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1. Introduction

Fractional differential equations are a generalization of
classical ones, and they have been applied to model
a variety of biological, physical, mechanical, and
engineering problems (Hu et al., 2009; Zhang, 2006;
Podlubny, 1999; Diethelm and Freed, 1999; Mainardi,
1997; Zhou and Jiao, 2010b). A wide range of practical
applications has prompted the publication of several
existing results incorporating the two classical derivatives
Caputo and Riemann–Liouville for systems of order

*Corresponding author

0 < q < 1 (Kiryakova 1994; Samko et al., 1993;
Diethelm and Ford, 2004; Ech-chaffani et al., n.d.; 2022)
and for order 1 < q < 2 (Li et al., 2016; 2013; Zhou and
He, 2021; Li, 2015).

Neutral differential equations are those where the
time delay appears under the derivative of the unknown
functions; in fact, many control systems are governed by
neutral differential equations. That is why dealing with
such systems is more complex than with the classical
ones, where the delays only occur in the state. This type
of delays can be complex to handle, but it improves the
performance of the system in which they occur. Adding
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neutral delays to a fractional system is more beneficial
as such a system does have memory. Neutral systems
can simulate a wide range of natural phenomena from
many fields such as fluid dynamics, electronics, biological
models, chemical dynamics, etc. (see Chang and Liu,
2009; Mokkedem and Fu, 2014). Classical differential
equations cannot describe most of these phenomena, such
as heat conduction in a fading memory material, and
anomalous diffusion.

Controllability is a very important concept in
contemporary science and technology. Control is
ubiquitous in our daily lives; it exists in our cars as
we drive and maintain the car on the road, in the
braking system, and so on. Broadly speaking, the
concept of exact controllability of a system means
transferring the system from an initial state to a final state
within a fixed time interval, although this is sometimes
difficult to achieve; there is a weaker concept, that of
approximate controllability, where systems have a weaker
conceptualization and a wider application. In general, it
is difficult to achieve exact controllability for differential
systems in infinite-dimensional Banach spaces, and many
diffusion control systems are not exactly controllable
since the corresponding linear operator generates a
compact semi group, for example, the heat equation.
We refer the readers to the works of Mahmudov (2003),
Triggiani (1977), Xi et al. (2022b) or Bárcenas et al.
(2005). As a consequence, many researchers are devoted
to the study of approximate controllability because it is
more realistic and adequate in many real situations (Li
et al., 2021; Zhao and Liu, 2022). Nevertheless, the theory
of approximate controllability for fractional equations is
still in its early stages of development.

Liu and Li (2015) proved the approximate
controllability of the following fractional evolution
control system involving a Riemann–Liouville fractional
derivative of order 0 < q ≤ 1, by transforming the control
problem into a fixed point one:

⎧
⎪⎨

⎪⎩

Dq
tx (t) = Ax (t) + Bu (t) + f (t, x (t)) ,

t ∈ (0, T ] ,

I1−q
t x(t)

∣
∣
∣
t=0

= x0 ∈ X.

In recent years, there has been a significant interest
in the controllability of fractional neutral differential
systems with a Caputo derivative of order 0 < q < 1.
Sakthivel et al. (2012) examined exact controllability
under some assumptions of the abstract fractional neutral
evolution control system
⎧
⎨

⎩

C
0 D

q
t [x(t)− h (t, xt)] = Ax(t) + Bu(t) + f (t, xt) ,

t ∈ J = [0, T ],
x0(θ) = φ(θ), θ ∈ [−r, 0].

