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The vehicular ad-hoc network (VANET) is subject to various attacks because of its dynamic nature and ephemeral character.
In VANET, vehicles communicate with each other for safety awareness. The positioning of an unknown vehicle is one of
the critical factors to determine the vehicle’s trustworthiness. Although some positioning techniques have achieved a high
accuracy level in VANET, they suffer from dynamic noise in real-world environments. This drawback leads to inaccuracy
and unreliability during vehicle positioning. In this paper, an optimal innovation based adaptive estimation Kalman filter
(OIAE-KF) is proposed. This algorithm offers an alternative solution for the basic Kalman filter and the innovation based
adaptive estimation Kalman filter (IAE-KF). The proposed algorithm makes use of fusion of the global navigation satellite
system (GNSS) and the inertial measurement unit (IMU) to improve its performance. The OIAE-KF works based on
the innovation sequence and involves three steps such as establishing the innovation sequence, applying the innovation
property, checking the optimality of the Kalman filter and, finally, estimating process noise (Q) and measurement noise
(R). An optimal swapping method is introduced for optimality check. The efficiency of the proposed OIAE-KF method
is proved by comparing the predictions of the existing methods such as the IAE-KF. The results show that the OIAE-KF
performs better than the existing techniques. It improves the accuracy and consistency in VANET positioning.

Keywords: Kalman filter, innovation, dead reckoning (DR), global positioning system (GPS), simulation of urban mobility
(SUMO).

1. Introduction

The vehicular ad-hoc network (VANET) aims to support
many applications like intelligent transportation systems
(ITSs) for traffic efficiency, road safety, and various
entertainment services (Lobo et al., 2019). Current
research methods on VANET include unmanned vehicles
(UVs), cooperative adaptive cross control (CACC)
(Milanés et al., 2013), cooperative collision warning
(Huang and Lin, 2014), advanced driver-assistance
systems (ADASs) (Li et al., 2011), intersection safety (Le
et al., 2009) and cooperative driving (Kato et al., 2002).
These kinds of VANET applications have great benefits
that can save hundreds and thousands of lives every
year. A wide range of applications has been discussed
(Al-Sultan et al., 2014).
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The vehicle’s position information is essential for
VANET applications to perform better. For example, UV,
CCWS, and ADAS require a lane level accuracy of about
one meter. Few applications such as traffic efficiency and
entertainment applications demand an accuracy of about 5
meters (Skog and Handel, 2009).

Numerous approaches have been proposed for
vehicle positioning in VANET, e.g., map matching
based, dead reckoning based, GPS based, cellular
based, etc. None of the above techniques fulfills the
requirements of correct positioning (Amadeo et al., 2012).
Some integrated techniques are designed for navigation
systems. Nevertheless, those techniques are lacking in the
availability and accuracy of positioning requirements.

Most commonly, the Kalman filter can be used for
combining positioning algorithms (Lobo et al., 2019).
An enormous amount of research has been done to
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improve the accuracy with several fusion techniques.
Bidyuk et al. (1993) showed the analytical representation
of the fundamental characteristics of the Kalman filter.
This representation describes the potential possibility of
filtering algorithms for a class of dynamic systems such
as moving objects or targets. They also developed
an analytical representation for the variance of actual
optimal and sub-optimal errors of filtering for the case
of correlated measurement noise. Korbicz et al. (1994)
considered integrating data that come from various
navigation sources at different moments. An algorithm
of a modified Kalman filter was established to process
scalar data separately, even in vector input . This approach
allows constructing a unified estimation algorithm for
processing variable dimension measurement vectors. The
modified Kalman filter algorithm decreases the covariance
of estimated errors if a different measurement appears
at the filter input from a new source and with different
sampling intervals. This method is used to avoid filter
divergence resulting from computational errors.

Hide et al. (2004) compared the adaptive Kalman
filter, process noise scaling, and multiple model adaptive
estimation (MMAE). MMAE was developed to improve
the estimation in a low-cost inertial navigation system
(INS). MMAE is suitable for real-time applications
because of its significant time processing. The problem is
that the estimated process noise is unstable for dynamic
and variant noise environments. Hide et al. (2004)
compared three positioning algorithms, and the IAE-KF
showed low performance. The method of tuning the
process noise covariance was developed by Ding et al.
(2007). Here, the authors fixed the measurement noise
covariance as for stationary and known white noise. A
drawback of this model is that measurement noise is
always more dynamic than process noise due to the
dynamic nature of VANET.

ZhiWen et al. (2013) introduced a robust IAE-KF
algorithm that computes the innovation sequence with the
chi-square test. Here, measurement noise covariance is
known and fixed. Mehra (1970) introduced an IAE-KF
for estimating the process noise covariance and kept
the measurement noise as unknown and dynamic. IAE
was modified by Loebis et al. (2004) for autonomous
underwater vehicles (UAVs). Here the author used a fuzzy
logic method (Wang et al., 2013). The adaptation of the
covariance matrix was made based on the sign of the
last innovation value. If the sign is positive, then the
covariance matrix is decreased, otherwise it is increased.

