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At present, most high-accuracy single-person pose estimation methods have high computational complexity and insufficient
real-time performance due to the complex structure of the network model. However, a single-person pose estimation method
with high real-time performance also needs to improve its accuracy due to the simple structure of the network model. It
is currently difficult to achieve both high accuracy and real-time performance in single-person pose estimation. For use
in human–machine cooperative operations, this paper proposes a single-person upper limb pose estimation method based
on an end-to-end approach for accurate and real-time limb pose estimation. Using the stacked hourglass network model, a
single-person upper limb skeleton key point detection model is designed. A deconvolution layer is employed to replace the
up-sampling operation of the hourglass module in the original model, solving the problem of rough feature maps. Integral
regression is used to calculate the position coordinates of key points of the skeleton, reducing quantization errors and
calculations. Experiments show that the developed single-person upper limb skeleton key point detection model achieves
high accuracy and that the pose estimation method based on the end-to-end approach provides high accuracy and real-time
performance.

Keywords: convolutional neural network, stacked hourglass network, skeleton key point, single upper limb pose estimation,
human–machine coordination.

1. Introduction

In human–machine cooperative operations, the robot
must estimate the pose of a single upper limb of the
operator accurately and in real time and provide the pose
information for trajectory prediction (Hu et al., 2019;
Zhou et al., 2020) of the upper limb, to enable safe
human–machine cooperation without collision (Zlatanski
et al., 2019).

In general, when using a convolutional neural
network (Li et al., 2017; Ning et al., 2020) for pose
estimation, the position coordinates of the key points
of the human skeleton are directly regressed using the
input image or video. Toshev and Szegedy (2015)
proposed a human pose estimation method based on
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the AlexNet network framework, which represents the
human pose estimation problem as the regression of
key points of the human skeleton. Subsequently, Fan
et al. (2015) proposed a dual-source deep convolution
neural network in which the local parts were combined
with the overall view, enabling more accurate human
pose estimation. However, the direct regression method
is not suitable for low-resolution images, has high
computational complexity, and has difficulty ensuring the
accuracy of the position coordinates of the key points.
Therefore, based on the heat map method (Tompson
et al., 2015; Hu and Ramanan, 2015; Lifshitz et al., 2016),
Pfister et al. (2015) proposed a deeper convolutional
neural network for human pose estimation. This method
successfully transforms the problem of human pose
estimation into one of human skeleton key point detection.

mailto:{m201972557,penggang}@hust.edu.cn


124 G. Peng et al.

Later, Yang et al. (2016) proposed an end-to-end
human pose estimation framework, in which a deep
convolution neural network was combined with a tree
structure diagram model, but the calculation efficiency
of the model was low and the real-time performance
required improvement. Further, Wei et al. (2016)
proposed a convolutional pose machine model based on a
convolutional neural network to remedy the low efficiency
of the graph model and to make reasonable use of the
spatial position information, texture information, and
intermediate constraint relationship of the human body
structure. The model abandons the graph method, uses
a large convolution kernel to enhance the receptive field,
and uses multi-stage regression to improve the accuracy
of pose estimation. However, the large convolution
kernel causes high computer resource consumption. To
overcome this issue, Newell et al. (2016) proposed a
multi-stage regression stacked hourglass network model
in which the multi-scale feature method was used to
capture the spatial position information of each key point
of the human skeleton, yielding the position coordinates
of each key point. This method greatly improved the
receptive field and reduced the amount of calculation.

Subsequently, Chu et al. (2017) designed a novel
hourglass residual unit, in which the stacked hourglass
network model and attention mechanism were combined
to solve the problem of incorrect estimation under a
complex background or self-occlusion. Simultaneously,
Yang et al. (2017) used the pyramid residual module
based on the stacked hourglass network model and
studied the multi-branch network weight initialization
method to enhance the accuracy of human skeleton
key point detection. Xiao et al. (2018) designed a
simple baseline for easy and efficient human posture
estimation in top-down mode. Sun et al. (2019) designed
a neural network called HRNet, which has a unique
parallel structure and can maintain a high-resolution
representation at all times, significantly improving the
effectiveness of pose recognition. Its computation is
related to the network size. Zhang et al. (2019) proposed
a model training method of fast pose distillation (FPD),
which can train ultrasmall human pose neural networks
more effectively and maintain sufficient accuracy, but
its use of other networks to correct manual labeling is
not reasonable enough. Artacho and Savakis (2020)
presented the UniPose and UniPose-lstm architectures for
single-image and video pose estimation. UniPose uses
WASP to improve the accuracy of subject pose estimation.