Vijayakumar et al. (2021) studied the approximate
controllability of neutral integro-differential system

inclusions of a Sobolev type with infinite delay. For
the case of hyperbolic neutral systems, Xi et al. (2022a)
investigated the existence and approximate controllability
of a fractional neutral evolution system of the following
form
⎧
⎪⎪⎨

⎪⎪⎩

C
0 D

q
t [x(t) − g (t, xt)] = Ax(t) + Bu(t) + f (t, xt) ,

t ∈ (0, T ],
x(θ) = φ(θ), θ ∈ [−r, 0],
x′(0) = a,

where C
0 D

q
t signifies the Caputo fractional derivative of

order 1 < q < 2. The controllability problem in
all the above works has been discussed using Shauder’s
fixed point theorem. For more applications on several
dynamics, we recommend the work of (Babiarz et al.,
2016). Other researchers have been interested in studying
the approximate controllability of fractional neutral
systems with non-local conditions, with state-dependent
delays and for impulsive systems. For more details, we
refer the readers to the works of Dhayal et al. (2019),
Mingyuan et al. (2016), Yan (2012), Du et al. (2020), Zhu
et al. (2020), Agarwal et al. (2022), Leiva and Sundar
(2017) or Liang (2022) and the references therein. The
study of the controllability for various integer or fractional
Caputo derivatives of certain linear and non linear systems
seems to have been completed. However, the approximate
controllability of fractional neutral Riemann–Liouville
systems with an analytic semigroup is still open.

Inspired by the above studies and related work, in
this paper we consider fractional neutral systems, with a
Riemann–Liouville derivative of order 0 < q < 1 given
by
⎧
⎪⎪⎨

⎪⎪⎩

RL
0 Dq

t [z(t)− h (t, z(t))]
= −Az(t) + Bu(t) + f(t, z(t)),

t ∈ J = (0, T ], T ≥ 1,

I1−q
t [z(t)− h(t, )]|t=0 = z0,

(1)
where RL

0 Dq
t is the fractional derivative of order 0 <

q ≤ 1 (see Definition 1), −A : D(A) ⊆ Z → Z is
the infinitesimal generator of an analytic C0 semigroup
{T (t)}t≥0 on a Banach space (Z, ‖ · ‖). The control
function u belongs to the space U = Lp ([0, T ];U),
p > 1/q ≥ 1, where U is a Banach space. B is a
linear operator defined from U onto Lp ([0, T ];Z), z0 is
the initial state, z(t) is the state that depends on time t,
and h, f : [0, T ]× Zq → Z are two given functions.

We prove the existence of a mild solution of
the system given by (1) semigroup using the Laplace
transformation combined with semigroup properties.
Furthermore, we aim to prove the approximate
controllability of such a system under Assumptions
H1–H4; see Section 4. A strong motivation for studying
the initial conditions of Riemann–Liouville integrals
comes from the fact that there are many physical problems
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that can be modeled efficiently using Riemann–Liouville
integrals and cannot be modeled using classical initial
value problems, an example being the fractional Maxwell
model describing a realistic behavior for a viscous solid
in which a stress relaxation at t = 0 is modeled by a
fractional derivative (Heymans and Podlubny, 2006).
For more applications, a detailed review is presented by
Diethelm and Ford (2004).

The key aspects of the present work are stated below:

(i) The system (1) is of a nonlinear evolution neutral
type that is studied in Banach spaces.

(ii) Under various settings, sufficient conditions for the
existence and uniqueness of the mild solution are
given.

(iii) The approximate controllability of the system (1) is
presented. A fractional neutral partial differential
system is used as an example to illustrate the validity
of our main results.

(iv) A complexity arises from the existence of a
delay in the derivative for neutral systems and
the initial condition of the system, when proving
sufficient conditions for the existence of the solution
and approximate controllability, since fractional
Riemann–Liouville derivatives have a singularity at
zero and fractional differential equations in the sense
of Riemann–Liouville require initial conditions of a
special form lacking physical interpretation (Kilbas
et al., 2006).

The rest of the paper is structured as follows.
In Section 2, we provide essential preliminaries. In
Section 3, through the Laplace transform and semigroup
properties, a formula for the mild solution of the
system (1) is provided, and in Theorem 1, we prove
its existence and uniqueness. In Section 4, we focus
on the weak controllability of the system (1) and prove
our second main result stated in theorem 2. Finally, an
example is provided to illustrate the feasibility of our main
results in Section 5.

