positively invariant set of the closed-loop system (6) such
that P (Q, ρ) ⊆ U(F,−w,w). By virtue of Corollary 1,
Theorem 6 is verified. �

If the initial state x0 ∈ U(K,−w,w), and
U(K,−w,w) is the positively invariant set of system
(6), by Definition 2, we have U(K,−w,w) ⊆ P (M, c).
When U(K,−w,w) is equal to Ω, we have the following
sufficient condition.

Corollary 2. The control law u = Kx(t) with K ∈
R

m×n is a solution to the CRP for the system (1) if

(i) u = Kx(t) stabilizes the system (1);

(ii) U(K,−w,w) is a positively invariant set of the
closed-loop the system (6).

Theorem 7. The control law u(t) = Kx(t) is a solution
to the CRP for the system (1) if and only if there exist
matrices K ∈ R

m×n and H ∈Mm such that

KA = HK,

Ĥŵ + η(ŵ) < −εŵ,
−w ≤ Kx(t) ≤ w,

(25)
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where
ηi(y(t)) ≥ max

Kx(t)≤y(t)
{Kf(x(t))}i

and

Ĥ =

[
H+ H−

H− H+

]
,

ŵ =

[
w
w

]
.

Proof. If there is a state feedback control law K , let
A = A+BK . Then the system (1) becomes (6). If

ηi(y(t)) ≥ max
Kx(t)≤y(t)

{Kf(x(t))}i

and the initial state x0 ∈ U(K,−w,w),

v(x(t)) :

{
Kx(t) ≤ w,
−Kx(t) ≤ w,

we have

0D
α
t v(x(t))

=

{
HKx(t) +Kf(x(t))
−HKx(t)−Kf(x(t))

}

≤ max
Kx(t)≤y(t)

{
Ĥ

(
Kx(t)
−Kx(t)

)
+

(
Kf(x(t))
−Kf(x(t))

)}
= h(v(x(t)))

≤ max
Kx(t)≤y(t)

{
Ĥ

(
y(t)
y(t)

)
+

(
η(y(t))
η(y(t))

)}
= h(y(t)) = 0D

α
t y(t),

(26)

and h(ŵ) = Ĥŵ + η(ŵ) < −εŵ. From Remark 3,
the system (6) is asymptotically stable and u = Kx(t)
stabilizes the system (1).

From Theorem 2 and (25), we have that
U(K,−w,w) is a positively invariant set of the
closed-loop system (6). From Corollary 2, the proof of
Theorem 7 is completed. �

4. Controller design method

We discuss the controller design method in two cases.

Case 1. If the initial state x0 satisfies (3) and the state
satisfies the state constraint (4) as well as the control
constraint (5), by Theorem 6, we obtain a sufficient and
necessary condition for the solution to CRP for the system
(1). However, for the system (1), it is important not
only to guarantee stability, but also to increase the rate
of convergence to the equilibrium. This can be done by
defining a linear programming problem with the objective
function

S(K,H, ε) = ε (27)

and the constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

QA = HQ,

Hρ+ η(ρ) < −ερ,

L

(
Q

Q

)
=

(
K

−K

)
,

L

(
ρ

ρ

)
≤
(
w

w

)
.

(28)

Case 2. If the initial state x0 satisfies the constraint
(3) and the control input satisfies the constraint (5), by
Theorem 7, a solution can be obtained by defining a linear
programming problem with the objective function

S(K,H, ε) = ε (29)

and the constraints⎧⎪⎨
⎪⎩
KA = HK,

Ĥŵ + η(ŵ) < −εŵ,
−w ≤ Kx(t) ≤ w.

(30)

Hence, maximizing ε increases the rate of convergence to
the origin.

5. Numerical examples

Example 1. Consider the continuous-times fractional
order nonlinear systems⎧⎪⎨
⎪⎩

0D
α
t x(t) = Ax(t) +Bu(t) + f(x(t)), t > 0,

x(0) = x0, −∞ < t ≤ 0,

α = 0.7
(31)

with

A =

[ −2.5 0.8
−0.85 1.4

]
, B =

[
1
0.5

]
,

f(x(t)) = 0.02

(
x21 + x1x2
x22 + x1x2

)
,

and a set of initial states P (Q, ρ) defined by

2x2 ≤ 0.8,

x1 + 2x2 ≤ 2.4,

−0.5x1 + 4x2 ≥ −1.8.

(32)

The state vector P (M, c) satisfies the constraints

−5 ≤ x1 ≤ 7,
−1 ≤ x2 ≤ 1,

(33)

and the control vector u(t) ∈ U(K,−w,w) satisfies the
constraint

− 6 ≤ u(t) ≤ 9. (34)
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The system (31) is unstable since the eigenvalues
of A are λ1 = −2.3171 and λ2 = 1.2171. The CRP
for the fractional-order nonlinear continuous-time system
(31)–(34) is to determine a state feedback control law
K and an input u(t) = Kx(t) such that for all initial
states x0 satisfiying inequality (32) the closed-loop system
is asymptotically stable, the corresponding trajectory
x(t; 0, x0) does not violate state constraint (33), and the
control input does not violate constraint (34) for any t ≥
0.

