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The widely applied k-means algorithm produces clusterings that violate our expectations with respect to high/low simi-
larity/density within/between clusters and is in conflict with Kleinberg’s axiomatic system for distance based clustering
algorithms that formalizes those expectations. In particular, k-means violates the consistency axiom. We hypothesise that
this clash is due to the unexplained expectation that the data themselves should have the property of being clusterable in
order to expect the algorithm clustering them to fit a clustering axiomatic system. To demonstrate this, we introduce two
new clusterability properties, i.e., variational k-separability and residual k-separability, and show that then Kleinberg’s con-
sistency axiom holds for k-means operating in the Euclidean or non-Euclidean space. Furthermore, we propose extensions
of the k-means algorithm that fit approximately Kleinberg’s richness axiom, which does not hold for k-means. In this way,
we reconcile k-means with Kleinberg’s axiomatic framework in Euclidean and non-Euclidean settings. Besides contribu-
tion to the theory of axiomatic frameworks of clustering and to clusterability theory, the practical benefit is the possibility
to construct datasets for testing purposes of algorithms optimizing the k-means cost function. This includes a method of
construction of clusterable data with a global optimum known in advance.
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1. Introduction

Clustering is a domain of machine learning with quite
vague foundations. The concept of a cluster or clustering
is poorly defined. It is associated with high within-cluster
similarity and low between-cluster similarity, with high
density areas separated with low density areas, with
optimizing some cost function, with matching manually
assigned labels, with various internal and external
clustering scores, etc. (see, e.g., Madhulatha, 2012; Suchy
and Siminski, 2023). Also various axiomatic systems
have been designed defining clustering related properties,
like that of Kleinberg (2002), Ben-David and Ackerman
(2009), van Laarhoven and Marchiori (2014), Strazzeri
and Sánchez-Garcı́a (2021), Hopcroft and Kannan (2012),
and others. In particular, Kleinberg (2002) proposed three
axioms: richness, consistency and scaling invariance (see
Axioms 3, 1, 2 in Section 136). Intuitively, scaling
invariance states that the results of clustering should be
the same independently of the scale of measurement
of distances: the same result for kilometers and for
miles. Consistency says that, if an algorithm produced

a given clustering, then increasing similarities within the
same cluster and decreasing similarities between clusters
should lead to the same clustering result. Richness
means, among others, that the clustering algorithm should
itself determine the number of clusters. The conceptual
problem with all these notions is that the widely applied
k-means algorithm in its base form and derivatives does
not care about high/low similarity/density, etc., does not
usually determine the number of clusters and thus violates
two out of three Kleinberg axioms for distance based
clustering algorithms, while checking if the optimum of
its cost function is reached would require enumeration
of all possible clusterings, and hence is prohibitive in
practice.

The special attention that we pay here to Kleinberg’s
axiomatic system is due to the fact that two of his axioms
induce a method for generating new test datasets from
existing ones without the need for manual labelling of
the new sets. This is important because the development
and implementation of new algorithms in the area
of machine learning, especially clustering, comparative
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studies of such algorithms as well as testing according
to software engineering principles require availability of
labeled data sets. While standard benchmarks are made
available, a broader range of such data sets is necessary
in order to avoid the problem of overfitting. In this
context, theoretical works on axiomatization of clustering
algorithms, especially axioms on clustering preserving
transformations like that of Kleinberg (2002), are quite
a cheap way to produce labeled data sets from existing
ones, given that the respective algorithm to be tested fits
the axiomatic framework.

However, the k-means algorithmic family1 does not
fit Kleinberg’s axiomatic framework (the richness and
consistency axioms are violated). So, what is wrong with
this framework? It may be hypothesised that data that
have really a clustering structure (are clusterable) will
behave according to Kleinberg’s intuition, while at the
same time we cannot expect such a behavior when the data
do not have the clusterability property. In this paper we
demonstrate that this hypothesis is accurate with respect
to k-means.

We recall some earlier work in Section 2. Then
in Section 3 we demonstrate that, if the data have
the clusterability property that we call variational
k-separability, then Kleinberg’s consistency axiom holds
for k-means. Furthermore, it is possible to construct
a k-range-means algorithm that generalizes k-means by
automatic selection of k, for which all three Kleinberg
axioms hold for data with variational k-range-separability,
when adding the restriction to the consistency axiom that
data concentrations within a cluster are not created.

The deficiency of the proposal in Section 3 is
that it is applicable to the Euclidean space only, while
the so-called kernel-k-means operates de facto in the
non-Euclidean space (see, e.g., Girolami, 2002). To
overcome this restriction, we propose in Section 4
the clusterability concepts of residual k-separability and
residual k-range-separability which imply the restriction
of consistency to the realistic case of finite measurement
resolution. Section 5 explains how these concepts apply
to non-Euclidean spaces.

Section 6 summarizes the results and outlines further
research directions.

The main contributions of this paper are proposals
of clusterability criteria that reconcile k-means with
Kleinberg’s axiomatic framework in Euclidean and
non-Euclidean settings, and also a method of construction
of clusterable data with a global optimum known in
advance. Besides the contribution to the theory of
axiomatic frameworks of clustering and for clusterability
theory, the practical contribution is the possibility to
construct datasets for testing purposes of algorithms

1Note that k-means algorithms are used quite commonly on their own
and as subroutines of other algorithms, e.g., in the domain of spectral
clustering (Lucinska and Wierzchon, 2018).

optimizing the k-means cost function. We propose
also a generalization of the k-means algorithm that
can self-adjust k when the data are clusterable in the
above-mentioned way.