2. Preliminaries
We recall some essentials of semigroup theory and
fractional derivatives, which can be found in the works
of Podlubny (1999), Pazy (1983), Kilbas et al. (2006) and
the references therein.

Let z : R+ → R be a continuous function.

Definition 1. (Podlubny, 1999)

(i) Let q > 0; the Riemann–Liouville integral of the
function z of order q is defined by

Iqz(t) =
1

Γ(q)

∫ t

0

(t− s)q−1z(s) ds, t > 0.

(ii) The fractional derivative of order q of z in the sense
of Riemann–Liouville is defined by

RL
0 Dq

t z(t)

=
1

Γ(n− q)

dn

dtn

∫ t

0

(t− s)n−q−1z(s) ds,

t > 0,

where q ∈]n− 1, n[, n ∈ N.

Let

ACm(J, Z)

=
{
f : J → Z and f (m−1)(z) ∈ AC(J, Z)

}
,

where AC(J, Z) is the set of absolutely continuous
functions from J onto Z endowed with the norm ‖z‖∞ =
sup
t∈J

|z(t)|.

Lemma 1. (Kilbas et al., 2006) Let q > 0, m = [q] + 1,
and let zm−q(t) = Im−q

t z(t) be the fractional integral of
order m − q. If z ∈ L1(J, Z) and zm−q ∈ ACm(J, Z),
then we have

Iqt
RL
0 Dq

t z(t) = z(t)−
m∑

k=1

z
(m−k)
m−q (0)

Γ(q − k + 1)
tq−1.

The Laplace transform for a Riemann–Liouville fractional
integral is given by

L {Iqt z(t); γ} =
1

γq
ν(γ),

where ν(γ) is the Laplace transform of z.

Consider the Banach space

C1−q(J, Z) =
{
z : t1−qz(t) ∈ C(J, Z), 0 < q ≤ 1

}
,

equipped with the norm

‖z‖C1−q = sup
{
t1−q‖z(t)‖ : t ∈ J, 0 < q ≤ 1

}
.

Let us suppose that −A generates a compact and
uniformly boundedC0 semigroup {T (t)}t≥0; if 0 ∈ ρ(A)
(resolvent of A), then we define the fractional power Aλ

as a closed linear operator on its domain D
(
Aλ
)
, for all

0 < λ ≤ 1. We state the following assertions which we
will use to justify our findings (see Pazy, 1983):

(i) There is M ≥ 1 such that

M = sup
t≥0

|T (t)| <∞. (2)

(ii) For any λ ∈]0, 1], there exists Cλ > 0 such that

|AλT (t)| ≤ Cλ

tλ
, t ∈]0, T ]. (3)
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3. Mild solution for a neutral system
In this section, our main purpose is to give sufficient
conditions for the existence and uniqueness of the mild
solution to the neutral system (1).

3.1. Formula for the mild solution. The following
lemma is a motivation to define the mild solution for the
system (1).

Lemma 2. Under Assumptions H1–H4, let q ∈]0, 1] with
p > 1/q ≥ 1. If z(t) ∈ L1(J, Z), z1−q ∈ AC(J, Z)),
and z is a solution of the system
⎧
⎨

⎩

RL
0 Dq

t [z(t)− h (t, z(t))] = −Az(t) + f(t, z(t)),
t ∈ J = (0, T ], T ≥ 1,

I1−q
t [z(t)− h(t, z(t))]|t=0 = z0,

(4)
then z satisfies the following integral equation:

z(t) = tq−1Tq(t)z0 + h(t, z(t))

−
∫ t

0

(t− s)q−1ATq(t− s)h(s, z(s)) ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, z(s)) ds,

where

Tq(t)z = q

∫ ∞

0

θΨq(θ)T (tqθ)z dθ

and
Ψq(θ) =

1

q
θ−1− 1

q Φq

(
θ−

1
q

)
,

Φq(θ) =
1

π

∞∑

n=1

(−1)n−1θ−qn−1Γ(nq + 1)

n!
sin(nπq),

θ ∈ (0,∞).

