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This paper proposes a fault detection method by extracting nonlinear features for nonstationary and stationary hybrid
industrial processes. The method is mainly built on the basis of a sparse auto-encoder and a sparse restricted Boltzmann
machine (SAE-SRBM), so as to take advantages of their adaptive extraction and fusion on strong nonlinear symptoms. In
the present work, SAEs are employed to reconstruct inputs and accomplish feature extraction by unsupervised mode, and
their outputs present a knotty problem of an unknown probability distribution. In order to solve it, SRBMs are naturally used
to fuse these unknown probability distribution features by transforming them into energy characteristics. The contribution
of this method is the capability of further mining and learning of nonlinear features without considering the nonstationary
problem. Also, this paper introduces a method of constructing labeled and unlabeled training samples while maintaining
time series features. Unlabeled samples can be adopted to train the part for feature extraction and fusion, while labeled
samples can be used to train the classification part. Finally, a simulation on the Tennessee Eastman process is carried
out to demonstrate the effectiveness and excellent performance on fault detection for nonstationary and stationary hybrid
industrial processes.
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1. Introduction

Currently, complex and larger industrial systems are
being extensively developed and integrated to satisfy the
demands on quality and safety. Numerous industrial
systems consider fault detection an extremely important
issue to obtain high performance, and this can help their
owners become or remain market leaders (Montmain
et al., 2015). As far as current research indicates, the
fault in industrial system is regarded as some unexpected

∗Corresponding author

deviation in at least one feature or variable (Montmain
et al., 2015; Adil et al., 2016). Fault detection is therefore
designed to determine whether these faults happened, by
monitoring the system operation status.

Generally, traditional process monitoring systems are
often constructed with three paradigms: model-based,
knowledge-based and data-driven methods (Severson
et al., 2016). Because rich monitoring data extensively
yield out, multivariate statistical process control (MSPC),
belonging to data-driven methods, is gaining more and

mailto:renhao@cqu.edu.cn


30 L. Huang et al.

more attention of researchers around the world. However,
one drawback of MSPC is always unavoidable, and
it can be summarized as follows (Lin et al., 2019a):
the system always operates in a stationary condition,
whose mean and covariance are time-invariant; process
variables are independent of each other, i.e., there is
no serial correlation between them. Obviously, this
defect seriously masks its application and development
in practical industrial systems. In fact, the operation
condition of an industrial process is not constant, but
switching frequently. Therefore, a practical industrial
system shows extremely nonstationary characteristics not
only due to the above reasons, but also due to the changes
in marker demands, external disturbances, or equipment
defects in sensors.

In practical industrial systems, fault symptoms are
often overwhelmed by these nonstationary characteristics,
resulting in the fact that the usage of the above
MSPC-based techniques brings about a large number
of false and missed alarms. In particular, due to the
rapid development of distributed control systems (DCSs),
precision instrumentation systems, and industrial Internet,
three new changes have appeared in recent years: (i) in
order to avoid safety accidents, more measurement points
are installed for each device to monitor modern industrial
systems; (ii) furthermore, the sampling frequency of
monitoring data becomes higher and higher, so as to
prevent any clues from being missed; (iii) from the
beginning of service to the end of its life, data collection
has been getting longer and longer, which gains a larger
amount of monitoring data (Ren et al., 2017).

The conventional methods become extensively
difficult to build a monitoring system for practical
industrial processes. The main reasons can be the
problem of extracting and fusing high-dimensional
nonlinear features of process monitoring variables in
nonstationary and stationary hybrid industrial processes,
which makes estimation of the probability distribution of
fault symptoms difficult (Lin et al., 2019b). Therefore,
this paper proposed a fault detection method based on
stacking the SAE-SRBM to meet formidable challenges
of fault detection for industrial processes, and its
contribution can be described as follows:

• A fault detection method is proposed by extracting
nonlinear features for nonstationary and stationary
hybrid industrial processes, which is very difficult for
conventional methods to deal with.

• Input reconstruction and feature extraction are
accomplished in an unsupervised manner by
SAEs, and the attendant problem of the unknown
probability distribution is solved by SRBMs via
transforming them into energy characteristics. The
unsupervised mode of combining SAEs and SRBMs

takes full advantages of their adaptive extraction and
fusion on strong nonlinear symptoms.

• A novel method is proposed to construct labeled
and unlabeled training samples while maintaining
the time series features, these labeled and unlabeled
samples can be used to train the part for
feature extraction and fusion as well as train the
classification part, respectively.

The paper is organized as follows. Section 2 is
focused mainly on motivation and concerns. Section 3
details the feature extraction and fault detection method,
such as a framework, a sparse stacked auto-encoder
and a restricted Boltzmann machine, etc. Section 4
reports the simulation results and discussion to prove the
effectiveness of this method. Lastly, conclusions and
future research works are presented.

2. Related work and motivation

The stationary process refers to the fact that the operation
states cannot change with time, which is reflected by
its monitoring variables. This means that the mean, the
variance and the covariance of monitoring variables are
not changed with time, and it provides the prerequisite of
a constant probability distribution for numerous machine
learning methods. However, most modern industrial
systems do not satisfy this condition, and their operation
processes are always mixed nonstationary and nonlinear,
which always masks fault symptoms and makes fault
detection difficult (Liu and Qin, 2016).

2.1. Related work. Independence and identical
distributions of monitoring variables is a premise
for machine learning to make data-driven fault
diagnosis available, and this requires constant statistical
characteristics of the monitoring variables in the time
and frequency domain. In fact, most often studies on
data-driven fault diagnosis describe the monitoring
variables as weakly stationary, whose means, variances
and covariances are slightly changing with time. The
purpose of setting monitoring variables is to estimate
the operation state of every subprocess, whose common
trouble are the nonlinear and dynamic changes. These
changes can be regarded as classical characteristics in
modern industrial processes. A practical situation can
be considered where the mean, variance and covariance
of some variables are not changed with time. Industrial
processes with these characteristics are as nonstationary
and stationary hybrid processes.