To achieve the accuracy and real-time performance
requirements of single upper limb pose estimation
in human–robot collaboration, this paper proposes a
single upper limb pose estimation method based on
an end-to-end approach. A single-person upper limb
skeleton key point detection model was designed using
a stacked hourglass network model with high accuracy

and real-time performance, and the hourglass module and
human skeleton key point coordinate calculation method
in the detection model were improved to increase the
detection accuracy. A deconvolution layer (Long et al.,
2015) was employed to replace the up-sampling operation
of the hourglass module in the original model, solving the
problem of rough feature maps. Integral regression (Sun
et al., 2018) was used to calculate the position coordinates
of key points of the skeleton, consequently reducing
quantization errors and calculations. Experiments showed
that the improved single upper limb skeleton key point
detection model is effective and that the single upper limb
pose estimation method based on the end-to-end approach
provides high accuracy and real-time performance.

The specific content and structure of this paper are
as follows. Section 1 introduces the background and
significance of the study, expounds the research status
of single-person pose estimation, and analyzes the key
technical issues involved in this paper. Section 2 describes
the fundamentals of human posture estimation. Section 3
introduces two methods for estimating the pose of a single
person upper limb. Section 4 describes the design and
improvement of a single upper limb skeleton key point
detection model. Section 5 verifies the improved detection
model described in Section 4, conducts experiments
comparing the end-to-end approach with the cascade
approach, and conducts comparative experiments on two
methods of single-person upper limb pose estimation, and
analyzes the experimental results. Section 6 summarizes
the main work of this paper, and analyzes the limitations
and expectations of the study.

2. Fundamentals of human posture
estimation

2.1. Structural model of the human posture. There
are four common models for human postural structures:
stick models, carton models, geometric models, and 3D
fine models, as shown in Fig. 1.

Fig. 1. Common structural models of the human body.

Fig. 2. Single upper limb posture structural model.
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Table 1. Common datasets for single-person pose estimation.
Dataset Basic characteristics Information and number of key markers

FLIC Number of samples: 5K, whole body Coordinates, visibility, number: 9
LSP Number of samples: 2K, whole body Coordinates, visibility, number: 14
MPII Number of samples: 25K, whole body Coordinates, visibility, number: 16

COCO Number of samples: ≥30W, whole body Coordinates, visibility, number: 17

Fig. 3. Some samples from the image library.

For the single upper limb posture estimation method
used in this study, the aim is to detect seven skeletal key
points of the human upper limb and connect the key points
into a single upper limb structure. The seven skeletal key
points include right and left wrist key points, right and left
elbow key points, right and left shoulder key points and
neck key points. In this study, the stick model (Andriluka
et al., 2014) was used to characterize the human posture,
and the structural model of the single upper limb posture
is shown in Fig. 2.

2.2. Production of data sets. Among the available
datasets for single-person pose estimation, commonly
used datasets are FLIC, LSP, and MPII (Andriluka et al.,
2014), as shown above in Table 1. Since the datasets
mentioned above are open source, deep learning can rely
on these powerful datasets to improve the performance of
human pose estimation. Before using the MPII dataset,
the dataset needs to be pre-processed. The annotation
information related to this experiment is written into a
JSON format annotation file. The annotation file contains
image information, body position information, body head
position information, data information on the key points
of the upper limb skeleton of the human body, and
training set or test set annotation data. Among them, the
data information of the skeletal key point of the upper
limb contains the ID number, position coordinates and

visibility of the skeletal key point.

Apart from the MPII dataset, a self-made dataset is
also necessary. By simulating an indoor environment in
which robots and humans operate together, a monocular
camera is used to capture images of single human upper
limbs and create a library of images of single human
upper limbs. A total of 2,500 single upper limb images
were included in the image library, and the images were
numbered IMG 0000-2499. Some sample images in the
image library are shown in Fig. 3. In the established image
library, the Labelimg image annotation software was used
to annotate the position of the human body, the position
of the human head, and the position of key points of the
upper limb skeleton. For the allocation of the training and
test sets, a ratio of 4 to 1 was used to assign the training set
and test set, and the relevant information obtained above
was written to the annotation file.