Havangi et al. (2010) introduced an adaptive
neuro-fuzzy extended Kalman filtering for robot
localization (ANFEKF). The ANFEKF estimates the
covariance matrices of process and measurement noise
for the extended Kalman filter (EKF). The parameters are
trained using the steepest gradient descent to minimize
the differences between the actual and the theoretical

covariance. Gao et al. (2017) developed an improved
innovation-based adaptive estimation Kalman filter. A
regulatory factor is proposed for the computation of the
Kalman gain matrix to solve the singular value problem
for matrix inversion. As a result, the measurement noise
uncertainties are eliminated during estimation.

Woo et al. (2019) developed a fuzzy-innovation
based adaptive extended Kalman filter (FI-AKF). Here,
the authors used a fuzzy logic system that updates
the measurement covariance matrix of the real-time
kinematics according to the position dilution of precision
(PDOP), the number of satellites involved, and the
innovations of the extended Kalman filter. The driving
state of the vehicle is also recovered. Alam and Dempster
(2013) introduced a positioning technique based on the
inertial navigation system (INS) fusion method and GPS
measurements. Parker and Valaee (2007) introduced a
cooperative positioning concept that integrates GPS and
INS. Here the process noise covariance was very small,
and the measurement noise covariance was stationary and
fixed.

Khattab et al. (2015) considered the single RSU
based positioning algorithm. The main limitation of this
method is that lateral position information was neglected
and cost-effective. Chatterjee and Matsuno (2007)
projected a neural network-based model for estimating
measurement noise to solve simultaneous localization and
mapping (SLAM), which is applied in mobile robots. The
theory of an adaptive Kalman filter (AKF) is used to
resolve environmental noise by prior estimation of process
and measurement noise covariances (Bar-Shalom et al.,
2004). Most of the researchers focus on the innovation
based adaptive estimation Kalman filter (IAE-KF). The
IAE-KF estimates the process noise covariance and
the measurement noise covariance. As a simultaneous
process, dynamic state and error covariances are also
estimated. The IAE-KF aims to match the actual
innovation covariance with the theoretical covariance
value. Nevertheless, the IAE-KF is degrading with the
property that it cannot reach a steady state until noise
estimators like GNSS and IMU come to an agreement,
which reduces the rate of convergence and filter accuracy
(Hou et al., 2013).

Based on the existing methods, most of the
techniques operate in a controlled environment for vehicle
positioning. In most existing methods, the measurement
noise covariance is assumed to be stationary, but the noise
may vary based on environmental conditions (Chen et al.,
2010). This noise variation factor reduces the accuracy in
positioning, which results in a mismatch of the vehicle
position. The uncertainty of the acquired information
about the position is crucial in VANET applications from
the above observations. In this paper, the uncertainty of
position information is targeted to enhance positioning
accuracy and integrity. In many situations, innovations
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of the Kalman filter get corrupted. In that situation,
the filter is replaced with an alternative prediction
technique such as dead reckoning (DR) (Sierociuk and
Dzieliński, 2006). This idea is followed in the proposed
OIAE-KF positioning algorithm to improve the accuracy
and integrity. The contribution of this paper is the
following. Initially, the IAE Kalman filter estimates
both the process noise covariance and the measurement
noise covariance using innovations. This research aims
to enhance the IAE-KF as an OIAE-KF. The IAE-KF
is modified with enhancements such as obtaining the
innovation property based on the innovation sequence and
optimality checking. The Pearson correlation coefficient
is employed to obtain the autocorrelation coefficient,
which helps determine the variance and the covariance.
An optimality checking algorithm is introduced to manage
the adaptive Kalman filter. Finally, matrices Q and
R are estimated based on the OIAE-KF. The accuracy
in position measurements is found by comparing the
proposed method and the IAE-KF.

2. Basic Kalman filter and the innovation
based adaptive estimation Kalman filter

The underlying application plays a major role in
achieving accurate positioning information of a vehicle
(Kalman, 1960). Three essential requirements should
be concentrated on to obtain acceptable VANET
performance. First, the vehicle should be able to
obtain continuous position information in any situation
(Mohamed and Schwarz, 1999). The first requirement
relates to availability. Second, positioning algorithms
must be capable of accommodating vehicle dynamics and
the surrounding environment. Finally, the positioning
information gathered by the vehicle must be a clear
and immediate indication. In simple words, the vehicle
should be able to measure the uncertainty of the position
information. The second and final requirements are
related to accuracy.

Using redundancy and complementary fusion
techniques such as DR and GPS, availability issues can
be solved (Rezaei and Sengupta, 2007). Nevertheless,
solving an accuracy issue is still a challenging task.
Position integrity is the level of trust which can be placed
on the accuracy of position information. Integrity can
be measured by analyzing uncertainty. Increasing the
positioning accuracy and improving the integrity level is
the basic principle for VANET applications. However,
these requirements have not been investigated in existing
positioning algorithms (Jiancheng and Sheng, 2011).