For nonstationary industrial processes, the
mainstream method is co-integration theory, which
was proposed by Engle and Ganger (1987). The core
idea of this method is reflected in the co-integration
relationship between nonstationary variables, which
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is manifested in their random fluctuations around the
common trend, and this common trend is independent
of their nonstationarity. Chen et al. (2009) proposed
an anomaly detection method based on co-integration
theory, whose idea can be summarized as follows: when
an abnormality exists in monitored processes, the system
parameters and structures would change and affect the
co-integration relationship between monitoring variables,
i.e., the original common trend between various variables
will also change.

Recently, some prospective research on system
reliability and safety has attracted much attention of
academic and industrial circles, since its fault symptoms
may be hidden in nonstationary monitoring signals (Lin
et al., 2019b). For fault detection and diagnosis based
on nonstationary and stationary monitoring signals for
industrial processes, Lin et al. (2019a; 2019b) as well
as Zhao and Huang (2018b; 2018a) introduced a revised
common trend framework to estimate nonstationary and
dynamic trends in complex industrial processes, and their
framework mainly relies on the following ideas: the
common stationary and nonstationary factors should be
identified and separated; these factors should be modeled
by multivariate time-series models; a compensation
scheme should be incorporated to directly monitor these
factors without being compromised by the forecast
recovery effect.

Similarly, Zhao and Huang (2018b; 2018a) as well
as Zhao and Sun (2019) also focus their recent studies
on complex industrial processes with both stationary
and nonstationary characteristics. They first proposed
a novel full-condition monitoring strategy based on
co-integration and process features analysis, and focused
on two aspects: certain equilibrium relations extend
beyond current time although the operation conditions
may vary over time; certain dynamic relations may exist
invariant under normal process operation despite different
conditions. Furthermore, a triple subspace decomposition
based on dissimilarity analysis was developed by them
to detect incipient abnormal behaviors. Earlier they
reported their study of closed-loop control, and proposed
a dynamic distributed monitoring strategy to separate
dynamic variations from steady states and to employ it
to distinguish changes in normal operation conditions and
real faults.

In addition, some other researchers leverage
co-integration analysis to online isolation or diagnosis of
faulty variables, such as a sparse reconstruction strategy
to reduce the requirements on historical fault data (Sun
et al., 2017), a meticulous model for feature extraction
to assess the operation performance of nonstationary
processes (Zou and Zhao, 2019). Li et al. (2014) adopted
a nonstationary test to distinguish nonstationary series
form stationary ones, and used co-integration analysis to
construct monitoring indices by describing the stochastic

common trends and equilibrium errors. Similar research
also includes the time-varying auto-regressive (TVAR)
model aiming to characterize nonstationary behaviors
(Souza et al., 2019), dominant trend based logistic
regression for monitoring nonstationary processes (Shang
et al., 2017), a mathematical model for calculation of
nonstationary hydraulic and separation processes in a gas
centrifuge cascade for separation of multi-component
isotope mixtures (Orlov et al., 2017).

In summary, the nonstationary characteristics of
practical industrial processes are caused by numerous
factors, such as equipment aging, unknown disturbances
(Lin et al., 2019a; 2019b; Engle and Granger, 1987; Chen
et al., 2009; 2020a; 2020b; Zhao and Huang, 2018b;
2018a; Souza et al., 2019; He et al., 2015; Firouzi
et al., 2018). Previous studies pointed out that some
monitoring variables have nonstationary characteristics,
while others do not. All of these reasons make modern
processes stationary and nonstationary hybrid. In the
study of nonstationary process monitoring, co-integration
analysis can be regarded as an effective method to extract
correlations between nonstationary variables (Shang
et al., 2017; Zou and Zhao, 2019; Orlov et al., 2017; Lin
et al., 2017; Worden et al., 2016; Ma et al., 2018), i.e.,
fault detection for nonstationary and stationary hybrid
industrial processes can be built on the common trend
model.

2.2. Motivation. The common trend idea stimulates
us to meet formidable challenges of fault diagnosis
for nonlinear and nonstationary in practical processes,
and it can be considered an equilibrium relationship
formed by the interaction of many process monitoring
variables. This relationships are often employed to
achieve fault detection, e.g., using the auto-regressive
moving average model (ARMA) or canonical correlation
analysis (Chen et al., 2020a; 2020b), etc. Fault monitoring
signals, generated in practical industrial systems, tend
to pose some new challenges, such as nonlinearity,
dynamics, variability, and limited labels in nonstationary
and stationary hybrid processes, which leads to the
fact that the traditional, linear, and stationary common
trend analysis methods are difficult to implement in
fault detection (Zhirabok and Shumsky, 2018; Byrski
et al., 2019). Therefore, considering the diversity of
nonstationary and stationary industrial process faults and
the fact that most of them are nonlinear or even strongly
nonlinear, it is necessary to combine multiple variable
analysis to explore relationships between many monitored
variables, and then to describe the dynamic system
behaviors (Worden et al., 2016; Ma et al., 2018; Zhang
and Zhao, 2017; Zhang et al., 2018; Yan et al., 2016).