2.3. Evaluation criteria for single upper limb pos-
ture estimation. In this study, the percentage of correct
keypoints head length (PCKh) metric (Andriluka et al.,
2014) was used as an evaluation criterion for single upper
limb posture estimation. PCKh specifically means the
percentage of detections that fall within a normalized
distance of the ground truth. This can be calculated in
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the following manner:

PCKh@σ

=
1

K

K∑

k=1

(
1

N

N∑

i=1

1
( ‖ yik − ŷik ‖2
‖ yilhip − yirsho ‖2

≤ σ
))

. (1)

Here, N is the number of samples, k is the k-th skeletal
key, ‖ yik − ŷik ‖2 is the distance between the predicted
position coordinates of the skeletal key and the true
position coordinates, and ‖ yilhip − yirsho ‖2 is the longest
distance of the human head; σ represents a threshold
value; in general, σ is 0.5.

3. Single upper limb pose estimation

3.1. Single upper limb pose estimation method based
on the end-to-end approach. The single upper limb
pose estimation method based on the end-to-end approach
uses a single upper limb skeleton key point detection
model. The process proceeds as follows:

(i) Compare the numbers of rows and columns in the input
image to obtain a larger value of M . Then fill the input
image with M rows and M columns and adjust the filled
square image to 256×256 pixels. Here, the input size of
the detection model is 256×256.

(ii) Using the image processed in the first step as the
input of the single upper limb skeleton key point detection
model, detect the key points and obtain the position
coordinates of the key points.

(iii) Connect the single upper limb skeleton key points
obtained in the second step in a single upper limb
pose structure model based on the position relationship
between the skeletal key points and the connection
between them in Fig. 1.

The flow chart of the method based on the end-to-end
approach is shown in Fig. 4.

3.2. Single upper limb pose estimation method based
on the cascade method. The single upper limb pose
estimation based on the cascade method uses a human
detector and a single upper limb skeleton key point
detection model. The specific process is as follows: Use
the YOLOv3 network model (Redmon and Farhadi, 2018)
as a human body detector to detect a single human
body and to obtain a human body detection frame; after
expanding the human body detection frame by 15%, cut
the input image according to the expanded human body
detection frame to obtain the body image. The remaining
steps are the same as those of the end-to-end approach.

The flow chart of the method based on the cascade
method is shown in Fig. 5.
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Fig. 4. Flow chart of single-person upper limb pose estimation
method based on the end-to-end approach.
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Fig. 5. Flow chart of single upper limb pose estimation method
based on the cascade method.

4. Single upper limb skeleton key point
detection

The following introduces the method of designing the
single upper limb skeleton key point detection model.

4.1. Original design of the detection model. The
process of designing the single upper limb skeleton key
point detection model is as follows.

4.1.1. Structural design of the model. This study
was based on the model structure of a stacked hourglass
network, and a single upper limb skeleton key point
detection model was designed that outputs only seven key
points of the human upper limb. These points include the
left and right wrists, the left and right elbows, the left
and right shoulders, and neck key points. To verify that
the stacked hourglass network model composed of eight
first-order hourglass modules provides better accuracy
and real-time detection performance for the skeleton key
points, a number of single upper limb skeleton key point
detection models were designed with different numbers
and orders of hourglass modules and relevant experiments
were performed. Table 2 shows the accuracy and real-time
performances of the detection models with different
hourglass module numbers and orders. The models are
named using the form sh [number of hourglass modules]
[order of hourglass modules], and each model was trained
on the MPII data set and fine-tuned using the self-made
training set. The times in Table 2 are the processing times
of the models.
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Table 2. Experimental results of multiple single upper limb
skeleton key point detection models.

Model
name

Accuracy PCKh@0.5/% Time/
msShoulder Elbow Wrist

sh21 92.9 87.5 84.4 72
sh22 93.6 88.0 84.9 109
sh24 94.3 88.7 85.6 168
sh41 94.0 88.4 84.9 117
sh42 94.5 89.0 85.6 185
sh44 95.2 89.6 86.4 293
sh81 94.7 89.1 85.8 175

First stage:
reduce the

resolution of the
input image

Second stage: predict
the thermal diagram of
the key points of the

single upper limb
skeleton, and modify it

Third stage: output
the thermal diagram

of key points of
single upper limb

skeleton

Fig. 6. Structural flow chart of the single upper limb skeleton
key point detection model.

It can be seen from Table 2 that as the number
and order of hourglass modules increase, the accuracy
of the single upper limb skeleton key point detection
model increases, but the real-time performance requires
improvement. The single upper limb skeleton key point
detection model composed of eight one-stage hourglass
modules provides reasonable accuracy and real-time
performance. Therefore, in this study, eight first-order
hourglass modules were used to design the detection
model according to the structure of a stacked hourglass
network.