2. Previous work
We will refer in this paper to the widely used
k-means algorithm (k-means++ version, by Arthur and
Vassilvitskii (2007)), which belongs to the so-called k-
clustering algorithms, that is, for a dataset S they return
a partition Γ of S into k non-empty groups (|Γ| = k),
where k is a user-defined parameter. Recall that the
k-means algorithm was designed to operate primarily in
the Euclidean space, that is, we assume an embedding
E : S → R

d into a d-dimensional Euclidean space. Then
k-means seeks to find a partition Γ of S and positions of
cluster centers that minimize the cost (or quality) function

Q(Γ) =
∑

C∈Γ

∑

e∈C

||E(e)− µ(C)||2, (1)

where µ(C) is the center of cluster C and is known to be
equal to

µ(C) =
1

|C|
∑

e∈C

E(e) (2)

in the Euclidean space, which may be reformulated as

Q(Γ) =
∑

C∈Γ

1

2|C|
∑

i∈C

∑

l∈C

‖E(i)− E(l)‖2. (3)

Kleinberg (2002) proposed three seemingly obvious
clustering axioms for distance based clustering
algorithms: richness, scale-invariance and consistency.
Hereby an algorithm is a function f(S, d) = Γ producing
a partition Γ of S given the (pseudo)distance function
d : S×S → R such that d(i, i) = 0, d(i, l) = d(l, i) ≥ 0,
where d(i, j) = 0 iff i = j. 2

Axiom 1. (Consistency axiom) For any clustering
function f , if f(S, d) = Γ and d′ is another
(pseudo)distance function such that d′(i, l) ≥ d(i, l)
iff i, l are from different clusters of Γ and d′(i, l) ≤ d(i, l)
iff i, l are from the same cluster, then f(S, d′) = Γ.

Axiom 2. (Scale invariance axiom) For any clustering
function f , if the (pseudo)distance d′ has the property
that for an α ∈ R

+, d′(i, l) = αd(i, l), then f(S, d) =
f(S, d′).

Axiom 3. (Richness axiom) For any clustering function
f , for any S and for any its partition Γ, there exists a
(pseudo) distance function d such that f(S, d) = Γ.

2Note that, using Kleinberg’s pseudo-distance, the formula (3) can be
generalized to (4).
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The three axioms proved to be contradictory, that is,
no clustering algorithm can fulfil all three requirements at
once (see the proof by Kleinberg (2002)).

It is cumbersome for the domain of clustering
algorithms if an axiomatic system consisting of, as
Kleinberg claimed, “natural axioms” is self-contradictory.
A sound axiomatic system is of real importance
particularly when explainable methods of AI are
demanded. Axioms may be helpful to explain at
least partially why a particular clustering was obtained.
Therefore numerous efforts have been made to cure such
a situation by proposing different axiom sets or modifying
Kleinberg’s theory.

The first suggestion by Kleinberg was to use only
a pair of axioms (as each pair of his axioms is not
contradictory). To get rid of the contradiction between
the three axioms, Kleinberg introduced the concept of
partition Γ′ being a refinement of a partition Γ, if for
every set C′ ∈ Γ′ there is a set C ∈ Γ such that C′ ⊆
C. He defines refinement-consistency, a relaxation of
consistency, to require that if distance d′ is a consistency
transformation of d then f(S, d′) should be a refinement
of f(S, d) or vice versa. Though there is no clustering
function that satisfies scale-invariance, richness, and
refinement-consistency, if one defines near-richness as
richness without the partition in which each element is in a
separate cluster, then there exist clustering functions f that
satisfy scale-invariance and refinement-consistency, and
near-richness (e.g., single-linkage with the distance-(αδ)
stopping condition, where δ = mini,j d(i, j) and α ≥ 1.)

The refinement consistency does not allow
generating labelled new data from existing labelled old
data. Regrettably, in spite of these weakenings, the very
popular k-means algorithm is not a clustering algorithm
as it fails on (near)richness and consistency/refinement
consistency axioms. Note that k-means is not (near)rich
as it returns only such Γ that k = |Γ|. By weakening
Kleinerg’s axiom of richness to k-richness (richness
restricted to partitions Γ with |Γ| = k), we can get rid of
the violation of richness. The violation of the consistency
axiom remains, though (see the proof by Kleinberg
(2002)).

To overcome Kleinberg’s contradictions, Ben-David
and Ackerman (2009) proposed to axiomatize the
clustering quality function and not the clustering function
itself. Regrettably, no requirements are imposed onto
the clustering function itself. This means that labelled
datasets cannot be derived automatically from existing
ones. Further, van Laarhoven and Marchiori (2014)
propose to go over to the realm of graphs and develop a
set of axioms for graphs. The approach is not applicable
to k-means. Ackerman et al. (2010) and Meilǎ (2005)
proposed to use the “axioms” not as a requirement to
be met by all algorithms, but rather as a way to classify
clustering functions. Strazzeri and Sánchez-Garcı́a

(2021) suggests to change the consistency axiom for
graphs. Hopcroft and Kannan (2012) propose to seek
only clusters with special properties, in this case to cluster
the datasets into equal size clusters.

Cohen-Addad et al. (2018) suggest to modify
the consistency axiom by requiring that Kleinberg’s
consistency holds only if the optimal number of clusters
prior and after his Γ transformation remains the same.
Though they show that various algorithms, including
k-means, fit this new axiom, the problem is of course that
one is usually unable to tell a priori the optimal number
of clusters, hence usage of such an axiomatic set as a tool
for test set generation is pointless.

We have also proposed several approaches to
removing the contradictions in Kleinberg’s axiomatic
system (see, e.g., Kłopotek and Kłopotek, 2022; 2023).
All of them are based on the enclosure of clusters into
balls and keeping gaps between the balls large. These
approaches are valid only for Euclidean spaces.

The proposals in this paper are inspired by the
research on the so-called clusterability. As mentioned,
Hopcroft and Kannan (2012) made a suggestion that
restricting oneself to special data structures can overcome
Kleinberg’s contradictions. That is, one looks rather
at clustering of data that fulfil some properties of
clusterability. Though a number of attempts have
been made to capture formally the intuition behind
clusterability, none of these efforts seems to have
been successful, as exhibited by Ben-David (2015) in
depth. Ackerman et al. (2016) partially eliminate
some of these problems, regrettably at the expense of
non-intuitive user-defined parameters. As Ben-David
(2015) mentioned, the research in the area does not
address popular algorithms except for the ε-separatedness
clusterability criterion related to k-means proposed by
Ostrovsky et al. (2013). We have made some efforts in
this direction (Kłopotek, 2020). This paper also refers to
clusterability while clustering via k-means.

The issue of clustering axiomatisation is
closely related to the problem of cluster preserving
transformations in general. Such transformations are of
vital importance because they may be used in the problem
of testbed creation for clustering algorithms.

Roth et al. (2003) investigated the issue
of preservation of clustering when embedding
non-Euclidean data into the Euclidean space. They
showed that clustering functions, which remain invariant
under additive shifts of the pairwise proximities, can be
reformulated as clustering problems in Euclidean spaces.