VANET nodes (vehicles) travel in harsh
environments, so positioning algorithms are prone
to environmental noise (ETSI, 2010). White noise is
defined as a random signal having spectrum over the
frequencies relevant to the circumstances and a Gaussian

distribution. The Gaussian distribution is characterized
by a bell-shaped curve, and it produces equally likely
measurements above and below the mean value (Li
et al., 2016). The variation in the noise may lead to
non-white noise, which affects the Gaussian distribution.
The basic Kalman filter is suitable for position estimation
if preliminary information about the noise involved in
signals is known, and these noise signals are white (Wang
et al., 2013). Errors in preliminary information lead to
inadequate estimates. Sometimes this results in filter
divergence, which minimizes the accuracy level of the
positioning information.

The Kalman filter depends on two basic models (Li
et al., 2015). The first is the process model or the system
model that describes the state of transition that is used for
prediction. The other is the measurement model or the
observation model that describes the relationship between
the state and observation. The Kalman filter runs based
on a discrete linear state model, and a discrete linear
measurement model is needed (Sarkka and Nummenmaa,
2009). The Kalman filter is an iterative process. It
uses a set of equations and consecutive data inputs to
quickly estimate the true value of the objects’ position
and velocity when it has measured values containing
unpredictable errors or uncertainties. The Kalman filter
model predicts the true state at time k from the previous
state (k − 1), according to

xk = Axk−1 +Buk + wk, (1)

yk = Hxk + vk. (2)

The prediction phase has the form

xkp = Axk−1 +Buk + wk, (3)

Pkp +APk−1A
T +Qk. (4)

The update phase is

ěk = yk −Hxkp = yk − ykp , (5)

Sk = HPkpH
T +R. (6)

The state correction phase is

Kk = PkpH
T (HPkpH

T
k +Rk)

−1

= PkpH
TS−1

k ,
(7)

x̌k = xkp +Kkěk, (8)

P̌k = (1−KkH)Pkp . (9)

2.1. Innovation based adaptive estimation Kalman fil-
ter. The IAE-KF represents the following equation:

Ĉek =
1

MW

k∑

j=k−MW+1

eje
T
j , (10)
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where MW is the size of the moving window. By
comparing the actual covariance value with the theoretical
covariance value, the measurement noise covariance R̂k

can be found. The theoretical noise covariance is

Sk = HPkpH
T +R(k−1) = E[êj ê

T
j ]. (11)

The process noise covariance matrix can be obtained
from the actual covariance matrix (Hu, 2017),

R̂k = Ĉek −HPkpH
T , (12)

Q̂k = KkĈekK
T
k . (13)

In real time, it is difficult to estimate Q and
R simultaneously when dynamic noise appears. By
using the innovation sequence, the Kalman gain can be
calculated directly, i.e.,

Kk = PkpH
T Ĉ−1

ek . (14)

The IAE-KF is mostly used for dynamic noise
in linear systems. It uses innovation sequence ěk to
compute the noise covariance to correct the state estimate.
The innovation sequence is the difference between the
predicted value and the actual measurement. Both the
measurement model and the predicted model are in
agreement if the value of ěk is equal to zero. The
innovation sequence will first show the difference of
statistic data and prior information. Thus, ěk can produce
the actual status of convergence or divergence of the
Kalman filter (Mohamed and Schwarz, 1999).

3. Optimal innovation based adaptive
estimation Kalman filter

The main idea of the OIAE-KF is to remediate
the problem of position estimation during vehicle
tracking. Defects in error estimation result in incorrectly
positioning the vehicle. The proposed algorithm uses
velocity and position computed by the sensors of the
onboard unit (OBU) in a vehicle such as an accelerometer
and a gyroscope (Liu and Xiong, 2011). Measurements
of quantities such as the engine RPM, gear ratio,
axle ratio, and wheel circumference serve to calculate
the velocity. These measurements implement the
adaptive noise estimation to directly affect each sensor’s
performance over the dynamic environment conditions
(Yu, 2012). Optimality checking improves the accuracy
and minimizes the uncertainties in error estimation. The
innovation sequence is the difference between the actual
measurement and the predicted one.

An optimal swapping algorithm swaps between the
adaptive Kalman filter and the dead reckoning process
model based on the uncertainties raised during estimation.
To achieve the optimality condition, three necessary steps
are to be followed (Wang et al., 2009). Figure 1 shows

the diagrammatic representation of the OIAE-KF. The
innovation sequence discovers the irregularity between
the observed and the measured positioning values.
This variation occurs due to various conditions such
as weather, the vehicle model, the driver status, and
other environmental circumstances (Wang et al., 2013).
When vehicles move in harsh environments, the noise
projection may not be stationary white noise or Gaussian
noise. Therefore the innovation property predicts the
deviation from the Gaussian distribution and the unbiased
conditions of the noise. The noise is not Gaussian
white noise when a variation is encountered, and it is
biased. The OIAE-KF utilizes the innovation property to
test the filter’s optimality and, based on the test result,
the estimation swap between the Kalman filter and dead
reckoning.