Proof. Applying the Riemann–Liouville integral operator
to (4) when combined with Lemma 1 yields

z(t) = h(t, z(t)) +
I1−q
t [z(t)− h(t, z(t))] |t=0

Γ(q)
t1−q

− Iqt Az(t) + Iqt f(t, z(t))

= h(t, z(t)) +
tq−1

Γ(q)
z0

+
1

Γ(q)

∫ t

0

(t− s)q−1
[
−Az(s) + f(s, z(s))

]
ds.

(5)
Let γ > 0. Then, if we plug the following Laplace

transforms:

ν(γ) =

∫ ∞

0

e−γsz(s) ds,

μ(γ) =

∫ ∞

0

e−γsf(s, z(s)) ds,

ξ(γ) =

∫ ∞

0

e−γsh(s, z(s)) ds.

into (5), we obtain

ν(γ) =
1

γq
z0 + ξ(γ)− 1

γq
Av(γ) + 1

γq
μ(γ)

= (γqI +A)−1z0 + γq(γqI +A)−1ξ(γ)

+ (γqI +A)−1μ(γ)

=

∫ ∞

0

e−γqsT (s)z0 ds

+ γq
∫ ∞

0

e−γqsT (s)ξ(γ) ds

+

∫ ∞

0

e−γsT (s)μ(γ) ds,

(6)

where I is the operator identity on Z . Let

Φq(θ) =
1

π

∞∑

n=1

(−1)n−1θ−qn−1Γ(nq + 1)

n!
sin(nπq),

θ ∈ (0,∞), and its Laplace transform be given by
∫ ∞

0

e−γθΦq(θ) dθ = e−γq

, q ∈ (0, 1). (7)

Hence, from (5) and (7) it follows that
∫ ∞

0

e−γqsT (s)z0 ds

= q

∫ ∞

0

sq−1e−(γs)qT (sq)z0 ds

= q

∫ ∞

0

∫ ∞

0

sq−1e−γsθΦq(θ)T (sq)z0dθ ds

= q

∫ ∞

0

∫ ∞

0

e−γsΦq(θ)T
(
sq

θq

)
sq−1

θq
dθz0 ds

=

∫ ∞

0

e−γs

[

q

∫ ∞

0

Φq(θ)T
(
sq

θq

)
sq−1

θq
dθ

]

z0 ds,

(8)

γq
∫ ∞

0

e−γqsT (s)ξ(γ) ds

=

∫ ∞

0

∫ ∞

0

qγqtq−1e−(γs)qT (sq)e−γth(t, z(t)) dt ds

=

∫ ∞

0

d

ds
e−(γs)q

[∫ ∞

0

−T (sq)e−γth(t, z(t)) dt

]

ds

=

(

e−(γs)q
∫ ∞

0

−T (sq)e−γsh(s, z(s)) ds

) ∣
∣
∣
s=∞

s=0

+

∫ ∞

0

∫ ∞

0

qsq−1e−(γs)qAT (sq)e−γth(t, z(t)) dt ds

=

∫ ∞

0

e−γs
[
h(s, z(s))

+ q

∫ s

0

∫ ∞

0

Φq(θ)AT
(
(s− t)q

θq

)