For the detection of nonlinear or even strongly
nonlinear faults for nonstationary and stationary hybrid
industrial processes, some researchers have studied
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this problem and achieved interesting results in some
fields (Ma et al., 2018; Zhang and Zhao, 2017; Zhang
et al., 2018; Yan et al., 2016). Auto-encoders (SAE)
and the restricted Boltzmann machine (RBM) can be
considered typical methods, and can be used to realize
a super-high-dimensional feature representation of input
data by stacking multiple-layer auto-encoders and the
layer-by-layer pre-training method. This method can be
employed to construct nonlinear relationships between
complex multiple dimensional monitoring variables and
abnormal modes to describe strongly nonlinear behaviors
of industrial processes (Pröll et al., 2018; Zhang et al.,
2016).

The capability of SAE-based or RBM-based fault
detection mainly relies on hierarchical features or
representations of the observational data to find the
internal structure exploring the essential relationships
between different variables (Utkin et al., 2016; Leng
and Jiang, 2016; Sun et al., 2016; 2017; Wang et al.,
2016; Li et al., 2014; Lu et al., 2017; Xiong and
Zuo, 2016; Sadough Vanini et al., 2014; Jiang et al.,
2016). In our previous research (Ren et al., 2017; 2018),
the SAE or RBM was used to achieve unsupervised
learning to automatically extract features to detect a fault,
while in this paper, the SAE and RBM are leveraged
to build up a specific architecture to describe industrial
processes. The aim of this paper in using the SAE and
RBM is to meet the requirement of processing a large
amount of data. However, this work takes the monitoring
signals of nonstationary and stationary hybrid processes
as the research object, and the dynamic correlation
features, contained in the nonlinear industrial process
monitoring variables, can be calculated by the stacked
SAE-RBM. The complex mapping between multiple
dimensional monitoring signals and abnormal modes can
be finally constructed to realize feature extraction and
fault detection for industrial processes.

The difficulties of fault detection for modern
industrial processes, especially for nonstationary and
stationary hybrid industrial processes, are observed in the
following issues: the amount of data becomes larger, and
it requires the monitoring system to possess the ability of
processing a large amount of data; time-variant behaviors
and variables become more mainstream, and this
means the nonstationary and nonlinear behaniors become
a common problem in modern industrial processes.
Motivated by the above difficulties of fault detection, a
fault detection method by extracting nonlinear features for
nonstationary and stationary hybrid industrial processes
has been proposed, and it is mainly built on the basis of
the sparse auto-encoder (SAE) and the sparse restricted
Boltzmann machine (SRBM) to take advantages of their
adaptive extraction and fusion of strongly nonlinear
symptoms. In this method, SAEs are employed to
reconstruct inputs and accomplish feature extraction by

unsupervised mode, while SRBMs are naturally used to
transform features into energy characteristics. The main
contribution of this method is the capability of further
mining and learning of the nonlinear features without
considering the nonstationary problem.

3. Methodology

This study on feature extraction and fault detection
based on stacking the SAE-SRBM for nonstationary and
stationary hybrid industrial processes is still in the initial
exploration stages (Jiang et al., 2016; Ren et al., 2017;
2018). The strategy of deep neural network learning
can be regarded as simulating the learning and reasoning
process of human thinking, which can be employed to
realize fault detection by effective nonlinear features,
transmission and classification.

3.1. Nonstationary and stationary hybrid pro-
cesses. For practical industrial processes, the linear or
nonlinear variable correlations between process variables
may be presented in typical nonstationary characteristics.
Therefore, whether the monitoring variables are stationary
or not becomes a necessary and important issue. Typical
characteristics of nonstationary and stationary hybrid
processes can be considered to include the mean, variance
and covariances of their monitoring variables constant
with time. Generally, the augmented Dickey–Fuller
(ADF) test is employed to detect whether or not the
industrial process is nonstationary, while the Largrange
multiplier principle (LMP) statistic is leveraged to confirm
the stationary of industrial processes.

The augmented Dickey–Fuller test can be regarded
as an effective method to recognize the nonstationary
variables, and it is extended from the Dickey–Fuller (DF)
statistic or the unit root test (Dickey, 1981). The goal of
the DF test is to determine whether a series is consistent
with the unit root process, and the unit root process refers
to the data-generating process with its first difference
stationary. This paper exactly employs this method
to realize the identification of nonstationary monitoring
variables.

The null hypothesis of the DF statistic test (p = 0) or
the ADF test (p > 0) is nonstationary, while the stationary
tests can be implied by the Lagrange multiplier princi-
ple, which can be used to test the null hypothesis of a
trend stationary. The critical values can be computed by
numerical simulation or set when giving a significance
level. The null hypothesis can be regarded as the accepted
one when the critical value is greater than the LMP test
statistic. Similarly, this method is also employed to find
stationary monitoring variables.

The high level of complexity and nonlinearity makes
it difficult to build an integrated precise mathematical
model for the purpose of fault detection. Due to
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the unknown property regarding whether or not the
monitoring variables are nonstationary, which often masks
the faults, resulting in serious accidents. Therefore,
the challenge of fault detection for practical industrial
processes is how to describe the operational dynamics in
nonstationary and stationary hybrid processes.

3.2. Framework of fault detection. According to
previous research, the character of a time series is
likely to be nonstationary. However, a stationary
relationship between two or more time series can be
established through co-integration theory, and then the
properties of stationarity can be fully applied (Engle and
Granger, 1987). According to this theory, if there exist
nonstationary variables and co-integration relationships,
the system nonstationary characteristics can be regarded
as the sum of nonstationary and stationary random trends.
The random trends between the monitoring variables
are consistent and can eliminate each other. Therefore,
although the variables themselves are nonstationary,
their common trend is stationary, which means that
the monitored variables exhibit a long-term dynamic
equilibrium relationship on the common trend (Utkin et
al., 2016; Leng and Jiang, 2016; Sun et al., 2016; 2017;
Wang et al., 2016; Li et al., 2014; Lu et al., 2017; Xiong
and Zuo, 2016; Sadough Vanini et al., 2014; Jiang et al.,
2016).