• Step 1: Collect the innovation sequence using the
actual and predicted measurements.

• Step 2: Apply the innovation property to check
biasedness (white noise).

• Step 3: Check optimality conditions of the Kalman
filter.

As the final stage, the process noise covariance and the
measurement noise covariance are estimated to ensure the
accuracy of the estimation. The accuracy is compared
with the online positioning technique.

3.1. Collecting innovation sequence using actual
and predicted measurements. The variation in the
measurements of kinematic sensors and the GNSS
produces the innovation sequence ěk. The GNSS and
dead reckoning measure the vehicle’s position. These
measurements are compared with the vehicle’s actual
position, and the error is collected with time lag k. Let
pGNSS be the position obtained by the GNSS and pDR be
the position obtained by dead reckoning. The vehicle’s
exact or true position is represented as ptrue. Let εGNSS

be the error in the GNSS measurement, εDR be the error
in the DR measurement, and ΔT be the sampling rate at
all instances of time,

ěk = pDRk
− pGNSSk

, (15)

pGNSSk
= ptruek + εGNSSk

, (16)

pDRk
= ptruek + εDRk

. (17)

Substitute (16) and (17) in (15) to get

ěk = pDRk
− pGNSSk

= (ptruek + εDRk
)− (ptruek + εGNSSk

)

= εDRk
− εGNSSk

.

(18)

The subtracted value (error) of the GNSS and DR
measurements produces the innovation sequence. If the
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Fig. 1. Diagrammatic representation of the OIAE-KF.

Fig. 2. Optimal swapping.

DR measurement error is minimal, it will be approximated
by an error in the GNSS measurement.

3.2. Applying innovation to check biasedness. The
main aim of applying the innovation property is to
find whether the innovation sequence is Gaussian or
non-Gaussian white noise. First, the correlation factor
ρk becomes the innovation property computed for the
innovation sequence. In this paper, Pearson’s correlation

coefficient is used to establish the correlation factor. It
shows the strength of the narrow relationship between the
errors in the measured values. The innovation property is
applied to the innovation sequence to check the optimality
of the state estimate of the Kalman filter, ρk is the
autocorrelation coefficient, which reflects the relationship
between the innovation sequence at various time lags in
milliseconds. The window size is denoted as wm, and the
mean of the innovation sequence is denoted as με,

ρk =

wm−1∑
k=1

(ěk − με)(ěk + 1− με)

√
wm∑
k=1

(ěk − με)
2

√
wm∑
k=1

(ěk+1 − με)
2

. (19)

3.3. Checking optimality of the KF. Algorithm 1
shows the comparison made between the actual error
covariance Ĉek and the theoretical error covariance Sk.
When Ĉek is not equivalent to Sk, the innovation
sequence ěk will mislead the error deviation. As a result,
considerable filter divergence occurs. Divergence happens
when the autocorrelation coefficient ρk of the innovation
sequence is high, or the noise type is non-Gaussian.
Now swap the estimation process to DR, and, increase
the measurement noise covariance Qk by time lags until
ěk becomes stationary. When Ĉek is equal to Sk, the
correlation coefficient meets the consistency level. That
shows that the noise is unbiased, and the error is Gaussian
white noise. In this situation, the adaptive Kalman filter
(AKF) maintains the estimation process. Thus, the AKF
automatically converges to an optimal state.

Minimize the DR process when divergence is
minimized the autocorrelation coefficient remains within
the range of ±2√wm, then conclude that random white
noise with no divergence. Mehra (1970) proves that if
ρk is greater than the bound −2√wm and smaller than
+2
√
wm, then the filter is unbiased, and the Kalman Filter

is optimal. If ρk is smaller than the bound −2√wm and
greater than +2

√
wm, it is said that it is non-Gaussian and

biased noise. Figure 2 demonstrates the optimal swapping
process.

3.4. Estimating process noise covariance Q and mea-
surement noise covariance R. The estimation of the
process noise covariance is known because it depends on
the vehicle’s GNSS and kinematic sensor observations.
Nevertheless, the measurement noise covariance depends
on the environmental condition that results in dynamic
noise. Therefore in most cases, Q is kept unknown. The
Kalman filter depends on both Q and R. If Q > R, the
Kalman gain Kk relies on the measurement and not on
prediction. In contrast, if Q < R, the Kalman gain Kk

relies on the prediction more than measurement. Because
of the known and fixed value of Q, it is crucial to analyze
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the influence of R to maintain accurate estimation of noise
statistics. Fix Q as a small value; then R is approximated
according to the correlation between the measurements.
Autocorrelation of the innovation sequence is derived
as ρk based on Pearson’s autocorrelation coefficient.
The innovation sequence is arranged based on first-order
autoregressive representation as ek, where ak is the
Gaussian noise process with zero mean. One of the
essential features innovation sequence is that it should
always be a positive definite matrix,

ek = ρ(ek−1) + ak. (20)

The variance and the covariance can be computed as
follows:

Var(ek) = σ2
e =

1

MW(1− ρ2k)

k∑

j=k−MW+1

eje
T
j (21)

Cov(ek) = σekσek+1

=
Ĉek

1− ρ2k
(êk − με)(êk+1 − με),

(22)

where

Ĉek =
1

MW

k∑

j=k−MW+1

eje
T
j .