× h(s, zs)
(s− t)q

θq
dθ dt

]
ds,

(9)
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∫ ∞

0

e−γqsT (s)μ(γ) ds

=

∫ ∞

0

∫ ∞

0

qsq−1e−(γs)qT (sq)e−γtf(t, z(t)) dt ds

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

qΦq(θ)e
−γsθT (sq)e−γtsq−1

× f(t, z(t)) dθ dt ds

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

qΦq(θ)e
−γsT

(
sq

θq

)
sq−1

θq
e−γt

× f(t, z(t)) ds dθ dt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

qΦq(θ)e
−γ(s+t)T

(
sq

θq

)
sq−1

θq

× f(t, z(t)) ds dθ dt

=

∫ ∞

0

∫ ∞

0

∫ ∞

t

qΦq(θ)e
−γsT

(
(s− t)q

θq

)
(s− t)q

θq

× f(t, z(t)) ds dθ dt

=

∫ ∞

0

e−γs
[
q

∫ s

0

∫ ∞

0

Φq(θ)T
(
(s− t)q

θq

)
(s− t)q

θq

× f(t, z(t)) dθ dt
]
ds.

(10)

According to (8), (9) and (10), we have

ν(γ) =

∫ ∞

0

e−γt

[

q

∫ ∞

0

Φq(θ)T
(
tq

θq

)
tq−1

θq
z0 dθ

+h(t, z(t)) + q

∫ t

0

∫ ∞

0

Φq(θ)AT
(
(t− s)q

θq

)

× h(s, z(s))
(t− s)q

θq
dθ ds+ q

∫ t

0

∫ ∞

0

Φq(θ)

× T (
(t− s)q

θq
)
(t− s)q

θq
f(s, z(s)) dθ ds

]

dt.

Inverting the previous Laplace transform, we get

z(t) = q

∫ ∞

0

Φq(θ)T
(
tq

θq

)
tq−1

θq
z0 dθ + h (t, z(t))

+ q

∫ t

0

∫ ∞

0

Φq (θ)AT
(
(t− s)q

θq

)

× h (s, z(s))
(t− s)q

θq
dθ ds

+ q

∫ t

0

∫ ∞

0

Φq (θ) T
(
(t− s)

q

θq

)
(t− s)

q

θq

× f (s, z(s))) dθ ds

= q

∫ ∞

0

1

q
θ−1− 1

q Φq

(
θ−

1
q

)
θT (tqθ) tq−1z0 dθ

+ h (t, z(t))

+ q

∫ t

0

∫ ∞

0

θ (t− s)
q−1 1

q
θ−1− 1

q Φq

(
θ−

1
q

)

×AT ((t− sq) θ)h (s, z(s)) dθ ds

+ q

∫ t

0

∫ ∞

0

θ (t− s)
q−1 1

q
θ−1− 1

q Φq

(
θ−

1
q

)

× T ((t− sq) θ) f (s, z(s)) dθ ds.

Set
Ψq (θ) =

1

q
θ−1− 1

q Φq

(
θ−

1
q

)

and

Tq(t)z = q

∫ ∞

0

θΨq(θ)T (tqθ)z dθ.

The proof is complete. �

The following lemma will be used throughout this
paper.

Lemma 3. (Zhou and He, 2021) The operator Tq(t) has
the following properties:

(i) For a fixed t ≥ 0,

‖Tq(t)z‖ ≤ M

Γ(q)
‖z‖, M > 0, for all z ∈ Z,

and Tq(t) is linear and bounded.

(ii) (Tq(t))t≥0 is strongly continuous.

(iii) For any z ∈ Z , α ∈]0, 1[, we have

‖AαTq(t)z‖ ≤ αMαΓ(2− α)

tqαΓ(1 + q(1− α))
‖z‖.

Lemma 4. Let −A generate a differentiable semigroup
T (t). Then, for z ∈ Z , we have

Tq(t)z ∈ D(A), ∀t > 0,

Tq(t)Tq(s) = Tq(s)Tq(t), ∀t, s ≥ 0,

and
dT 2

q (t)z

dt
= 2Tq(t)

dTq(t)z
dt

, ∀t > 0.