When this theory is analogous to industrial process
state monitoring, if the nonstationary process monitoring
signal is first-order monotonous and there exists a
co-integration relationship between monitoring variables,
the linear joint model can be employed to generate a
stationary information variable to describe the system
operational states. When a system fault occurs, the system
model parameters or structure will change, and finally
reflect in the dynamic relationship between monitoring
variables, i.e., the final common trend between the
monitoring variables will change (Utkin et al., 2016; Leng
and Jiang, 2016; Sun et al., 2016; 2017; Wang et al., 2016;
Li et al., 2014; Lu et al., 2017; Xiong and Zuo, 2016;
Sadough Vanini et al., 2014; Jiang et al., 2016).

The new common trend between monitoring
variables no longer confirms the past co-integration
relationship, and may even have no common trend. If
the faulty monitoring variables are brought into a normal
co-integration relationship, the common trend change
part will not be eliminated by the model and will remain
in the new information variable. The nonstationary and
stationary monitoring variables in the process layer can
be regarded as a group of variables related to each other,
and then information contained in a single signal is
limited. In order to realize feature extraction and fault
detection based on nonstationary monitoring variables, it
is necessary to make a joint analysis of multiple variables,
to explore the dynamic and nonlinear characteristics, and

to describe the operational state and system behaviours
(Utkin et al., 2016; Leng and Jiang, 2016; Sun et al.,
2016; 2017; Wang et al., 2016; Li et al., 2014; Lu et al.,
2017; Xiong and Zuo, 2016; Sadough Vanini et al., 2014;
Jiang et al., 2016).

Because the statistical characteristics of
nonstationary monitoring variables are all dynamically
changing, such as the mean, the variance, covariances,
etc., the change and distribution characteristics are
investigated. The most important part is to investigate
the time series variation characteristics, i.e., it should be
necessary to design some related methods to describe
the transient time of nonstationary monitoring variables.
Therefore, a deep neural network with stacking an
SAE-SRBM has been constructed to exploit the clear
advantages of the SAE on extracting nonlinear features
and then fusing the unknown probability distribution
features by the SRBM, as shown in Figs. 1(a) and (b).
The reconstruction of input is accomplished by the SAE
to extract nonlinear features with an unknown probability
distribution, which can be solved by the SRBM to
transform the distribution into energy-based features.

As shown in Fig. 1(b), a unique unsupervised method
for extracting nonlinear features, named the SAE, has
been considered a suitable approach to handle the varied
inputs in this architecture. Then, the SRBM is used to
further learn and fuse the output features of SAE, to mine
the nonlinear features of the original monitoring signal on
a deeper level, and to be employed for final classification
and identification. Finally, the stacked SAE-SRBM can be
employed to describe the system dynamic behaviors from
input to output, as shown in Fig. 1(c).

From the above analysis, this proposed method
can be used to learn the system dynamic behaviors
by the input monitoring variables, and to describe the
change law of the whole system by the relationships
between related variables without considering whether
or not they are stationary. According to the core
idea of co-integration theory, this SAE-RBM can be
used to mine the correlations between many monitoring
variables to build a common change trend of industrial
processes. In other words, the common change trend can
be constructed by the correlations between monitoring
variables, and in this way, this trend can be employed
to described the behaviors of the industrial processes
and will not be affected by the nonstationarity and
stationarity of many monitored variables. Therefore, if
the SAE-SRBM has been trained, then a change rule
describing all the monitored variables can be constructed;
while a fault occurs, the monitoring variable information
is transformed into the model, and a different trend from
the original state can be obtained. Fault detection can be
performed by analyzing the trend.
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3.3. Sparse auto-encoder. The auto-encoder was
proposed by Rumelhart et al. (1986) and applied to handle
high-dimensional complex data, which greatly promoted
the development of neural networks. As an unsupervised
learning method, its outputs are trained to equal its inputs,
and to capture the important information of input data,
while the network weights can be used to represent
relationships between network variables.

Generally, the auto-encoder mainly consists of an
input layer, a hidden layer and an output layer. The
number of neurons in the input layer is equal to that in the
output layer, while the number of neurons in the hidden
layer is smaller than that in the input layer. Based on
this idea, a learning model can be constructed, where the
output is equal to its input, as shown in Fig. 1(a):

Encoder: y = s(Wx+ b), (1)

Decoder: x̂ = s(W ′y + bo), (2)

where x = (x1, x2, . . . , xn)
T ∈ R

n is input data and
x̂ = (x̂1, x̂2, . . . , x̂n)

T ∈ R
n presents output data, which

refers to the reconstruction of input data. Moreover, y is
the output of the encoder;W, b are the weights and the bias
between the input the bias and hidden layers; W ′ and bo
are the weights and the bias between the hidden and output
layers, and they can be regarded as the transposition of W
presented as W ′ = WT . Here s(·) is a nonlinear function,
such as a sigmoid.

The auto-encoder is often used in feature learning
and dimension reduction. The encoder process mainly

occurs in the input layer to the hidden layer, which
can be used to realize compression representation of the
input data, while the decoder process can be employed to
reconstruct and restore the output signal from the hidden
layer to the output layer. Auto-encoder training can be
considered to adjust network parameters, which can be
employed to make the final output x̂ close to the input
data x as much as possible. This process can be evaluated
by the typical square error, and the cross-entropy can be
used as follows:

LH(x, x̂)

= −
n∑

k=1

[xk log x̂k + (1− xk) log(1− x̂k)], (3)

where x = (x1, x2, . . . , xn)
T ∈ R

n is input data and x̂ =
(x̂1, x̂2, . . . , x̂n)

T ∈ R
n signifies the output data.