Algorithm 1. Optimality check in the OIAE-KF.

Input: Ĉek , Sk, ρk, ěk, Qk

Output: DR, AKF, biased, unbiased, stationary, non-
Gaussian, Gaussian
While Ĉek �= Sk

If ρk < −2√wm && ρk > +2
√
wm

ěk ← biased
error← non-Gaussian
Swap← DR (when ρk ← high)
Qk ← Qk+1(Until ěk ← stationary)

End If
End While
While Ĉek = Sk

If ρk > −2√wm && ρk < +2
√
wm

ěk ← unbiased
error← Gaussian
Swap← AKF (when ρk ← low)

End If
End While

4. Performance evaluation

The performance of the OIAE-KF is done based on
dynamic error models for measuring noise uncertainty
(Rauh et al., 2013). The state variables are the position
and velocity based on the acceleration. The system state

is defined as the 2D coordinates (x-axis and y-axis) of the
position and the velocity. Here X is the state variable
(Korbicz et al., 1994). The positions at the x-axis and
the y-axis are denoted as px and py , respectively. The
velocities at the x-axis and y-axis are denoted as vx and
vy , respectively. Acceleration is the control force, and it is
denoted as ax and ay at the x-axis and y-axis, respectively.
ΔT is the time lag for one second (Thiemann et al., 2008),

xk =

⎡

⎢⎢⎣

px(k−1)
+ vx(k−1)

ΔT + ax
1
2ΔT 2

py(k−1)
+ vy(k−1)

ΔT + ay
1
2ΔT 2

vx(k−1)
+ axΔT

vy(k−1)
+ ayΔT

⎤

⎥⎥⎦ . (23)

Thus the state variables are preprocessed and submitted
into the Kalman filter for estimation.

4.1. Error model. In the VANET environment the
vehicles are subject to different noise signals. Noise is the
error or an undesired random distribution of information
(Langbein and Johnson, 1997). In this paper, three
different noise types are used, such as stationary white
noise, dynamic non-stationary noise, and correlated noise
based on the environmental conditions (Kato et al., 2002).
Noise1 is the combination of stationary white noises with
zero mean, Noise2 is non-stationary white noise with
time-varying variance, and Noise3 is correlated noise.
Using different noise types helps prove the effectiveness
of the proposed algorithm.

Stationary white noise occurs when vehicles travel
on highways and in rural environments (Montillet et al.,
2012). In contrast, non-stationary white noise occurs
during traveling in harsh environments such as urban
areas, cloudy or misty weather, and tunnels (Lee and
Lim, 2013). In those situations, signals are affected
and damaged. Many researchers in the VANET
positioning context analyzed these noise types. Noise1
generally occurs under Line of sight (LoS) measurement
conditions such as GNSS-based positioning in a blue sky
environment (Lobo et al., 1995). Noise1 appears on
the highway or in rural environments. Noise2 occurs
when vehicles travel in harsh environments such as clouds
and trees. Cloud water bodies could absorb the signals
(Hubaux et al., 2004). Noise3 happens explicitly, such as
in tunnels, under bridges, and downtown areas. The noise
types are illustrated in Table 1, where MW is the moving
window size. The moving window size is 120, and the
sampling rate is 100 milliseconds.

4.2. Simulation model. This section describes the
simulation setup and the simulation process, along with
the results obtained from the simulation. The simulation
starts with two phases regarding traffic simulation and
network simulation. Simulation for Urban Mobility
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(SUMO) generates road traffic, and Network Simulator 2
(NS2) runs network simulation.

MATLAB is used for computation (Le et al.,
2009). SUMO is a highly portable and open source
software for traffic simulation, and it can manage a
huge network. SUMO uses a microscopic view and a
continuous mobility model. Due to microscopic traffic
generation, each vehicle in the simulation is explicitly
defined. Every vehicle is defined with a unique path and
a unique identifier. In this paper, for effective simulation,
each vehicle is fixed with source destination metrics (S/D
metrics). This S/D metric holds the source and the
destination address. A network file is attached to SUMO
simulation for the road network. Network files create a
realistic road map on which vehicles run.