LetQ =
[
qi1 qi2

]
, i = 1, 2, 3. From (27) and (28),

we obtain

max
Qx(t)≤y(t)

{Qf(x(t))}

= 0.02 max
Qx(t)≤y(t)

(
qi1(x

2
1 + x1x2)

+ qi2(x
2
2 + x1x2)

)
≤ 0.02yimax

{ y1
q12

,
y2

min(q21, q22)
,

y3
min(q31, q32)

}
.

(35)

Then

η(y(t)) = 0.02 (yi)max
{ y1
q12

,
y2

min(q21, q22)
,

y3
min(q31, q32)

}
.

Thus,

η(ρ) = 0.02

⎛
⎝ 0.8

2.4
1.8

⎞
⎠max

{0.8
2
,
2.4

1
,
1.8

0.5

}

=
(
0.0576 0.1728 0.1296

)T
,

and the proposed method (27), (28) is formulated as a
linear programming problem with the objective function

S(K,H, ε) = ε

under the constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ 0 2
−1 2
0.5 −4

⎤
⎦
([ −2.5 0.8

−0.85 1.4

]
+

[
1
0.5

]
K

)

= H

⎡
⎣ 0 2
−1 2
0.5 −4

⎤
⎦ ,

H

⎡
⎣0.82.4
1.8

⎤
⎦+

⎛
⎝ 0.0576

0.1728
0.1296

⎞
⎠ ≤ −ε

⎡
⎣0.82.4
1.8

⎤
⎦ ,

L

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2
−1 2
0.5 −4
0 2
−1 2
0.5 −4

⎞
⎟⎟⎟⎟⎟⎟⎠

=

(
K
−K

)
, L

⎛
⎜⎜⎜⎜⎜⎜⎝

0.8
2.4
1.8
0.8
2.4
1.8

⎞
⎟⎟⎟⎟⎟⎟⎠

≤
(
9
6

)
,

hij ≥ 0, ε > 0.

The solution of this linear programming problem is

ε = 0.128,

K =
[
1.5,−4

]
,

L =

[
0 0 0 4 0 3
0 0 0 0.5 1.5 0

]
,

H =

⎡
⎣−0.8 0.2 0

1.8 −0.8 0
0 0 −0.2

⎤
⎦ .

The resulting system (6) for (31) is stable because the
eigenvalues of A are λ1 = −1.4 and λ2 = −0.2.

The trajectory x(t) of (6) for the system (31) under
the initial state x(0) = [−1.6 0.4]T satisfies the
state constraint inequalities (33) and the control constraint
inequalities (34), which is shown in Fig.1.

In Fig. 2, the trajectory emanating from the initial
state x(0) = [−1.6 0.4]T is shown; it is in the constraint
region. The resulting system is asymptotically stable to
the origin with the time increasing just as well.

The result in Fig. 3 shows that the feedback control
law emanating from the initial state is also in the domain
of the constraint region (34).

These results show that there exists a linear state
feedback control u(t) = Kx(t), which satisfies the
inequalities (34) and yields an asymptotically stable
system during the interval t ∈ [0, 120], and the
state constraint (33) as well as the control constraint
inequalities (34) are satisfied. Thus, u(t) = 1.5x1 − 4x2
is a solution to the CRP of the system (1). The behavior of
the resulting system is asymptotically stable to the origin
with the time increasing. Example 1 also shows that
our controller design method is effective and can find the
solution of CRP for the system (31). �

Example 2. Consider the continuous-time fractional
order linear system⎧⎪⎨
⎪⎩

0D
α
t x(t) = Ax(t) +Bu(t) + f(x(t)), t > 0,

x(0) = x0, −∞ < t ≤ 0,

α = 0.5
(36)

with the

A =

[
1 −3
−1 5

]
, B =

[
1 1
−1 0.5

]
,

f(x(t)) = 0.05

(
x1x2
x22

)
.

The control vector u(t) ∈ U(K,−w,w) satisfies the
constraint [−1

−2

]
≤ Kx(t) ≤

[
2
4

]
. (37)
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Fig. 1. State trajectory of the system.
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Fig. 2. Trajectory emanating from the initial state x(0) =
[−1.6 0.4]T .
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Fig. 3. Constrained control for the trajectory emanating from
the initial state x(0) = [0.654 0.449]T .

The system (36) is unstable because the eigenvalues
of A are λ1 = 0.3542 and λ2 = 5.6458. The CRP
of the fractional-order nonlinear continuous-time system
(36) is to determine a state feedback control law K and
input u(t) = Kx(t) such that for all initial states x0

satisfying the inequality (37) the closed-loop system is
asymptotically stable, and the corresponding trajectory
x(t; 0, x0) does not violate (37) for any t ≥ 0.