It can be seen from Fig. 6 that the structural flow
chart of the single upper limb skeleton key point detection
model is divided into three stages. The structure of this
detection model is shown schematically in Fig. 7. The
first stage (Fig. 7(a)) is mainly used to convolve the
input image, which is then passed through the residual
module and lower sampling layer, to reduce the resolution
of the input image. The main purpose of the second
stage (Fig. 7(b)) is to stack seven modules, including
a first-order hourglass module, a residual module, a
convolution layer, a batch normalization module, and
an activation function layer, to predict the heat map of
the key points of the single upper limb skeleton and
to revise the heat map continuously. The third stage
(Fig. 7(c)) is mainly composed of a first-order hourglass
module, a residual module, a convolution layer, a batch
normalization module, and an activation function layer.
The purpose is to output the heat map of the key points of
the single upper limb skeleton after constant correction.

The structure diagrams of the residual and first-order
hourglass modules are shown in Fig. 8.
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Fig. 7. Structural flow charts of the first (a), second (b), and
third (c) stages of the single upper limb key point de-
tection model.

4.1.2. Loss function. In the process of training the
detection model of the single upper limb bone key points,
the mean square error (MSE) is used as the loss function
to calculate the error between the predicted and actual heat
maps of the upper limb skeletal key points of the human
body, so that the hourglass module can be evaluated more
accurately:

MSEa =
1

m

m∑

n=1

(
ŷan − yan

)2

. (2)

Here, m is the total number of pixels in the heat map of the
single upper limb skeletal key points, ŷan is the probability
corresponding to each pixel position n in the predicted
heat map of the a-th upper limb skeletal key points, and
yan is the probability corresponding to each pixel position
n in the actual heat map of the a-th upper limb skeletal
key points.

4.1.3. Calculation of position coordinates of the
key points of a bone. In the detection model, the
maximum likelihood method is used to calculate the
position coordinates of the skeleton key points. The
position corresponding to the pixel with the greatest
probability in the heat map of the skeleton key points is
taken as the position coordinate of the skeleton key point,
which can be expressed as follows:

Jk = argmax
p

Hk(p). (3)

Here, Jk is the position coordinate of the k-th skeleton key
point of the upper limb, p is the position in the heat map of
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Fig. 8. Structure diagrams of the residual (a) and first-order
hourglass (b) modules.
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Fig. 9. Structure diagram of the improved first-order hourglass
module.

the skeleton key point, and Hk is the predicted heat map
of the skeleton key point.

With the original design of the single upper limb
skeleton key point detection model, the accuracies of
the key point detection of the elbow and wrist of the
test sample image are 89.1% and 85.8%, respectively.
To increase the accuracy, it is necessary to improve the
original design of the single upper limb skeleton key point
detection model.

4.2. Improved detection model design. The
following describes the process of improving the
single-person upper limb skeleton key point detection
model from two aspects.

4.2.1. Improvement of the hourglass module. The
hourglass module in the original design of the detection
model uses the nearest neighbor interpolation method for
the up-sampling operation of the feature map. In this
method, the content of the feature map is copied directly
to expand the feature map, causing the feature map to be
rough. Therefore, in this study, we used a deconvolution
layer (Long et al., 2015) to expand the feature map
by slightly improving the up-sampling operation in the
hourglass module to obtain a more precise feature map.

The specific structure diagram is shown in Fig. 9.
The convolution kernel parameter in deconvolution

layer is determined while training the network, and the
relation between the dimensions of the input and output
characteristic graphs of the deconvolution layer can be
expressed as follows:

Outputsize = stride · (Inputsize − 1)

+ Kernelsize − 2 · padding.
(4)

Here, Outputsize is the size of the output feature map,
Inputsize is the size of the input feature map, Kernelsize is
the size of the convolution kernel, and ‘padding’ is the fill
parameter.

Finally, within the hourglass module, the feature map
is up-sampled by a deconvolution layer to restore it to the
same size as the input image.

4.2.2. Improvement of skeleton key point coordi-
nate calculation. Because the original design of the
detection model uses the maximum likelihood value
to calculate the position coordinates of the skeleton
key points, the accuracy of the detection model is
easily affected by the down-sampling operation. After
down-sampling, the resolution of the heat map of the key
points of the single upper limb skeleton is much lower
than that in the original image, leading to an irreversible
quantization error.