A similar problem was addressed by Kłopotek et al.
(2020) whereby the issue of interpretation of results of
kernel k-means to non-Euclidean data was discussed. A
cluster-preserving transformation for this specific problem
was proposed via increasing all distances.

Parameswaran and Blough (2005) studied the issue
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of cluster preserving transformations from the point
of view of privacy preserving. They designed a
nearest neighbor data substitution (NeNDS), a new data
obfuscation technique with strong privacy-preserving
properties while maintaining data clusters. Cluster
preserving transformations with the property of privacy
preserving focusing on the k-means algorithm are
investigated by Ramı́rez and Auñón (2020). Privacy
preserving methods for various k-means variants boosted
to large scale data are further elaborated on by Gao
and Zhang (2017). Keller et al. (2021) investigate such
transformations for other types of clustering algorithms.
A thorough survey of privacy-preserving clustering for big
data is presented by Zhao et al. (2020).

Howland and Park (2008) proposed models
incorporating prior knowledge about the existing
structure and developed for them dimension reduction
methods independent of the original term-document
matrix dimension. Other, more common dimensionality
reduction methods for clustering (including PCA and
Laplacian embedding) are reviewed by Ding (2009).

Larsen et al. (2019) reformulate the heavy hitter
problem of stream mining in terms of a clustering problem
and elaborate algorithms fulfilling the requirement of
“cluster preserving clustering.”

Zhang et al. (2019) developed clustering structure
preserving transformations for graph streaming data,
when there is a need to sample a graph.

3. Variational cluster separation
Let us introduce a couple of useful concepts. First of all,
recall the fact that Kleinberg’s consistency axiom leads
definitely outside of the domain of the Euclidean space.
Therefore, to work with the k-means algorithm, we need
a reformulation of the k-means cluster quality function.
Let us first recall Kleinberg’s “distance” concept.

Definition 1. For a given discrete set of points S, the
function d : S × S → R will be called a pseudo-
distance function iff d(x, x) = 0, d(x, y) = d(y, x) and
d(x, y) > 0 for distinct x, y.

Following the spirit of kernel k-means as exposed
by Kłopotek et al. (2020), let us reformulate the k-means
cluster quality function in terms of this pseudo-distance.
Define the function Q(Γ, d) as follows:

Q(Γ, d) =
∑

C∈Γ

1

2|C|
∑

i∈C

∑

l∈C

d(i, l)2, (4)

where Γ is a clustering (split into disjoint non-empty
subsets of cardinality at least 2) of a dataset S into k
clusters, and d is a pseudo-distance function defined over
S. Q(Γ, d) generalizes Q(Γ) from the formula (3) in that
it allows non-Euclidean distances.

Let us introduce our concept of well-separatedness.

Definition 2. Let Γ = {C1, . . . , Ck} be a partition of the
dataset S and d be a pseudo-distance. Let also

d(i, l) >
√
2
√
Q(Γ, d) (5)

for each i, l such that i belongs to a different cluster than
l under Γ. Then we say that the set S with distance
d is variationally k-separable and that this Γ is vari-
ational k-separation of S. If, furthermore, no cluster
of Γ has the property of variational k′-separation for all
k′ = 2, . . . ,K + 1 for some integer K ≥ 1, then Γ is
variational k +K-range-separation of S.

Example 1. Examine the following set of points in
the Euclidean space in one dimension: S =
{1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6}. A
clustering with k-means into k = 2 clusters will
yield the clustering Γ = {{1.1, 1.2, 1.3, 1.4, 1.5, 1.6},
{3.1, 3.2, 3.3, 3.4, 3.5, 3.6}} with Q(Γ, d) = 0.35; hence√
2
√
Q(Γ, d) < 0.84. The distance between elements of

distinct clusters is at least 1.5, therefore Γ is a variational
2-separation of S. If we split A ∈ Γ into k′ = 2 clusters
ΓA, thenQ(ΓA, d) > 0.04 so that

√
2
√
Q(ΓA, d) > 0.28,

while the distance between elements of distinct clusters
can be as small as 0.1 so that ΓA is not a variational
2-separation of A. Therefore Γ is a variational 2 +
1-range-separation of S. �

The following is then easily implied.

Theorem 1. If the pseudo-distance d fulfills the condition
(5) under the clustering Γ of S, then Γ is the optimal k-
clustering of S with d under kernel k-means.

Proof. Assume, contrary to our claim, that not Γ but
Γ′ different from it is the optimal k-clustering of S. Γ′

would then contain at least one cluster C′ with at least
two data points P,R (|C′| = n′ ≥ 2) such that both stem
from distinct clusters of Γ. Hence their distance amounts
to at least

√
2
√
Q(Γ, d). All the other n′ − 2 elements

of C′ fall into three categories: those belonging under Γ
to the same cluster as P (nP elements), those belonging
under Γ to the same cluster as R (nR elements), and the
remaining ones (ns elements). Then, nP + nR + ns =
n′ − 2. Accordingly, within the cluster C′ there are at
least (nP + 1) · (nR + 1) + ns · (nR + nP + 2) pairs of
data points with the distance at least

√
2
√
Q(Γ, d). Hence

the contribution of C′ to the quality function amounts to

Q({C′}, d) = 1

2n′
∑

i∈C′

∑

l∈C′
d(i, l)2

≥ 1

n′ ((nP + 1) · (nR + 1)

+ns · (nR + nP + 2)) · 2Q(Γ, d)

≥ 1

n′ (n
′ − 1) · 2Q(Γ, d).

(6)

As Q({C′}, d) ≥ Q(Γ, d), we have Q(Γ′, d) ≥ Q(Γ, d)
as claimed in this theorem. Γ is in fact optimal. �
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As the theorem holds for the pseudo-distance, it
holds also for the Euclidean distance.

Theorem 2. If the clustering Γ of S under the pseudo-
distance d fulfills the condition (5), then there exists no
other Γ′ of S that fulfills the condition (5).

Proof. As already shown in Theorem 1, Γ is optimal.
Therefore, Γ′ would have to be optimal but different
from Γ. Yet this is impossible as putting two elements
from distinct clusters would significantly increase the
quality function value, as seen in the proof of the previous
theorem. �

Definition 3. We say that a clustering function f(S, d)
returns a variational k-clustering of S if S is variationally
k-separable under d and f(S, d) returns the clustering Γ
being a variational k-separation of S.