Proof. For t, s ≥ 0, we have

Tq(t)Tq(s) = q

∫ ∞

0

θΨq(θ)T (tqθ) dθ

× q

∫ ∞

0

θΨq(θ)T (sqθ) dθ

= q

∫ ∞

0

θΨq(θ)T (sqθ) dθ

× q

∫ ∞

0

θΨq(θ)T (tqθ) dθ

= Tq(s)Tq(t)·
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For any z ∈ Z and t > 0, we get

dTq(t)2
dt

z =
d

dt

[
q

∫ ∞

0

θΨq(θ)T (tqθ) dθz
]2

= 2q

∫ ∞

0

θΨq(θ)T (tqθ) dθ

× d

dt

[∫ ∞

0

θΨq(θ)T (tqθ) dθ

]

z

= 2Tq(t)
dTq(t)
dt

z·

�

3.2. Uniqueness of the mild solution. In this
subsection, our main purpose is to give sufficient
conditions for the uniqueness of the mild solution to the
system (1). Motivated by Lemma 2, we shall define the
mild solution of the problem (1).

Definition 2. A function z ∈ C1−q(J, Z) is called a
mild solution of the problem (1) if it satisfies the following
fractional integral equation:

z(t) = tq−1Tq(t)z0 + h (t, z(t))

−
∫ t

0

(t− s)
q−1 ATq (t− s)h (s, z(s)) ds

+

∫ t

0

(t− s)q−1 Tq (t− s)Bu(s) ds

+

∫ t

0

(t− s)q−1 Tq (t− s) f (s, z(s)) ds.

(11)

Before proving the existence and uniqueness of the
mild solution of the system (1), we first formulate the
following hypotheses:

H0: T (t) is a compact operator for every t > 0.

H1: There are A1 > 0, A2 > 0, and β ∈]0, 1[ such that
h ∈ D(Aβ), and the function Aβh(t, ·) satisfies
∣
∣Aβh(t, y)−Aβh(t, z)

∣
∣ ≤ A1t

1−q‖y − z‖
∀ y, z ∈ PWq, t ∈ [0, T ],

(12)

and ∣
∣Aβh(t, z)

∣
∣ ≤ A2t

1−q‖z‖. (13)

H2: There is c > 0 and φ(·) ∈ Lp(J,R+), p > 1/q ≥ 1
such that

|f(t, z)‖ ≤ φ(t) + ct1−q‖z‖ (14)

for a.e. t ∈ J and all z ∈ Zq.

H3: There is Mf > 0 such that

‖f(t, y)− f(t, z)‖ ≤Mf t
1−q‖y − z‖

∀y, z ∈ Zq, t ∈ J. (15)

Remark 1.
(i) Assumption H0 is needed to prove that the set

V (t) =
{
q

∫ ∞

0

θΨq(θ)T (tqθ)zdθ,

z ∈ Z, ‖z‖ ≤ k, k > 0
}

is relatively compact in Z , which will be used to
prove the compactness of the operator Tq(t).

(ii) Assumption H1 is necessary to have the continuity of
the operator

(t− s)q−1ATq(t− s)h(s, z(s)), s ∈ [0, t[,

which will be used to obtain the existence and
uniqueness of the mild solution and the approximate
controllability of the system (1).

Theorem 1. Assume that H0–H3 are satisfied. Further-
more, if
[

T 1−q|A−β |A1 +
Γ(1 + β)

βΓ(1 + qβ)
M1−βA1T

q(β−1)+1

+ TMf
M

qΓ(q)

]

< 1, (16)

then, for each control function u(·) ∈ U , the system (1)
has a unique mild solution on C1−q(J, Z).