In this paper, network files can be created manually
by writing route codes, but this is a tough task to create
complex networks, and this method is obsolete. For
a realistic road map, we have to generate a network
file acquired from the real world map in the form of
openstreemap.org. Figure 3 shows the street map
of Coimbatore city’s OSM file. The map is downloaded
as an OSM file, which is edited using the JOSM Java
OpenStreetMap editor (Byrski et al., 2019). The JOSM
editor removes all the routes and makes the network file
more elegant.

The next stage of editing the OSM file is to create the
network file (i.e., convert the OSM file to a net file). For
this, the SUMO simulator uses the netconvert command
line. This command takes the .osm file as the input and
delivers the .net file. Different SUMO scenarios have
a .sumo.cfg file representing the corresponding network
and the routing files along with the starting point and
the end point of the simulation. .sumo.cfg is called the
configuration file and is created by joining the network file
and the route file. The SUMO traffic simulator is complete
now, and the next step is to simulate the network. Figure 4
shows the network file running in SUMO.

The purpose of network simulation is to configure
the computer network before it being implemented in
the real world. In this paper, Network Simulator 2
is used for network simulation (Milanés et al., 2013).
The NS2 simulator compares different networks and
makes the user understand the performance problems in
the network. NS2 supports a huge simulation scenario
where the number of nodes can be up to 20000. This
factor makes the simulation results more naturalistic. To
simulate the V2V (vehicle to vehicle) communication, the
traffic simulator and the network simulator should run
simultaneously (Chabir et al., 2018). For this purpose,
a TCP connection is used. The protocol used for
TCP communication is TraCl (Traffic Control Interface)
which provides bidirectional and coupled execution of
the road traffic and network traffic. The nodes in NS2
simulation reflect the movement of vehicles in the SUMO

Fig. 3. Street map of the Coimbatore city (OSM file).

Fig. 4. Network file running in SUMO.

Table 1. Noise types with different errors.
Noise type μ σ

Noise1 0 mw 10 mw
Noise2 0 mw rand() mw
Noise3 f(t) mw f(t) mw

traffic simulator (Xu et al., 2004). A new file called
launched.xml is created to access the routing file and
the network file. NS2 simulation works based on the
necessary parameters, which are modified per module.
These parameters are used in the simulation in the form of
the .ini file, which contains details about the network area
size and the physical and application layers’ information.
The IEEE 802.11p protocol is used in the physical
layer for adding wireless access in vehicular environment
(WAVE). TraClMobility is the mobility model used in
this simulation. Finally, after completing all the steps
mentioned above, NS2 simulation is performed. The
vehicle movement in the simulation is controlled by
both traffic simulation and network simulation (Skog and
Handel, 2009). The trace file stores all the information of
the communication among the vehicles.

4.2.1. Synchronization among simulators. The
MATLAB computational simulator executes algorithms
which are in mathematical form. MATLAB supplies its
results to the NS2 simulator for performance analysis. To
ensure synchronization between all the three simulators,
blocking characteristics of sockets are utilized. First, the

openstreemap.org
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NS2 code reaches the configuration phase. This NS2
script is blocked at the beginning of the simulation. Now
the traffic simulator is initiated. A set of vehicles goes
into the communication network during a steady state.
NS2 gathers their position information along with the
time when the vehicles reached the network (Golestan
et al., 2015). For every simulation, the sampling time
is scheduled for getting the computational results from
MATLAB (Xi and Cheng-dong, 2017). Figure 5 shows
synchronization among the simulators.

Three-position prediction algorithms such as the
basic Kalman filter, the IAE-KF, and the OIAE-KF have
been implemented using MATLAB. Next Generation
Simulation (NGSIM) trajectory dataset has been used to
evaluate the proposed algorithm’s effectiveness. NGSIM
collects datasets that hold real-world vehicles’ trajectories
collected to know the driving behavior. NGSIM provides
a commonly available and quality dataset that illustrates
vehicles’ kinematic information. It is an open-source
dataset used to model the simulation part of VANET and
compute the vehicle trajectory and driving behavior in
VANET. The acceleration value is obtained from the speed
over time of a vehicle. An exponential weight moving
average method regulates velocity measurements. The
direction of the vehicle is derived from the position change
from the x-axis to the y-axis.

The NGSIM dataset is divided into two clusters such
as lane changing and car flowing based on the driving
behavior (Alam and Dempster, 2013). The K-means
clustering method clusters driving behavior. Totally
50 vehicles are used for evaluation, and 25 vehicles
are selected for each cluster. K is the sample size
selected from each cluster. As can be seen in the error
models section, various environmental noise signals have
been used to evaluate the effectiveness of the proposed
OIAE-KF method. Three noise types were injected
into vehicles’ kinematic information to represent the
dynamic noise effect. The noise injection technique is
a widely used method to determine the robustness of
the proposed technique. For position information and
kinematic information, the sampling of 100 milliseconds
is used for the positioning update rate. Table 2 shows the
simulation of VANET with various parameters. Figure 6
shows network simulation using NS2.