Simultaneously, if the heat map of the key points of
the human upper limb skeleton adopts a relatively high
resolution, it will cause complex calculations, increased
memory consumption, and low real-time performance.
Therefore, in this study, integration regression (Sun
et al., 2018) was used instead of the maximum likelihood
method to calculate the position coordinates of the key
points of the skeleton, that is, to calculate the integral of
all positions in the heat map of the skeleton key points of
the upper limb, and the calculation results were taken as
the results for the key points of the skeleton, which can be
expressed as follows:

Jk =

∫

p∈Ω

p ·H ′
k(p)

H ′
k(p) =

eHk(p)

∫
q∈Ω

eHk(q)
.

(5)

In a two-dimensional heat map of the key points
of the human upper limb skeleton, Eqn. (5) can be
transformed into

Jk =
H∑

py=1

W∑
px=1

p · eHk(p)

∫
q∈Ω eHk(q)

. (6)

Here, Jk is the position coordinate of the k-th
skeleton key point of the human upper limb, p is the
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position of the heat map of the skeleton key point of the
human upper limb, and Ω is the area of the heat map; H ′

k

is the normalized heat map.
In this study, the improved detection model was

trained on the MPII data set and fine-tuned on the
self-made training set. In the self-made test set, the key
points of the single upper limb skeleton in the test sample
image were detected, and the detection effects are shown
in Fig. 10.

5. Experimental results and analysis

5.1. Setting of experimental parameters and hard-
ware conditions.

5.1.1. Setting of experimental parameters. To train
and fine-tune the original and improved single upper
limb skeleton key point detection models, the training
parameters were set as shown in Table 3.

5.1.2. Hardware conditions in the experiment. The
hardware conditions used in the comparison experiments
in this study are shown in Table 4.

5.2. Comparison experiments and results analysis.
The comparison experiments performed in this study
included single upper limb skeleton key point detection
model and single upper limb pose estimation method
comparisons as well as the analysis of the experimental
results.

5.2.1. Single upper limb skeleton key point detec-
tion model comparison. To confirm the validity of
the improved model, the original model, the improved
model, the cascaded pyramid network model, and
the convolutional pose machine network model were
compared in the same environment with the same test
set. Among them, the cascaded pyramid network model
and the convolution attitude network model were retrained
on the MPII dataset and a self-made training set. The
base network for the cascading pyramid network model
uses ResNet-101 with an input image size of 384*288,
whereas the convolutional pose machine network model
is the generic model. In the contrast experiment, the test
sample image was zoomed to the appropriate size and then
directly input into the above four models. The accuracy
curves of four models used to detect the key points of the
elbow and wrist in the test sample image are shown in Fig.
11.

Using 0.5 as the threshold value of PCKh, the
accuracies and real-time performances of four single
upper limb skeleton key point detection models were
obtained using test samples and are presented in Table 5.
The times in the table are the model processing times.

Fig. 10. Detection effects of the single upper limb skeleton key
point detection model.

Table 3. Training parameter settings of the single upper limb
skeleton key point detection model.
Parameter name Set value or method

Order of hourglass module 1
Number of hourglass modules 8

Optimization method RMS prop algorithm
Initial learning rate 0.00025

Loss function MSE
Batch size 8

Epoch parameter 100
Number of epoch iterations 1000

Data augmentation method
Random crop,

color dither, rotation

Table 4. Hardware conditions in comparison experiments.
Operating system Ubuntu16.04 LTS

Deep learning framework Pytorch
CPU model i7-7700K

CPU frequency 4.2GHZ
RAM 32GB

Graphics card type NVIDIA TITAN XP 11G
CUDA version CUDA 8.0

As shown in Fig. 11 and Table 5, the proposed single
upper limb skeleton key point detection model improves
the detection accuracy. Compared with the cascaded
pyramid network model, the key point detection accuracy
of the improved model is only slightly different, but the
real-time performance is superior. Compared with the
convolutional pose machine network model, the improved
model has slightly higher detection accuracy and real-time
performance. Therefore, the detection model based on
the improved stack hourglass network is effective, and
achieves good accuracy and real-time performance.