The sparse auto-encoder can be regarded as
the fusion of sparse representation theory and the
auto-encoder, and the sparse representation is used to
realize the simplest sparse representation of input data
features; the core idea of sparse representation theory is
to construct a linear mapping transforming the domain
and to reconstruct the original signal with sparse atoms or
mapping bases as sparse as possible. This means that the
reconstruction error should be as small as possible under
the requirement of sparsity, and this can be described as
follows:

D̂ = arg min
D,αi

n∑

i=1

‖yi −Dαi‖+ λ‖αi‖1, (4)
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where y is the output of the encoder. D = [d1, d2, . . . , dn]
signifies a dictionary, α = [α1, α2, . . . , αn]

T is the sparse
coding vector.

Obviously, if all the input data samples are
regarded as the dictionary D = [d1, d2, . . . , dn], the
over-completeness and adaptability of the dictionary can
be guaranteed, while all the input data can be regarded
as the reconstruction dictionary in each calculation
of auto-encoder, and this dictionary has the property
of dynamic updating. As in the above analysis,
the auto-encoder and sparse representation also have
some similarities, and their difference focuses on the
dictionary construction method. As shown in (4), the
key of the sparse auto-coder is to introduce a sparse
penalty term and to employ sparse constraints to learn
features. All of these can be used to simulate the
unsupervised calculation of human perceptual learning
and to optimize the performance of auto-encoders on
representing the characteristics of input data. Generally,
the KL (Kullback–Leibler) divergence method can be
used when the distance between the average activation
and an other activation is too large. When adding the
coefficient penalty, the sparse auto-encoder loss can be
described as follows:

SL(W, b) = L(W, b) + β

S2∑

j=1

KL(ρ‖ρ̂j), (5)

where β is the adjustment coefficient of controlling the
sparse penalty term, ρ̂j = (1/m)[hj(xi)] presents the
average activation of the j-th neuron in the hidden layer
with training data-set x = {xi}mi=1. KL(ρ‖ρ̂j) =
ρ log ρ/ρ̂j+(1−ρ) log 1− ρ/1− ρ̂j is the KL divergence.

From (5), it is necessary to optimize weights W and
bias b during the whole coding process. The cost function
SL(W, b) takes the weights W and the bias b as the
variables, which can be optimized. Therefore, the optimal
weights W and bias b can be obtained by minimizing the
cost function.

3.4. Sparse restricted Boltzmann machine. As
a stochastic neural network, the RBM is built on a
probability graph model, i.e., it can be considered a
special case of the energy generation model. It can be
employed to learn the inherent intrinsic representation
of the input data and to provide a learning method for
the input data with an unknown probability distribution.
The restricted Boltzmann machine is a bipartite graph
containing a visible layer and hidden layer. The neuron
nodes of both the layers are not connected, while the
neuron nodes between the layers are fully connected, as
shown in Fig. 1(b).

Generally, visible layer units can be used to observe
the characteristics of a certain aspect of the input data,
while hidden layer units can be used to obtain the

dependency between the corresponding variables of the
visible layer unit, which is often called the feature
extraction layer. The RBM can be constructed based on
the law of energy distribution, which can be defined as
an energy function, and a series of related probability
distribution function sets can be constructed by using this
energy function. Almost any inputs can be reconstructed
based on this energy function, and this can be used to
realize feature extraction and fusion. For a given set of
unit states (v, h), the energy function can be described as

Eθ(v, h) = −
nv∑

i=1

aivi−
nh∑

j=1

bjhj−
nv∑

i=1

nh∑

j=1

hjwjivi, (6)

where nv and nh are the numbers of neuron nodes in
the visible layer and the hidden layer, respectively, v, h
are the nodes of the visible and hidden layers, v =
(v1, v2, . . . , vn)

T ∈ R
nv , h = (h1, h2, . . . , hn)

T ∈ R
nh

represent the state vectors of the visible and the hidden
layers. Similarly, a = (a1, a2, . . . , an)

T ∈ R
nv , b =

(b1, b2, . . . , bn)
T ∈ R

nh represent the bias vectors of the
visible and hidden layers; ai, bj signify the biases of the
i-th and the j-th neuron in visible and hidden layers, vi
represents the state of the i-th neuron in the visible layer.
w = (wij) ∈ R

nh×nv are the weights between the visible
layer and the hidden layer, and wij is the weight between
the i-th neuron in the visible layer and the j-th neuron in
the hidden layer, θ = (w, a, b) are parameter vectors of
the RBM.

When considering the state of all neurons in a given
visible layer or a hidden layer, a neuron in the hidden layer
or the visible layer is activated (the value is 1), and its
probability can be expressed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Pθ(hk = 1|v) = f(bk +
nv∑
i=1

wk,ivi),

Pθ(vk = 1|h) = f(ak +
nh∑
j=1

wj,khj),
(7)

where f(·) is a sigmoid function. The probability
distributionsPθ(v) and Pθ(h) correspond to the input data
in the visible layer, and the hidden layer data, respectively.
From (7) and the following function can be obtained:

Pθ(h|v) =
nh∏

j=1

Pθ(hj |v), Pθ(v|h)

=

nv∏

i=1

Pθ(vi|h).
(8)

As shown in (8), when the neuron states in the
visible layer are noticeable, the activation conditions of
the hidden layer are independent of each other. On the
contrary, the activation conditions of visible layer neurons
are independent when the neurons are given.
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The training of the restricted Boltzmann machine is
actually adjusting the model parameters so that it can be
used to fit the given input training sample. Generally,
training the restricted Boltzmann machine is to maximize
the following likelihood function:

lnLθ,S = ln

nS∏

i=1

Pθ(v
i) =

nS∏

i=1

lnP (vi), (9)

where S = {v1, v2, . . . , vnS} is a given set of training
samples, vi = (vi1, v

i
2, . . . , v

i
n)

T is a unit state in the
visible layer, nS is the number of training samples. The
numerical method commonly used in the maximization
of (9) is the gradient ascent method, whose gradient
calculation can be described as follows:

∂ lnLθ,S

∂θ
= −

∑

h

P (h|vm)
∂Eθ(v

m, h)

∂θ

+
∑

vm,h

P (vm|h)∂Eθ(v
m, h)

∂θ
.