4.3. Performance metrics. The effectiveness of the
proposed method over the existing methods is evaluated
using performance metrics. The divergence ratio, the
root mean squared error (RMSE) and accuracy are
the common performance metrics used in this paper
to compare the proposed and existing Kalman filter
algorithms.

Fig. 5. Synchronization among simulators.

Fig. 6. Network simulation using NS2.

Table 2. Simulation parameters.
Parameter Value

Traffic simulator SUMO
Network simulator NS 2.34

Map model OSM (Coimbatore City)
Transport protocol TCP, UDP
Routing protocol DSR, DSDV, AODV

Number of vehicles 50

Table 3. Divergence ratio.
Type of noise IAE-KF OIAE-KF

Noise1 4% 0%
Noise2 12% 0%
Noise3 20% 0%

4.3.1. Divergence ratio. When the covariance matrix
grows gradually, it indicates the presence of filter
divergence. Table 3 shows a comparison of the
divergence ratio among the proposed OIAE-KF and
IAE-KF algorithms. As shown in the table, the OIAE-KF
outperforms other algorithms in terms of the divergence
ratio. The swapping decision between a DR and the AKF
ensures that the theoretical covariance always remains
in a positive definite state. In contrast, the IAE-KF is
not stable for a dynamic environment such as VANET.
Experiments suggest that the IAE-KF is sensitive to
correlated noise signals and changes in the measurement
noise distribution (ZhiWen et al., 2013). The proposed
OIAE-KF method provides 0% of filter divergence.

4.4. Root mean squared error. The RMSE evaluates
the error rate obtained by the filters. It is mostly used as
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Table 4. Estimates and error analysis between the IAE-KF and the OIAE-KF for the position at the x-axis.
Window Actual position Estimated position Error in Estimated position Error in

size (x-axis) [cm] using IAE-KF [cm] the IAE-KF [cm] using OIAE-KF [cm] the OIAE-KF [cm]

15 117.48 91.44 26.04 114.34 3.14
30 567.24 438.2 129.04 559.65 7.59
60 1925.3 1723.19 202.11 1890.11 35.19
90 3915.44 3720.56 194.88 3895.42 20.02
100 5828.31 5641.26 187.05 5781.13 47.18
120 7296.05 6956.7 339.35 7191.67 104.38

Table 5. Estimates and error analysis between the IAE-KF and the OIAE-KF for the position at the y-axis.
Window Actual position Estimated position Error in Estimated position Error in

size (y-axis) [cm] using IAE-KF [cm] the IAE-KF [cm] using OIAE-KF [cm] the OIAE-KF [cm]

15 271.43 150.34 121.09 253.25 18.18
30 628.57 529.28 99.29 610.11 18.46
60 2753.45 2210.72 542.73 2739.25 14.2
90 4934.81 4521.98 412.83 4928.17 6.64
100 6614.56 6017.83 596.73 6598.61 15.95
120 8251.99 7864.47 387.52 8210.48 41.51

a performance metric to determine the effectiveness of an
algorithm. It is defined as

RMSE =

√√√√ 1

n

n∑

i=1

(x̂i − xi)2. (24)

Equation (24) illustrates the formulation of the RMSE,
where n is the total number of terms for which the RMSE
is to be calculated, xi is the observed value, and x̂i is the
predicted value. Table 8 shows the RMSE for both the
IAE-KF and OIAE-KF positioning algorithms used for
comparison.

4.5. Accuracy. Accuracy is another metric that
delivers real performance of the proposed method
(Golestan et al., 2015). The technique aims to attain
an accurate measurement of the vehicle position. The
positioning accuracy is

Accp = Postrue − Posest. (25)

where Postrue denotes the actual position and Posest

denotes the estimated position. Accurate vehicle position
estimates are shown in Tables 4–7. The divergence ratio
and the RMSE lead to the measurement of accuracy in
prediction. As can be seen earlier, accuracy is the primary
factor in vehicle positioning. Figures 7–10 show the graph
representing the position accuracy between the proposed
methods and the existing one.

5. Conclusion

Several approaches have been proposed to vehicle
positioning in VANET. None of the techniques
accomplish an accurate vehicle position. From the
observation, the existing methods work well in a
controlled environment (Xi and Cheng-dong, 2017),
which is explained in Section 1. In most of the existing
methodologies, noise covariance is assumed to be
stationary, but it may vary based on the environmental
conditions (Mrugalski, 2013). This noise variation factor
reduces the accuracy of position estimation.

The Kalman filter is a common method used for
predicting the current position of a vehicle. But the filter
is suitable only for stationary white noise. Therefore, the
problem statement is found in the basic Kalman filter and
the innovation based adaptive estimation Kalman filter in
Section 2.

In this paper, the optimal innovation based adaptive
estimation Kalman filter (OIAE-KF) is introduced.
The proposed algorithm offers an alternative solution
to positioning problems in the existing IAE-KF. In
most known positioning algorithms, measurement noise
covariance is kept unknown. Only the process noise
covariance has been changed for estimation. Nevertheless,
the received signals contain noise other than white noise.
In this paper, dynamic noise signals were injected into the
VANET nodes to create the dynamic noise environment
during simulation (Yim et al., 2011).