Let

K =

[
k11 k12
k21 k22

]
.

From (29) and (30), we obtain

max
Kx(t)≤y(t)

{Kf(x(t))}

= 0.05 max
Kx(t)≤y(t)

(
k11x1x2 + k12x

2
2

k21x1x2 + k22x
2
2

)

≤ 0.05

(
y1
y2

)
max

{ y1
k12

,
y2
k22

}
.

(38)

Then

η(y(t)) = 0.05

(
y1
y2

)
max

{ y1
k12

,
y2
k22

}

and

η(ŵ) = 0.05

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
2

)
max

{ 1

k12
,
2

k22

}
(
2
4

)
max

{ 2

k12
,
4

k22

}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

The CRP for (36) is formulated as the linear
programming problem with the objective function

S(K,H, ε) = ε

under the constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K

([
1 −3

−1 5

]
+

[
1 1

−1 0.5

]
K

)
= HK,

[
H+ H−

H− H+

]⎡⎢⎢⎢⎣
1

2

2

4

⎤
⎥⎥⎥⎦+

0.05

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1

2

)
max

{ 1

k12
,
2

k22

}
,(

2

4

)
max

{ 2

k12
,
4

k22

}
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ −ε

⎡
⎢⎢⎢⎣
1

2

2

4

⎤
⎥⎥⎥⎦ ,

[
−1

−2

]
≤ u(t) ≤

[
2

4

]
,

ε > 0.

We have the solution

ε = 0.9112,

K =

[−2.051 7.444
−1.255 2.629

]
,



26 X. Si et al.

H =

[−4.11 0.43
0.33 −1.96

]
.

The resulting system (36) is stable because the
eigenvalues of A are λ1 = −1.8938 and λ2 = −4.1707.

The trajectory x(t) of the system (6) under the
initial state x(0) = [0.654 0.449]T as well as the set
U(K,−w,w) are shown in Fig. 4. They all satisfy the
constraints and in the domain of the constraint. The
behavior of the resulting system is asymptotically stable
to the origin with the time increase.

In Fig. 5, the control law evolution emanating
from the initial state is shown; it is in the domain
of the constraint (37). With the initial state x(0) =
[0.654 0.449]T , in Fig. 6, the constrained control for
the trajectory emanating from the initial state also remains
in the domain of constraint (37). The behavior of the
resulting system is asymptotically stable to the origin with
the time increasing.

From Example 2, we have that there exists a linear
state feedback control u(t) = Kx(t) for the system
(36), which makes the trajectory under the initial state
satisfying the control constraint (37) asymptotically stable
during the interval t ∈ [0, 60]. Therefore,

u(t) =

[−2.051 7.444
−1.255 2.629

]
x(t)

is a solution to the CRP of the system (1). The behavior of
the resulting system is asymptotically stable to the origin
with the time increasing just as well. Example 2 also
shows that our method is effective and can find a solution
of the CRP for the system (36). �

Remark 4. Designing control systems that maintain
stability and performance with state and/or control
constraints is a topic of continuous interest. the proposed
methods are based on factors such as the l1 norm,
predictive control, polynomial approaches and positive
invariance. Most of these methods are discussed only
for linear systems. For nonlinear systems, especially
for fractional order nonlinear systems, analysis and
synthesis approaches of control systems subjected to
constraints are proposed through the Lyapunov method,
or by using the saturation control method. Both depend
on linear matrix inequalities (LMIs) as a tool, and are
more complex than the method proposed in this paper
especially when the dimension of the state variables is
large. But linear programming can deal with problems
of high dimensional variables, and can be operated by
most mathematical packages. In this aspect, we claim
that the method proposed in this paper is effective and
more implementable than other available methods from
the computational point of view.
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Fig. 4. Trajectory and the positively invariant set of the system.
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Fig. 5. Trajectory emanating from the initial state.
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Fig. 6. Constrained control for the trajectory emanating from
the initial state x(0) = [0.654 0.449]T .

6. Conclusion

In this paper, the constrained regulation problem for
a class of fractional-order nonlinear continuous-time
systems was studied. By virtue of the comparison
principle and positively invariant set theory, conditions
guaranteeing positive invariance of a polyhedron for
a class of fractional-order nonlinear system were
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established. We also provided an LP model and the
corresponding algorithm for determining a linear state
feedback controller for the CRP. Compared with other
available methods, our algorithm is readily implemented
from a computational point of view since LPs can
be solved by any off-the-shelf mathematical software.
Numerical examples show that the proposed method is
effective.

We conjecture that our approach will still work for
higher-order (fractional order) fractional systems since
it depends on positively invariant sets and a Metzler
matrix and is independent of the system order. We
will investigate the validity of the proposed approach for
higher-order fractional systems and the effects of external
disturbances on the method in the future. Regarding
higher-dimensional systems, we think that this is exactly
the advantage of our method. The proposed method can
deal with higher dimensional systems readily because of
the intrinsic quality of the LP.
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