Example 2. As the set S from Example 1 is variationally
2-separable, the function f should return the clustering Γ
from that example, according to Theorem 1. �

Theorem 3. A variational k-clustering Γ will remain a
variational k-clustering after a consistency transform. In
other words, the consistency transform preserves cluster-
ing by a function detecting the variational k-clustering.

Proof. The increase in inter-cluster distances does not
violate the variational k-separation because the distances
between clusters will be larger than prescribed by the
variational minimal distance from the formula (5). The
decrease in intra-cluster separation does not violate
variational k-separation because the variational minimal
distance will be smaller, so that the distances between
clusters will fit better this minimal distance. �

Example 3. After a consistency transformation with
respect to Γ, the set S from Example 1 may change
coordinates:

S′ = {1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 3.3,
3.36, 3.42, 3.48, 3.54, 3.6}.

A clustering with k-means into k = 2 clusters will yield
the clustering

Γ′ = {{1.1, 1.15, 1.2, 1.25, 1.3, 1.35},
{3.3, 3.36, 3.42, 3.48, 3.54, 3.6}}

with Q(Γ′, d) < 0.11 hence
√
2
√
Q(Γ′, d) < 0.48. The

distance between elements of distinct clusters is at least
1.95, therefore Γ′ is a variational 2-separation of S′, and
both Γ and Γ′ are identical. �

Let us concentrate on the Euclidean distances only
for a moment. Let us ask the question how difficult it
would be to discover the optimal clustering. Let us apply

Algorithm 1. Pseudo-code for k-means++ algorithms;
the termination condition of the while loop may be a fixed
number of loop runs or no change in clustering within a
loop run.
Require: D: a set of objects embedded in the Euclidean

space (that is, for each i ∈ D there exists its
representation xi in the Euclidean space), to be
clustered
k: the number of clusters to be returned

1: {Initialize the set M of k cluster centers as follows:
}

2: Pick one element e of D at random and initialize the
set M with µ1 = E(e).

3: for j ← 2 to k by 1 do
4: Assign to each e ∈ D a weight we =

minµ∈M ||E(e) − µ||2 and a probability pe =
we/

∑
e′∈Dwe′ .

5: Sample one element e ∈ D according to the
above-mentioned probability pe.

6: M ←M ∪ {µj = E(e)}
7: end for
8: {This ends the initialization of M}
9: while termination not reached do

10: Let Γ = {C1, . . . , Ck}, where each Cj = ∅.
11: for each e ∈ D do
12: Cj = Cj ∪ {e}, where j =

argminj′=1,...,k ||E(e)− µj′ ||
13: end for
14: for j ← 1 to k by 1 do
15: µj = µ(Cj), according to (2)
16: end for
17: end while
18: return Γ { Γ: the clustering of D into k clusters }

for this purpose the k-means++ algorithm, developed
by Arthur and Vassilvitskii (2007), or more precisely
the derivation of the initial clustering. The pseudo-code
of k-means++ is presented as Algorithm 1. Recall that
wide gaps between clusters guarantee that, after hitting
each cluster during the initialization stage, an optimum
clustering is achieved. Let us consider a step when i seeds
have hit i distinct clusters. Then the probability of hitting
an unhit cluster in the next step amounts to

PHUH =
SSDunhit

SSDunhit + SSDhit

= 1− SSDhit

SSDunhit + SSDhit
, (7)

where SSDhit is the sum of the squared distances
to the closest seed from the elements of hit clusters
C1, C2, . . . , Ci ∈ Γhit, and SSDunhit is the sum of the
squared distances to the closest seed from the elements
of unhit clusters Ci+1, . . . , Ck. Let C be a hit cluster.
Then Q({C}, d) will be the upper bound for the squared
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distance between any element of C and the cluster center.
Hence 2Q({C}, d) will be the upper bound of the sums of
the squared distances between a seed from C and its other
elements. Therefore,

SSDhit ≤ 2Q(Γhit, d) ≤ 2Q(Γ, d). (8)

On the other hand,

SSDunhit ≥ 2Q(Γ, d)
k∑

j=i+1

nj , (9)

where nj = |Cj |. Hence,

PHUH =
SSDunhit

SSDunhit + SSDhit
=

1

1 + SSDhit

SSDunhit

≥ 1

1 + 2Q(Γ,d)

2Q(Γ,d)
∑k

j=i+1 nj

=
1

1 + 1∑k
j=i+1 nj

(10)

=

∑k
j=i+1 nj

∑k
j=i+1 nj + 1

= 1− 1
∑k

j=i+1 nj + 1
.

If we assume that the cardinality of all clusters is the same
and equals m, then we have

PHUH ≥ 1− 1

m(k − i) + 1
, (11)

so that the overall expected probability of hitting all
clusters during initialization amounts to at least

PhitAll ≥
k−1∏

i=1

(
1− 1

m(k − i) + 1

)
. (12)

If m exceeds k, then this probability is very close
to one (assuming m > 50). If not all clusters are of the
same cardinality, but m is its lower bound, then the above
formula gives a lower bound to the this probability.

Theorem 4. There exists a function detecting a varia-
tional k-clustering, with high probability, that has the
property of scale-invariance, consistency and k-richness,
given that the function operates in the Euclidean space
and the consistency transformation is performed in the
Euclidean space, too.

Proof. We have just shown that k-means++ can be used
to detect, with high probability, a variational k-clustering
if the data lie in the Euclidean space. It is known to
have the property of scale-invariance. Then k-richness
is easily shown: formulate a k-clustering Γ, set distances
between points within each cluster to values such that each
cluster fits the Euclidean space, and then move the clusters
in the Euclidean space in such a way that the condition
(5) is matched and complete the distance definition. The
consistency property holds because of Theorem 3. �

We return to investigating pseudo-distances. Let us
go beyond k-richness, expanding our discussion towards
the concept of richness. Already Kleinberg showed
that full richness does not make sense and restricted
himself to near-richness. Below we restrict the concept
of near-richness to range-kx-richness.

Definition 4. A clustering function f has the
range-kx-richness property if, for any dataset S for
each Γ ∈ 2S consisting of non-empty subsets of at least
two elements such that |Γ| ≤ kx, there exists a distance
function d such that f(S, d) = Γ.

Note that near richness imposes the restriction |Γ| ≤
|S| − 1. It allows also for clusters with one element only
which we forbid in range-kx-richness.