(10)

From (10), the computed gradient ∂ lnLθ,S/∂θ
can be interpreted as follows. The first term∑

h P (h|vm)∂Eθ(v
m, h)/∂θ is the expectation of the

corresponding energy gradient function ∂Eθ(v
m, h)/∂θ

under conditional distribution P (h|vm). The second term∑
vm,h P (vm|h)∂Eθ(v

m, h)/∂θ is the expectation of the
corresponding energy gradient function ∂Eθ(v

m, h)/∂θ
under conditional distribution P (vm|h). Therefore, after
further derivation of the related calculation, the following
formula can be obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ lnLθ,S

∂wij
=

nS∑
m=1

[P (hi = 1|vm)vmj

−∑
v
P (v)P (hi = 1|v)vj ],

∂ lnLθ,S

∂ai
=

nS∑
m=1

[vm −∑
v
P (v)vj ],

∂ lnLθ,S

∂bj
=

nS∑
m=1

[P (hi = 1|vm)vmj

−∑
v
P (v)P (hi = 1|v)].

(11)

Generally, the solution of (11) based on the
conventional method is still a very slow process, and the
most important reason can be the fact that it needs to go
through complex state transition to make the restricted
Boltzmann machine fit the training sample distribution.
Lee et al. (2008) and Yan et al. (2016) proposed an
important method to improve the efficiency of network
computations by combining a sparse representation and
the restricted Boltzmann machine. This method is to
sparsely optimize the activation process of hidden layer
units in the restricted Boltzmann machine. In this way,
the feature learning can be considered a certain level of
sparsity, and the essential features of the input data can be
abstracted better.

The core idea of this method is to add a
sparse penalty term on the basis of likelihood function
maximization, so as to control the activation of hidden
layer units in the restricted Boltzmann machine. The
optimization problem can be described as follows:

min
W,a,b

= −
nv∑

l=1

lnPθ(v)

+ λ

nh∑

j=1

[
p− 1

nv

nv∑

l=1

E(h|v)
]2
,

(12)

where E(·|v) means the conditional expectation for a
given sample, λ is the regularization parameter, p can
be regarded as the parameter for controlling the average
activation of neurons in the hidden layer.

In practical industrial processes, a large amount of
monitoring signals are generated with normal operational
conditions. Furthermore, uncertainty factors occupy
the main components when some faults occur in
industrial processes, which are characterized by unknown
probability distributions and the lack of prior information.

3.5. Construction of training samples. Fault
detection based on hybrid deep learning networks can be
implemented by stacking the sparse auto-encoder and the
sparse restricted Boltzmann machine, and it can be used
to realize nonlinear feature extraction and recognition
with nonstationary and stationary hybrid processes. The
key of neuron networks is the super large amount and
super high dimensional weights, which can be obtained by
using gradient descent with a large amount of high-quality
samples. Therefore, the proposed fault detection method
can be only regarded as a static model with effective
architecture, and does not have any influence on fault
detection. In order to give it life, the time dynamic
characteristics of monitoring data should be taken into
consideration, and it is necessary to add the time variation
law into the training samples.

On the one hand, time variation is not only contained
in a single sequence signal in practical industrial
processes, but also in correlations between monitoring
variables. The time-varying characteristics mentioned in
this article refer to the correlation between monitoring
variables that are strongly correlated with time. On the
other hand, not all monitoring variables in the process
layer are labeled, but the labeled and unlabeled variables
are mixed. The unsupervised training samples, i.e., the
unlabeled monitoring variables, are reconstructed from
monitoring signals maintaining time characteristics.

As shown in Fig. 2, τ refers to the time scale factor
and X are the initial data or feature sets, which contain
labeled and unlabeled data. The first step is to build the
unlabeled training samples Xτu, which can be regarded
as labeled and unlabeled data, i.e., the initial features X .
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Fig. 2. Construction of training samples with dynamic time.

All of these unlabeled training samples can be briefly
represented as

Xτu = {Xτu
1 , Xτu

2 , . . . , Xτu
N }. (13)

Equation (13) means that unlabeled training samples
Xτu can be regarded as the spread of the initial sample
with the scale factor τ . In this way, every element xτu

i can
maintain the time dynamics of monitoring variables, and
ensure the time law of nonstationary processes. Similarly,
the labeled training samples Xτl should also contain the
time dynamics of monitoring variables, and these can be
constructed as

Xτl = {Xτl
1 , Xτl

2 , . . . , Xτl
M}. (14)

Unlabeled training samples can be yielded out by
(13), while labeled training samples can be constructed by
(14). This training sample generation mode can not only
save human resources, but also make full use of valuable
data resources. More importantly, the training samples
with time dynamic characteristics can be used to describe
system characteristics through training the SAE-SRBM.

3.6. Training steps. Nonlinear feature extraction can
be achieved by the stacked sparse auto-encoder, while
the SRBM can be regarded as the method for feature
fusion. The classification can be accomplished by a BP
neural network. Currently nonlinear feature extraction
and fusion can be achieved without considering the
property of stationarity and nonstationarity, and fault
detection by stacking the SAE-SRBM can be realized
naturally. Finally, the last step is to give life to this neural
network, i.e., the training network, and these steps can be

summarized as follows.