5.2.2. Comparison of single upper limb pose es-
timation methods. In this study, the improved single
upper limb skeleton key point detection model was
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Fig. 11. Accuracy curves of four single upper limb skeleton key
point detection models for the elbow (a) and wrist (b).

applied in combination with two single upper limb pose
estimation methods. For the end-to-end single upper limb
pose estimation method, the experiment was conducted
according to the steps described in Section 3.1. For
the single upper limb pose estimation method in cascade
mode, the YOLOv3 network model was fine-tuned on the
self-made training set, and the single upper limb pose
estimation experiment was performed according to the
steps described in Section 3.2. For more convincing
comparisons, the original input image was zoomed to the
appropriate size and then directly input into the original
and improved designs of the single upper limb skeleton
key point detection model.

The accuracy curves corresponding to the four
methods of detecting the key points of the elbow and wrist
in the test sample images are shown in Fig. 12.
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Fig. 12. Detection accuracy curves of four single upper limb
pose estimation methods for the elbow (a) and wrist (b).

Using 0.5 as the threshold value of PCKh, the
accuracies and real-time performances of four single
upper limb pose estimation methods for single upper limb
skeleton key points were obtained by using test samples
and are presented in Table 6.

As can be seen from Fig. 12 and Table 6, the
end-to-end single upper limb pose estimation method is
slightly more accurate than directly scaling the original
input image to the appropriate size and inputting it into the
detection model. Because the original input image is filled
and then adjusted, the original horizontal-to-vertical ratio
of the image can be maintained when adjusting the image,
so that the adjusted image will not be deformed. This
approach allows the network to extract features faster and
more accurately, thus improving accuracy and real-time
performance.
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Table 5. Experimental results of four single upper limb skeleton
key point detection models.

Model name
Accuracy PCKh@0.5/% Time/

msShoulder Elbow Wrist

Convolutional
attitude
machine
network

94.0 87.4 84.2 398

Cascaded
pyramid
network

95.6 89.8 86.3 278

Original
detection
model

94.7 89.1 85.8 175

Improved
detection
model

95.4 89.6 86.6 179

Table 6. Experimental results of four single upper limb pose es-
timation methods.

Method name
Accuracy PCKh@0.5/% Time/

msShoulder Elbow Wrist

Original pose
estimation
method

94.7 89.1 85.8 175

Improved pose
estimation
method

95.4 89.6 86.6 179

Pose estimation
method based
on end-to-end
approach

95.7 89.8 86.9 171

Pose estimation
method based
on cascading

93.2 87.0 84.4 214

Compared with the end-to-end single upper limb
pose estimation method, the method obtained by
cascading a human detector and an improved single upper
limb skeleton key point detection model yielded poor
accuracy and real-time performance. These poor results
were obtained because the human detector based on
the YOLOv3 network model could not accurately detect
the human body in the original input image and the
input image of the single upper limb skeleton key point
detection model was based on the human detection results.
Therefore, the human body detector incorrectly detected
the human body in the original input image and used
the wrong human body image as the input for the single
upper limb skeleton key point detection model, reducing
the detection accuracy. Furthermore, it also needs time to
detect the human body in the original input image.

Fig. 13. Experimental results of single upper limb pose estima-
tion based on the end-to-end approach.

Fig. 14. Experimental results of single upper limb pose estima-
tion based on the cascade method.

Fig. 15. Effect of single upper limb pose estimation on each
frame in the same video.

In general, these results demonstrate that the
single upper limb pose estimation method based on the
end-to-end approach has better accuracy and real-time
performance than the cascade method.

5.2.3. Experimental results of the single-person up-
per limb pose estimation method. The experimental
results obtained using the single upper limb pose
estimation methods based on the end-to-end approach
and cascade method are shown in Figs. 13 and 14,
respectively; the results of the pose estimation experiment
for each video frame are shown in Fig. 15. It can be
seen that the proposed single-person upper limb pose
estimation method is feasible and effective.
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6. Conclusion

Based on previous research on human–machine
cooperative operation, an end-to-end single-person
upper limb pose estimation method was developed in
this study. Using the stacked hourglass network model,
a single-person upper limb skeleton key point detection
model was designed and the hourglass module and human
skeleton key point coordinate calculation method were
improved. Experiments confirmed the effectiveness of the
improved single upper limb skeleton key point detection
model. Compared with single upper limb pose estimation
based on the cascade method, the proposed end-to-end
single-person upper limb pose estimation method yields
higher accuracy and real-time performance.

This study also has some limitations, which need to
be further improved. It focuses on the estimation method
of the human upper limb pose, which can provide the pose
data for the subsequent trajectory prediction of upper limb
movement. This will be the focus of future work.
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