The proposed OIAE-KF considers the innovation
sequence. By applying the innovation property to the
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Table 6. Estimates and error analysis between the IAE-KF and the OIAE-KF for the velocity along the x-axis.
Window Actual velocity Estimated velocity using Error in Estimated velocity Error in

size (x-axis) the IAE-KF the IAE-KF using the OIAE-KF the OIAE-KF
[cm/s] [cm/s] [cm/s] [cm/s] [cm/s]

15 37.5 47.19 – 9.69 35.9 1.6
30 96.3 117.68 – 21.38 95.11 1.19
60 174.81 269.42 – 94.61 169.54 5.27
90 268.83 311.87 – 43.04 261.43 7.4

100 391.63 469.21 – 77.58 389.34 2.29
120 504.97 619.72 – 114.75 501.49 3.48

Table 7. Estimates and error analysis between the IAE-KF and the OIAE-KF for the velocity along the y-axis.
Window Actual velocity Estimated velocity using Error in Estimated velocity Error in

size (y-axis) the IAE-KF the IAE-KF using the OIAE-KF the OIAE-KF
[cm/s] [cm/s] [cm/s] [cm/s] [cm/s]

15 41.21 35.9 5.31 42.47 – 1.26
30 90.33 99.72 – 9.39 91.83 – 1.5
60 197.62 235.87 – 38.25 193.45 4.17
90 259.98 293.81 – 33.83 251.84 8.14

100 428.5 459.65 – 31.15 419.06 9.44
120 683.02 702.28 – 19.26 679.12 3.9

Table 8. RMSE between the IAE-KF and the OIAE-KF.
Algorithm Position (x-axis) Position (y-axis) Velocity (x-axis) Velocity (y-axis)

IAE-KF 202.6 407.38 71.34 26.02
OIAE-KF 49.71 21.96 4.16 5.65

innovation sequence, the divergence of the error is kept
in control. When deviations occur, or a non-Gaussian
curve, the estimation swaps to dead reckoning and the
measurement noise covariance increases with time until
the noise becomes stable white noise (Ghaleb et al.,
2016). This idea increases the Kalman filter’s accuracy
level and maintains an optimal level, which improves the
vehicle’s reliability. This is explained in Section 3. The
performance of the proposed OIAE-KF is compared with
the existing IAE-KF. The simulation results prove that
OIAE-KF works better in dynamic noise environments,
which is described in Section 4.

A performance comparison is made between the
IAE-KF and the OIAE-KF with the actual precise position
of the vehicle. The results are exposed as tables with
the following items: the window size, the position
estimated using the IAE-KF, the error in the IAE-KF, the
position estimated using the OIAE-KF, and the error in
the OIAE-KF. The estimated position at the x-axis and the
error between the IAE-KF and the OIAE-KF are shown in
Table 4. From these results, the IAE-KF could estimate
an accurate position with an accuracy of 89.32%. But the
proposed OIAE-KF could reach an accuracy of 98.89%.

The positioning difference between the actual
position measured along the x-axis and the IAE-KF is
about 179.74 cm, while in the OIAE-KF, positioning
differs only by 36.25 cm. The position at the y-axis and
the error in positioning are exposed in Table 5. The
IAE-KF estimates the real position with an accuracy of
90.79% while the OIAE-KF reaches the real position up
to 99.50%. Table 6 illustrates the velocity at the x-axis,
and that an error occurred. The IAE-KF overestimates
the actual velocity of about 60.17 cm/s. The velocity
measured by the IAE-KF attains an accuracy of 75.50%.
In contrast, the proposed Kalman filter offers an accuracy
of about 98.55%. The OIAE-KF makes an error only
of 3.53 cm/s. Velocity measurements at the y-axis are
shown in Table 7. On verifying Table 7, IAE-KF meets the
accuracy level of 92.55%, and the OIAE-KF could attain
98.65% accuracy. The IAE-KF produces an error of about
21.09 cm/s. The OIAE-KF causes error only for 3.82
cm/s. From these analytical results, it is confirmed that the
proposed method outperforms the existing one. Figures
7–10 shows graphs representing the comparison between
the IAE-KF and OIAE-KF positioning with the actual
position. The graphs show that the proposed method
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Fig. 7. Estimation analysis between the IAE-KF and the OIAE-
KF for the position at the x-axis.

Fig. 8. Estimation analysis between the IAE-KF and the OIAE-
KF for the position at the y-axis.

Fig. 9. Estimation analysis between the IAE-KF and the OIAE-
KF for the velocity along the x-axis.

Fig. 10. Estimation analysis between the IAE-KF and the
OIAE-KF for the velocity along the y-axis.

estimates the position more accurately than the existing
one. In conclusion, the proposed OIAE-KF performs
better than the existing IAE-KF method.
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