Definition 5. We say that a clustering function f(S, d)
returns a variational range-kx clustering of S if S is
variationally k-separable under d for some 1 ≤ k ≤ kx,
and for Γ = f(S, d) for no cluster C ∈ Γ there exists k′,
2 ≤ k‘ ≤ kx − k + 1 that C is variationally k′-separable.
The maximal k with this property shall be called the level
of variational range-kx clustering.

Example 4. If we apply k-means with k-ranging from 1
to 3 to the set S from Example 1, then it will return a vari-
ational range-3 clustering of S, because S is variationally
2-separable under the Euclidean distance, and for Γ =
f(S, d) for no cluster C ∈ Γ there exists k′, 2 ≤ k‘ ≤ 2
that C is variationally k′-separable. �

What will happen when performing Kleinberg’s
consistency operation? A cluster that is not variationally
k′ separable may turn to a variationally k′ separable
one if we apply a consistency transformation. Therefore
we need to restrict the consistency transformation.
We suggest to replace it with the relative consistency
transformation, defined as follows:

Definition 6. Consider a dataset S and a distance
function d : S × S → R and a clustering function f . Let
f(S, d) = Γ. Define a different distance function d′ such
that for any cluster C ∈ Γ: (1) for i, j, l ∈ C, d′(i, j) ≤
d(i, j) and if d(i, j) ≤ d(i, l) then d′(i, j) ≤ d′(i, l), and
d′(i,l)
d′(i,j) ≤ d(i,l)

d(i,j) , (2) for i ∈ C and l �∈ C d′(i, l) ≥ d(i, l).
This transformation from d to d′ with be called the relative
consistency transformation.

Example 5. Assume the following distance matrix within
a cluster:

⎡

⎢⎢⎢⎢⎢⎢⎣

0.0 0.1 0.2 0.3 0.4 0.5
0.1 0.0 0.1 0.2 0.3 0.4
0.2 0.1 0.0 0.1 0.2 0.3
0.3 0.2 0.1 0.0 0.1 0.2
0.4 0.3 0.2 0.1 0.0 0.1
0.5 0.4 0.3 0.2 0.1 0.0

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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A sample relative consistency transformation would yield
the following:

⎡

⎢⎢⎢⎢⎢⎢⎣

0.000000 0.09000 0.1620
0.090000 0.00000 0.0900
0.162000 0.09000 0.0000
0.226800 0.16200 0.0900
0.287280 0.22680 0.1620
0.344736 0.28728 0.2268

0.2268 0.28728 0.344736
0.1620 0.22680 0.287280
0.0900 0.16200 0.226800
0.0000 0.09000 0.162000
0.0900 0.00000 0.090000
0.1620 0.09000 0.000000

⎤

⎥⎥⎥⎥⎥⎥⎦

�

The relative consistency transformation defined
above differs from Kleinerg’s consistency transformation
in the following way: (i) it preserves the ordering of
distances within a cluster, (ii) it prevents the emergence
of more dense areas within a cluster. In this way, no new
clusters emerge within a cluster after this transformation,
contrary to Kleinberg’s definition. This new definition
removes a crucial deficiency of Kleinberg’s axiomatic
system.

Definition 7. If the clustering function f for each data set
S and each distance function d and each of its relative
consistency transforms d′ have the property that f(S, d) =
f(S, d′), then we shall say that f has the property of rela-
tive consistency.

Theorem 5. A variational range-kx clustering at the
level k will remain a variational range-kx clustering at
the level k after the relative consistency transform. In
other words, the relative consistency transform preserves
clustering by a function detecting a variational range-kx
clustering.

Proof. An increase in the inter-cluster distances
does not violate the variational k-separation because the
distances between clusters will be larger than prescribed
by the variational minimal distance. The decrease of the
intra-cluster separation does not violate the variational
k-separation because the variational minimal distance
will be smaller; therefore distances between clusters
will fit better this minimal distance. Furthermore, a
decrease of the intra-cluster separation does not turn a
non-variationally separable set into a separable set for the
following reason: assume S1 and S2 are two subclusters
of a cluster S which we treat as candidates for being
variationally separated after the transformation. This
implies that the distances between elements of S1 and
S2 were larger than within S1 and within S2 after the

operation, and so were they before the operation. But
if they were larger before the operation, then they are
more strongly shortened than those within S1 and S2. Yet
this means that the decrease in the variational minimal
distance is smaller than the decrease in the distances
between S1 and S2. Hence the variational separation
cannot occur. �

We need, however, an algorithm that would actually
perform the above-mentioned clustering. To identify one,
we have to return to the Euclidean distance. Consider the
following algorithm f , discovering a variational range-kx
clustering of a dataset (Algorithm 2): try out all k = kx to
2 if there exists a variational k-clustering; and if so, then
check each sub-cluster on no variational k′ separability.
Obviously, k-means++ would be a suitable sub-algorithm
for checking if there exists a variational k-clustering.

Let us estimate the complexity of Algorithm 2. The
computation of distances is the most expensive step here,
The complexity of k-means++ (Algorithm 1), to which
Algorithm 2 is referring, consists of two parts: initializing
and iteration. During initialization in the j-th step of k
steps, (j− 1)n distances will be computed, where n is the
number of data samples. Thus the complexity amounts
to O(nk(k − 1)/2). If the initialization is successful
(each cluster is seeded), then in the case considered in this
paper at most two iteration steps are needed, in each kn
distance computations. Hence we are left with O(nk3)
complexity. Algorithm 2 calls k-means++ at most kx!
times, so its complexity is O(nk3xkx!). But in practice,
with no strange data distribution, only 2k calls are needed.
Thus the expected complexity is O(nk4x)

Theorem 5 implies the following.

Theorem 6. The clustering function described by Algo-
rithm 2, detecting a variational range-kx clustering with
high probability, has the property of scale-invariance, rel-
ative consistency and range-kx richness if operating in the
Euclidean space.