Step 1: Training samples. Monitoring variables should
first be normalized. The unlabeled samples Xτu can be
constructed by (12), while the labeled samples Xτl can
be calculated by (13).

Step 2: Pre-training SAE (unsupervised). Unlabeled
training samples Xτu are used to train SSAE, and the
characteristics of these samples can be learned in an
unsupervised manner. The output of the SSAE can be
expressed as F τul

SSAE , and these features can be regarded
as an unknown probability distribution.

Step 3: Pre-training SRBM (unsupervised). The unknown
probability distribution of features F τul

SSAE is used to train
SRBMs, and these characteristics of features F τul

SSAE can
be learned in an unsupervised manner.

Step 4: Fine-tune SAE (unsupervised). Similarly, the
labeled samples Xτl are used to train SAE again;
however, the label of each sample is not used in this
step. The sample features, i.e., the output of SAE, can be
learned in an unsupervised manner. The extracted features
F τl
SSAE can be obtained in an unsupervised manner.

Step 5: Fine-tune SRBM (unsupervised). Supervised
training sample features F τl

SSAE , i.e., the output of the
SAE, can be used to train SRBMs again, and sample
features F τl

SSAE can be learned in an unsupervised
manner.

Step 6: Joint fine-tune SAE-SRBMs. The labeled samples
Xτl are used again to train SAE-SRBMs with their labels,
which contained considerable human knowledge. The BP
neural network can be trained with these labeled samples
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Xτl, and then this classification network can be combined
with SAE-SRBMs.

From Step 1 to Step 6, every step is independent
of one another. Labeled and unlabeled samples are first
constructed (Step 1). Unlabeled samples are employed
to train the SAE (Step 2), and a similar training
stage is also accomplished by labeled samples (Step 4).
Correspondingly, the SRBM is trained by the output of the
SAE, which is trained by unlabeled and labeled samples
(Steps 3 and 5). Finally, labeled samples are used to
train the whole network, and this step gives life to the
SAE-SRBM for fault detection.

3.7. Performance evaluation index. Generally, all
performance parameters are calculated for each testing,
and finally the average of the performance parameters for
all testing instances gives the final average performance
parameters. Confusion matrix metrics are often employed
to report the performance of fault detection. The criteria
of performance evaluation are usually employed in fault
detection, which consists of three parts: classification
accuracy (AC), false positive rate (FP), or false alarm rate,
and missed alarm rate (FN), or missed alarm rate.

4. Simulation and results

The Tennessee Eastman (TE) benchmark process can be
regarded as a typical industrial simulation based on a
practical industrial process, which is often used as the
data source to compare and verify the effectiveness of
various methods. It has been widely applied in control
design, multivariate statistical process monitoring and
fault detection (Yin et al., 2012; Geng et al., 2018; Dong
et al., 2015; Xi et al., 2018; Zhang et al., 2019). The
TE processes are used to verify the effectiveness of
the proposed method on extracting and fusing nonlinear
features to achieve fault detection for nonstationary and
stationary processes.

4.1. TE benchmark processes. The TE process
generally covers five major operation units: a reactor,
a product condenser, a vapor-liquid separator, a recycle
compressor, and a product stripper. Raw materials,
labeled as A, C, D and E, can be used to produce two
liquid products, G, H. These exothermic reactions can be
simply described as follows:

⎧
⎪⎪⎨

⎪⎪⎩

A(g) + C(g) +D(g) → G(lip),
A(g) + C(g) + E(g) → H(lip),
A(g) + E(g) → F (lip),
3D(g) → 2F (lip).

(15)

The TE process has been widely accepted as a
benchmark for control and monitoring studies, and its

33 variables (22 process measurements, 11 manipulated
variables) have always been used to monitor processes.
Similarly, 21 faults can be simulated, where Faults 1–7
are regarded as step changes in related variables, while
Faults 8–12 are considered random variations of some
variables. Besides, Faults 14, 15 and 21 are the sticky
valves, while Faults 16 and 20 are unknown faults.

4.2. Nonstationary and stationary variables. 480
original normal samples from the training data-sets can
be selected to test the nonstationarity of all variables.
According to the calculation methods of the ADF test and
MLP statistics, the monitoring variables of TE processes
can be identified as nonstationary series by setting lags
p = 2 without a linear time trend.

The result of the ADF test and MLP statistics is listed
in Table 1, in which ‘0’ refers to accepting the hypothesis
of unit root nonstationarity and ‘1’ refers to accepting the
hypothesis of a stationary trend. As shown in Table 1,
seven nonstationary variables can be seen as the result of
MLP statistics; however, there are only four nonstationary
series that can be tested by the ADF test. All the results
are consistent with the nonstationary and co-integration
tests of Li et al. (2014).

From the related test results, it should be noted that
the TE process can be regarded as a nonstationary and
stationary hybrid process, which is very suitable to verify
the effectiveness of the proposed method.

4.3. Discussion and results. In this part, a number
of 3014 fault detection samples are used, each fault of
which happened in its 91st sample data, and of which
only 30 percent of random samples can be regarded as
labeled samples. In order to effectively test the influence
of nonstationary monitoring signals on the simulation
results, all fault detection results and only fault labeled
as 4, 5, 7, 9–12 were used in this simulation, as shown in
Fig. 3.

In this fault detection simulation, the model
parameters of the hybrid neural network are shown in
Table 2, while the fault detection results are given in
Table 3. In order to effectively describe the influence of
nonstationary variables on the final fault detection results,
random removal of variables labeled 7, 11, 13, 16, 18,
19, 31, 38, 46 is carried out to obtain the influence on
detection results, as shown in Table 4.