Proof. For each positive constant k, let Bk = {z ∈
C1−q(J, Z) : ‖z‖C1−q ≤ k}. Obviously,Bk is a bounded,
convex and closed subset of C1−q(J, Z). We prove that
the operator L defined by

(Lz)(t) = tq−1Tq(t)z0 + h(t, z(t))

−
∫ t

0

(t− s)q−1ATq(t− s)h(s, z(s)) ds

+

∫ t

0

(t− s)q−1Tq(t− s)Bu(s) ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, z(s)) ds,

has a fixed point z(·) in Bk for any u(·) ∈ U . Then z(·) is
a mild solution of the system (1).

We first show that the operator L mapsBk into itself.
For any z ∈ Bk, t ∈ [0, T ], we have, by H0–H3 and
Lemma (3), that

t1−q‖(Lz(t))‖
≤ ‖Tq(t)z0‖+ t1−q‖h(t, z(t))‖

+ t1−q

∫ t

0

(t− s)q−1‖ATq(t− s)h(s, z(s)‖ ds

+ t1−q

∫ t

0

(t− s)q−1‖Tq(t− s)Bu(s)‖ ds

+ t1−q

∫ t

0

(t− s)q−1‖Tq(t− s)f(s, z(s)‖ ds.
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Following the ideas of Zhou and Jiao (2010a), we obtain

t1−q‖(Lz(t))‖

≤ M

Γ(q)
‖z0‖+

M

Γ(q)

( p− 1

qp− 1

) p−1
p

T 1− 1
p ‖Φ‖Lp

+
M

Γ(q)

( p− 1

qp− 1

) p−1
p

T 1− 1
p ‖Bu‖Lp

+

[

A2|A−β |T 1−q +
Tc

q

+
Γ(1 + β)

βΓ(1 + qβ)
M1−βA2T

q(β−1)+1

]

k.

For a sufficiently large k > 0, we have

t1−q‖Lz‖ ≤ k.

Therefore, we obtain

‖Lz‖C1−q ≤ k.

Then L(Bk) ⊂ Bk.
Next, we will prove that the operator L is a

contraction on Bk, for every y, z ∈ Z and t ∈ [0, T ].
For every z, y ∈ Bk and t ∈ [0, T ], we can deduce, by
H0–H3 and Lemma (3), that

‖(Lz(t))− (Ly(t))‖
≤ t1−q‖h(t, z(t))− h(t, y(t))‖

+ t1−q

∫ t

0

(t− s)q−1‖ATq(t− s)

×
(
h(s, z(s))− h(s, y(s))

)
‖ ds

+ t1−q

∫ t

0

(t− s)q−1Tq(t− s)

×
(
f(s, z(s))− f(s, y(s))

)
‖ ds

≤
[

T 1−q|A−β |A1 +
Γ(1 + β)

βΓ(1 + qβ)
M1−β

A1T
q(β−1)+1 + TMf

M

qΓ(q)

]

‖z − y‖C1−q .

Consequently, we deduce by (16) that the operator
L is a contraction on Bk. According to the Banach fixed
point theorem, L has a unique fixed point in C1−q(J, Z).
The proof is completed. �

4. Approximate controllability results for a
neutral system

We assume that the system (1) has a mild solution for
z0 ∈ Z and a control u(·) ∈ U , which will be denoted
by z (t; 0, z0, u). Let Ud = {z (T ; 0, z0, u) : u (·) ∈ U}
be the reachable set of system (1) at terminal time T .

Definition 3. The system (1) is said to be approximately
controllable on J if Ud = Z , for all z0 ∈ Z .

Consider the Nemytskii operator related to f defined
by

kf :

{
C1−q(J, Z) → Lp(J, Z),

z → f (t, z (t)) .