However, we will have a problem with the relative
consistency transformation of a distance d to a distance
d′. In the general case, even if d is an Euclidean distance,
d′ does not need to be one. As shown by Kłopotek et al.
(2020), a distance function d′ being non-Euclidean can be
turned into a Euclidean one d′′ by adding an appropriate
constant δ2 to each squared distance d′(i, j)2 of distinct
elements and the clustering with (kernel) k-means will
preserve the k-clustering of S. However, it is possible
that the property of variational k separability will be
lost via such an addition operation. But our goal is
to find a separability criterion for which there exists a
clustering function, operating in the Euclidean space, such
that it fits axioms. In other words, if the axiomatic
transformations lead outside the Euclidean space, then
application of Euclidization should transform the data so
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Algorithm 2. Discovery of variational range-kx
clustering of a dataset.
Require: S: a set of objects embedded in the Euclidean

space
kx: the maximal number of clusters to be obtained

1: if kx < 2 then
2: return k = 1, Γ = {S}
3: end if
4: for k ← kx to 2 by −1 do
5: Cluster S using k-means++ (Algorithm 1) getting

Γ
6: if Γ ensures that according to Definition 2 S is

variationally k-separable then
7: OK = TRUE
8: for S′ ∈ Γ do
9: Apply this algorithm to S′ with k′x = kx−k+

1 obtaining k′ and Γ′

10: if k′ > 1 then
11: OK=FALSE
12: end if
13: end for
14: end if
15: if OK then
16: return k, Γ
17: end if
18: end for
19: return k = 1, Γ = {S}

that the clustering function returns a clustering that fits the
axiomatic requirements.

4. Residual cluster separation
Assume that σ(d) is the lowest distance d over the set S.

Theorem 7. Let Γ be a clustering of the set S, and let
n = |S|. Then

Q(Γ, d) ≥ (n− k)
σ(d)2

2
. (13)

Proof. We have

Q(Γ, d) ≥
∑

C∈Γ

1

2|C|
∑

i∈C

∑

l∈C;l �=i

σ(d)2

=
∑

C∈Γ

|C| − 1

2
σ(d)2 = (|S| − k)

σ(d)2

2
. (14)

�
Define the function

β(Γ, d) = 2

(
Q(Γ, d)− (n− k − 1)

σ(d)2

2

)
. (15)

Let us introduce our next concept of
well-separatedness.

Definition 8. Let Γ = {C1, . . . , Ck} be a partition of the
dataset S and d be a pseudo-distance. Let also

d(i, l) >
√
β(Γ, d) (16)

for each i, l such that i belongs to a different cluster than
l under Γ. Then we say that the set S with distance d is
residually k-separable, and Γ is the residual k-separation
of S. If, furthermore, no cluster of Γ has the property of
residual k′-separation for all k′ = 2, . . . ,K + 1, then Γ is
a residual k +K-range-separation of S.

Example 6. Consider the following set of points in the
Euclidean space in one dimension:

S = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
2.4, 2.5, 2.6, 2.7, 2.8, 2.9}.

A clustering with k-means into k = 2 clusters will yield
the clustering

Γ = {{1.1, 1.2, 1.3, 1.4, 1.5, 1.6},
{2.4, 2.5, 2.6, 2.7, 2.8, 2.9}}

with Q(Γ, d) = 0.35; therefore
√
2
√
Q(Γ, d) > 0.83.

The distance between the elements of distinct clusters is
at least 0.8; therefore, Γ is not variational 2-separation
of S, but

√
β(Γ, d) < 0.79. Therefore, Γ is a residual

2-separation of S. If we split A ∈ Γ into k′ = 2
clusters ΓA, then Q(ΓA, d) > 0.04, so that

√
β(ΓA, d) >

0.22, while the distance between the elements of distinct
clusters can be as small as 0.1, so that ΓA is not a
residual 2-separation of A. Therefore, Γ is a residual
2 + 1-range-separation of S. �

Theorem 8. Assume that the set S with distance d is
residually k-separable. Then Γ minimizes Q(Γ, d) over
all clusterings of the dataset S.

Proof. By analogy to the proof of Theorem 1, we can
demonstrate that β(Γ′, d) ≥ β(Γ, d). Hence

2

(
Q(Γ′, d)− (n− k − 1)

σ(d)2

2

)

≥ 2

(
Q(Γ, d)− (n− k − 1)

σ(d)2

2

)
. (17)

That is, Q(Γ′, d) ≥ Q(Γ, d). �

Theorem 9. Assume we have two pseudo-distance func-
tions d1, d2 over S such that for any two distinct x, y there
holds d22(x, y) = d21(x, y)+Δ for some constant Δ. Then

β(Γ, d2) = β(Γ, d1) + Δ. (18)
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Proof. We have

Q(Γ, d2) =
∑

C∈Γ

1

2|C|
∑

i∈C

∑

l∈C

d2(i, l)
2

=
∑

C∈Γ

1

2|C|
∑

i∈C

∑

l∈C;l �=i

(
d1(i, l)

2 +Δ
)

= Q(Γ, d1) +
∑

C∈Γ

1

2|C|
∑

i∈C

∑

l∈C;l �=i

Δ

= Q(Γ, d1) + (n− k)
Δ

2

= Q(Γ, d1) +
∑

C∈Γ

1

2|C|
∑

i∈C

∑

l∈C;l �=i

Δ

= Q(Γ, d1) + (n− k)
Δ

2
.

(19)

Furthermore,

β(Γ, d2) = 2

(
Q(Γ, d2)− (n− k − 1)

σ(d2)
2

2

)

= 2Q(Γ, d1) + (n− k)Δ

− (n− k − 1)σ(d1)
2 − (n− k − 1)Δ

= 2Q(Γ, d1)− (n− k − 1)σ(d1)
2 +Δ

= β(Γ, d1) + Δ.

(20)

�
The above theorem implies the following.

Theorem 10. Assume we have two pseudo-distance func-
tions d1, d2 over S such that for any two distinct x, y
there holds d22(x, y) = d21(x, y) + Δ for some con-
stant Δ. Then the set S with pseudo-distance d1 is
residually k-separable iff the set S with pseudo-distance
d2 is residually k-separable.

Proof. As β(Γ, d2) = β(Γ, d1) + Δ, then it would
be sufficient for residual k-separability of S under d2
that the squared pseudo-distance between the elements of
distinct clusters is increased by Δ which is the case by
definition of d2. Therefore, an increase in the distances
from d1 to d2 preserves the residual k-separation. On
the other hand, if Γ with |Γ| = k is not a residual
k-separation under d1, then there exist two elements i, l
from distinct clusters such that d1(i, l)

2 ≤ β(Γ, d1).
Therefore d2(i, l)

2 = d1(i, l)
2 + Δ ≤ β(Γ, d1) + Δ =

β(Γ, d2). �

Definition 9. We say that a clustering function f(S, d)
returns a residual k-clustering of S if S is residually
k-separable under d and f(S, d) returns the clustering Γ
being a residual k-separation of S.