As seen in Table 3, most of the seven normal
versus faulty state detection cases in the TE process
achieved the expected results. From the accuracy results
of fault detection labeled as AC, the highest detection
rate is 100.0%, while the lowest is 59.28%. The related
simulation results show that the hybrid deep neural
network can effectively realize feature extraction and
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Table 1. Monitoring variables of the TE process system and nonstationary tests.
Label. Measured variable Base Unit ADF tests LMP statistic

XMEAS1 A feed (stream 1) 0.25052 kscmh 1 1
XMEAS2 D feed (stream2) 3664.0 kg/h 1 1
XMEAS3 E feed (stream 3) 4509.3 kg/h 1 1
XMEAS4 A,C feed (stream 4) 9.3477 kscmh 1 1
XMEAS5 Recycle flow (stream 8) 26.902 kscmh 1 1
XMEAS6 Reactor feed rate (stream 6) 42.339 kscmh 1 1
XMEAS7 Reactor pressure 2705.0 kPa gauge 1 1
XMEAS8 Reactor level 75.000 % 1 1
XMEAS9 Reactor temperature 120.40 oC 1 1
XMEAS10 Purge rate (stream 9) 0.3372 kscmh 1 1
XMEAS11 Product separator temperature 80.109 oC 1 1
XMEAS12 Product separator level 50.000 % 1 1
XMEAS13 Product separator pressure 2633.7 kPa gauge 1 1
XMEAS14 Product separator under flow 25.160 m3h−1 1 1
XMEAS15 Stripper level 50.000 % 1 1
XMEAS16 Stripper pressure 3102.2 kPa gauge 1 1
XMEAS17 Stripper under flow (stream 11) 22.949 m3h−1 1 0
XMEAS18 Stripper temperature 65.731 oC 0 0
XMEAS19 Stripper steam flow 230.31 kg/h 0 0
XMEAS20 Compressor work 341.43 kw 0 0
XMEAS21 Reactor cooling water outlet temperature 94.599 oC 1 1
XMEAS22 Separator cooling water outlet temperature 77.297 oC 1 1
XMV1 D feed flow (stream 2) 63.053 kg/h 1 1
XMV2 E feed flow (stream 3) 53.980 kg/h 1 1
XMV3 A feed flow (stream 1) 24.644 kscmh 1 1
XMV4 A,C feed flow (stream 4) 61.302 kscmh 1 1
XMV5 Compressor recycle valve 22.210 % 1 0
XMV6 Purge valve (stream 9) 40.064 % 1 1
XMV7 Separator pot liquid flow (stream 10) 38.100 m3h−1 1 1
XMV8 Stripper liquid product flow (stream 11) 46.534 m3h−1 1 1
XMV9 Stripper steam valve 47.446 % 0 0
XMV10 Reactor cooling water flow 41.106 m3h−1 1 1
XMV11 Condenser cooling water flow 18.114 m3h−1 1 0

fault detection in nonstationary and stationary hybrid
processes.

As shown in Table 4, when randomly removing some
nonstationary variables, the accuracy AC is significantly
decreased. In this case the false and missed alarm
rates increased significantly. This result means that the
nonstationary monitored variables in the process layer
significantly affect the operational states of the entire
system.

5. Conclusions and future work

Aiming at the diversity, nonlinearity, or even strong
nonlinearity of faults in nonstationary and stationary
hybrid processes, a feature extraction and fault detection
method for nonstationary and stationary hybrid processes
has been proposed, with the contribution as follows:

(i) Dynamic and nonlinear characteristics in
nonstationary and stationary hybrid industrial
processes can be considered.

(ii) A stacked sparse auto-encoder is used to realize
nonlinear features extraction, while the restricted
Boltzmann machine is used to learn the feature
characteristics to construct the nonlinear mapping
between complex multi-dimensional monitoring
signals and heterogeneous modes.

(iii) Process monitoring signals can be used to reconstruct
the training samples and to retain the time series.
Simulation on nonlinear feature extraction and fault
detection for a nonstationary and a stationary hybrid
nonlinear TE process was carried out to verify the
effectiveness of this proposed method.
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Table 2. Parameter set of the SSAE-SRBM for fault detection.
Parameters SAE1 SAE2 SAE3 SAE1 SRBM2

Neur. num. 180 700 300 800 300
Learn. rate 8e-4 8e-3 8e-3 5e-3 5e-3
Iter. num. 2000 1500 1500 2000 1000
Mini-batch 20 20 20 15 15

Table 3. TE industrial process fault detection results.
Normal vs. Fault AC False alarm Missed alarm

Normal vs. 4 99.49 0.89 0.11
Normal vs. 5 98.83 0.79 0.56
Normal vs. 7 88.00 0.00 26.00
Normal vs. 9 58.07 35.42 48.44
Normal vs. 10 68.75 17.71 44.79
Normal vs. 11 84.29 13.65 17.77
Normal vs. 12 88.39 5.25 17.97
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Fig. 3. Confusion matrix metrics of a stationary and a nonsta-
tionary hybrid process (TE).

However, this paper only considers the
characteristics of a large number of variables and
strong nonlinearity in studying fault detection for
nonstationary and stationary hybrid industrial processes.
Furthermore, this proposed model is mainly constructed
on joint analysis of multiple variables to mine the
association relationships of many variables and to
describe the system dynamic behaviors. Furthermore, an
in-depth study on nonstationary and stationary monitoring
variables should also be carried out, and the influence of
nonstationary and stationary variables was not discussed

in detail. The study of nonstationary and stationary
hybrid industrial processes has just attracted attention of
some researchers. Therefore, some studies trying to solve
these problems will be carried out, and fault diagnosis of
the nonstationary and stationary hybrid industrial process
will be further realized.
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