Theorem 11. A residual k-clustering Γ will remain
a residual k-clustering after the consistency trans-
form, given that no pseudo-distance gets shorter than

the shortest distance at the beginning (lower-bounded
consistency). In other words, the consistency transform
preserves clustering by a function detecting a variational
k-clustering.

Proof. An increase in the inter-cluster distances does
not violate the residual k-separation because the distances
between clusters will be larger than prescribed by the
residual minimal distance from the formula (16). A
decrease in the intra-cluster separation does not violate
the residual k-separation because the residual minimal
distance (16) will decrease so that the distances between
clusters will fit better this minimal distance. �

The concept of lower-bounded consistency may
appear somehow awkward from the mathematical point
of view, but it is not so if we look at technical reality. Any
distance measurement is restricted by some resolution
factor of the measuring device. Therefore, if two points
are too close, they may be indistinguishable. Thus,
assuming a minimal distance between distinct data points
makes technically sense.

Let us concentrate for a moment on Euclidean
distances. Obviously, k-means++ is no more suitable for
discovering residual k-clustering. We propose to create
a modification of k-means++, called res-k-means++
(Algorithm 3). Instead of taking the squared distances
to the closest seed in Line 4 in Algorithm 1, assign to
each element e ∈ D a probability pe, proportional to the
difference between the squared distance of e to the closest
element of M and the squared smallest distance.

Let us ask the question how difficult it would
be to discover an optimal clustering. Let us study
the res-k-means++ algorithm, or more precisely, the
derivation of the initial clustering, whereby Γ is the true
clustering. Consider a step when i seeds have hit i distinct
true clusters H. For a hit cluster C, let h(C) be the hit
seed of this cluster. Then the probability of hitting an unhit
cluster in the next step amounts to

P
(M)
HUH =

SSDMunhit

SSDMunhit + SSDMhit
, (21)

where SSDMunhit is the sum of the squared distances
to the closest seed minus δ(d)2 from the elements of
unhit clusters, and SSDMhit is the sum of the squared
distances minus δ(d)2 to the closest seed from elements
of hit clusters,

SSDMhit =
∑

C∈H

∑

e∈C;e�=h(C)

(
d2(e, h(C))− σ(d)2

)
.

(22)
However, for any l ∈ C,
∑

e∈C;e�=l

(d2(e, j)− σ(d)2)

≤ 2Q({C}, d)− (|C| − 1)σ(d)2). (23)
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Algorithm 3. Pseudo-code for res-k-means++; the
termination condition of the while loop may be a fixed
number of loop runs or no change of clustering within a
loop run.
Require: D: a set of objects embedded in the Euclidean

space (that is, for each i ∈ D there exists its
representation xi in the Euclidean space), to be
clustered
k: the number of clusters to be returned

1: { Initialize the set M of k cluster centers as follows:
}

2: Pick one element e of D at random and initialize the
set M with µ1 = E(e).

3: for j ← 2 to k by 1 do
4: Assign to each e ∈ D a weight we =

minµ∈M ||E(e) − µ||2 − σ(d)2 and a probability
pe = we/

∑
e′∈Dwe′ .

5: Sample one element e ∈ D according to the
above-mentioned probability pe.

6: M ←M ∪ {µj = E(e)}
7: end for
8: {This ends the initialization of M}
9: while termination not reached do

10: Let Γ = {C1, . . . , Ck}, where each Cj = ∅
11: for each e ∈ D do
12: Cj = Cj ∪ {e}, where j =

argminj′=1,...,k ||E(e)− µj′ ||
13: end for
14: for j ← 1 to k by 1 do
15: µj = µ(Cj), according to (2)
16: end for
17: end while
18: return Γ { Γ: the clustering of D into k clusters }

Thus

SSDMhit ≤
∑

C∈H

(
2Q({C}, d)− (|C| − 1)σ(d)2)

)

≤ 2Q(Γ, d)− (n− k)σ(d)2) < β(Γ, d).
(24)

On the other hand,

SSDMunhit ≥ β(Γ, d)
∑

C∈Γ−H
|C|

= β(Γ, d)
k∑

j=1

nj .

(25)

Hence

P
(M)
HUH =

SSDMunhit

SSDMunhit + SSDMhit

≥ 1

1 + β(Γ,d)

β(Γ,d)
∑

k
j=i+1 nj

=
1

1 + 1∑
k
j=i+1 nj

=

∑k
j=i+1 nj

∑k
j=i+1 nj + 1

= 1− 1
∑k

j=i+1 nj + 1
.

(26)

If we assume that the cardinality of all clusters is the
same and equals m, then we have

P
(M)
HUH ≥ 1− 1

m(k − i) + 1
. (27)

Hence that the overall expected probability of hitting all
clusters during initialization amounts to at least (as in Eqn.
(12))

P
(M)
hitAll ≥

k−1∏

i=1

(
1− 1

m(k − i) + 1

)
. (28)

Remarks on high probability and unequal cluster sizes are
here the same as with Eqn. (12).

Theorem 12. There exists a function detecting a resid-
ual k-clustering, with high probability, that has the prop-
erty of scale-invariance, lower-bounded consistency and
k richness, given that the function operates in the Eu-
clidean space and the consistency transformation is per-
formed in the Euclidean space, too.

Proof. We have just shown that res-k-means++
can be used to detect, with high probability, a residual
k-clustering, if the data lies in the Euclidean space.
Obviously, it has the property of scale-invariance. Here
k-richness is easily shown: formulate a k-clustering Γ,
set distances between points within each cluster to values
such that each cluster fits the Euclidean space, and then
move the clusters in the Euclidean space in such a way that
the condition (16) is matched and complete the distance
definition. The consistency property holds because of
Theorem 11. �

Let us return to pseudo-distances.

Definition 10. We say that a clustering function f(S, d)
returns a residual range-kx clustering of S if S is
residually k-separable under d for some 1 ≤ k ≤ kx,
and for Γ = f(S, d) and for no cluster C ∈ Γ there exists
k′, 2 ≤ k‘ ≤ kx − k+ 1 that C is residually k′-separable.
The maximal k with this property will be called the level
of this residual range-kx clustering.

Let us ask what will happen when performing
Kleinberg’s consistency operation. The first problem that
we encounter is that the consistency transform performed
on a cluster that is not a residually k′ separable may turn
to a residually k′ separable one. Therefore, we need to
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restrict the consistency transformation to a relative one.
Yet this is not sufficient. As we make use of the concept of
the smallest distance in our formulas, we need to add the
restriction that the lowest distance will not be decreased.

Theorem 13. The residual range-kx clustering at the
level k will remain the residual range-kx clustering at
the level k after lower bounded relative consistency trans-
form. In other words, the lower-bounded relative consis-
tency transform preserves a clustering by a function de-
tecting a residual range-kx clustering.

Proof. An increase in the inter-cluster distances
does not violate the residual k-separation. A decrease
in the intra-cluster separation according to the imposed
limitations does not turn a non-residually separable set
into a separable set. The proof is analogous to that of
Theorem 5. �

So far, we have investigated properties of algorithms
discovering residual clusterings. We need, however, an
algorithm that would really perform the above-mentioned
clustering. To identify one, we have to return again to the
Euclidean distance. To discover, with high probability,
a residual range-kx clustering in the Euclidean domain,
we suggest to use res-k-means++ as a sub-algorithm for
the master Algorithm 4: try out all k = kx to 2 if there
exist, residual k-clusterings, and if so, then check each
sub-cluster on no residual k′ separability.

This implies the following.

Theorem 14. Algorithm 4 detecting a residual range-
kx clustering with high probability has the property of
scale-invariance, lower-bounded relative consistency and
range-kx richness in the Euclidean domain.

5. From the Euclidean space to Kleinberg’s
concept of distance

A number of practical settings can give rise to
non-Euclidean and, in general, pseudo-distances:
imprecise distance measurements, the impact of
hydrological networks, the possibility of using different
alternative means of transport, measurements based on
road networks or on fuel consumption, just to mention a
few.

We have demonstrated that the k-means algorithm,
designed originally for the Euclidean space, does not need
to be in conflict with Kleinberg’s consistency axiom if the
dataset contains clearly separated clusters. What is more,
after a slight adjustment of the consistency axiom to some
real world conditions (resolution of data is finite), based
on k-means, a clustering algorithm can be constructed
matching in practice the three Kleinberg axioms. There
is, however, one deficiency in the approach: it assumes
that the data are embedded in the Euclidean space,
while Kleinberg insisted that his axioms should hold also

Algorithm 4. Residual clustering.
Require: S: a set of objects embedded in the Euclidean

space
kx: the maximal number of clusters to be obtained

1: if kx < 2 then
2: return k = 1, Γ = {S}
3: end if
4: for k ← kx to 2 by −1 do
5: Cluster S using res-k-means++ getting Γ
6: if Γ ensures that according to Definition 8 S is

residually k-separable then
7: OK = TRUE
8: for S′ ∈ Γ do
9: Apply this algorithm to S′ with k′x = kx−k+

1 obtaining k′ and Γ′

10: if k′ > 1 then
11: OK = FALSE
12: end if
13: end for
14: end if
15: if OK then
16: return k, Γ
17: end if
18: end for
19: return k = 1, Γ = {S}

outside the Euclidean realm. Most of the proofs presented
do not depend on the Euclidean embedding. The weak
point in going beyond it is the k-means algorithm,
which was designed for the Euclidean space. While
the development of k-means++ (Arthur and Vassilvitskii,
2007) is not bound to the Euclidean space, the minimum
of the k-means quality function is guaranteed on the
concrete properties in the Euclidean space. The so-called
kernel k-means probably seeks the same minimum as
the traditional k-means after the Euclidization proposed
by Lingoes (1971),3 but the problem is that after this
Euclidization the variational k-separability may be lost so
that there is no guarantee that k-means seeks to optimize
by variationally finding k-separation.

We have discussed so far the case of clustering
axioms for the Euclidean distance: see Theorem 14.
This axiomatic system does not approximate quite what
Kleinberg proposed because he used a more relaxed
version of distance function, i.e., the pseudo-distance.

Therefore, consider the lower-bounded relative
consistency transformation applied to a pseudo-distance d
yielding another pseudo-distance d′, that is, one outside
of the framework of the Euclidean space. The proof
of Theorem 14 can be easily converted to the case
of pseudo-distances, using insights from Theorem 10.

3Note that some variants of center-based algorithms (e.g., Sabo,
2014) would require a different Euclidization method (e.g., Cailliez,
1983).
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We need only to adapt accordingly the res-k-means
algorithm. Adaptation of algorithms can follow the results
of Kłopotek et al. (2020). As shown there, a distance
function d being non-Euclidean can be turned into a
Euclidean one dE by adding an appropriate constant
δ2 to each squared distance d(i, j)2, and the clustering
with k-means under dE will preserve the k-clustering
obtained via kernel k-means with the original distance
d. Theorem 10 strengthens that result by stating that
the residual k-separation property before and after this
transformation is the same. Hence we can use Algorithm 4
for discovery of a residual range-kx clustering, after
transforming to the Euclidean distance in the spirit of
Theorem 10.

However, at a closer look, the transformation to the
Euclidean distance can be “virtual”, that is, no operations
are needed at all, because the function β will return same
results prior and after the Euclidization. Hence no actual
Euclidization is needed in order to apply Algorithm 4.

6. Conclusions
This research showed that one should not throw away
Kleinberg’s axioms because of their contradiction. We
pointed at what was missing in Kleinberg’s axiomatic
system, that is, the idea that clustering transformation
functions make sense only if they are applied to a
clustering performed on a clusterable dataset. We showed
that, if the dataset is clusterable according to a properly
defined separation criterion, then k-means stops to be
inconsistent in terms of Kleinberg, and a version of
k-means can be created that matches all three clustering
axioms. It is also easily seen that single-link algorithms,
used by Kleinberg (2002), can be upgraded to match all
three Kleinberg axioms with clusterable data.

Acknowledgeably, the gaps between clusters used in
this paper are (very) large4 and therefore further research
should seek to lower inter-cluster distances while still
keeping the axiomatic system intact. Alternatively, one
may investigate the degrees of violation of Kleinberg’s
axiomatic system given the extent to which the
clusterability criteria are violated.
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