Define the operator K : Lp(J, Z) → Z ,

Kh =

∫ b

0

(b−s)q−1Tq(b−s)h(s) ds, h(·) ∈ Lp(J, Z),

which is linear and bounded. In what follows, we assume
that the hypothesis below is true:

H4: For ε > 0 and ϕ(·) ∈ Lp(J, Z), there is a u(·) ∈
Lp(J, U) such that

‖Kϕ−KBu‖ < ε, (17)

‖Bu(·)‖Lp ≤ L‖ϕ(·)‖Lp , (18)

where L is a constant which is independent of ϕ(·) ∈
Lp(J, Z), and

LK′Eqβ

(
T 1−q(1−β)

α′

[
Γ(β)

Γ(qβ)
A1M1−β

+
MMf

Γ(q)

]

Γ(qβ)

)

< 1, (19)

while Eβ is the Mittag-Leffler function given by

Eβ(y) =
k=∞∑

k=0

yk

Γ(kβ + 1)
·

The main result of this section requires the following
proposition.

Proposition 1. Under Assumptions H1–H3 on the non-
linearity of f , if α = 1 − T 1−q

∣
∣A−β

∣
∣A2 > 0, α′ =

1 − T 1−q
∣
∣A−β

∣
∣A1 > 0, then any mild solution of the

system (1) fulfills

‖z(·; 0, z0, u)‖C1−q

≤ KEqβ

(
M

αΓ(q)
T 1−q(1−β)

×
[
c+

Γ(β)

Γ(qβ)
M1−βA2

]
Γ(qβ)

)

,

for any u(·) ∈ U , and

‖z1(·)− z2(·)‖C1−q

≤ K′Eqβ

(
T 1−q(1−β)

α′

[
Γ(β)

Γ(qβ)
A1M1−β

+
MMf

Γ(q)

]

Γ(qβ)

)

‖Bu1(·) − Bu2(·)‖Lp ,
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for any u1, u2 ∈ U , where

K =
M

αΓ(q)

[
‖z0‖+

(
p− 1

qp− 1

) p−1
p

× T 1− 1
p

(

‖Bu‖Lp + ‖Φ‖Lp

)

,

K′ =
M

α′Γ(q)
T 1−q(1−β)

[
c+

Γ(β)

Γ(qβ)
M1−βA2

]
Γ(qβ).

Proof. Let z be a mild solution of (1), with respect to
u(·) ∈ U on C1−q(J, Z). We have

z(t) = t1−qTq(t)z0 + h(t, z(t))

−
∫ t

0

(t− s)q−1ATq(t− s)h(s, z(s)) ds

+

∫ t

0

(t− s)q−1Tq(t− s)Bu(s) ds

+

∫ t

0

(t− s)q−1Tq(t− s)f(s, z(s)) ds.

For t ∈ J , we can get

t1−q‖z(t)‖
≤ ‖Tq(t)z0‖+ t1−q‖A−βAβh(t, z(t))‖

+ t1−q

∫ t

0

(t− s)q−1‖A1−βTq(t− s)

×Aβh(s, z(s))‖h(s, z(s)) ds

+ t1−q

∫ t

0

(t− s)q−1‖Tq(t− s)f(s, z(s))‖ ds

+ t1−q

∫ t

0

(t− s)q−1‖Tq(t− s)Bu(s)‖ ds

≤ M

Γ(q)
‖y0‖+A2T

1−q|A−β |t1−q‖z(t)‖

+ t1−q qΓ(1 + β)

Γ(1 + qβ)
M1−βA2

×
∫ t

0

(t− s)qβ−1s1−q‖z(s)‖ ds

+
M

Γ(q)
t1−q

∫ t

0

(t− s)q−1‖Bu(s)‖Lp ds

+
M

Γ(q)
t1−q

×
∫ t

0

(t− s)q−1
[
Φ(s) + cs1−q‖z(s)‖

]
ds.

(20)

Then

[
1− T 1−q|A−β |A2

]
t1−q‖z(t)‖

≤ M

Γ(q)

[

‖z0‖

+

(
p− 1

qp− 1

) p−1
p

T 1− 1
p

(

‖Bu‖Lp + ‖Φ‖Lp

)]

+
Mt1−q

Γ(q)

[
c+

qΓ(1 + β)

Γ(1 + qβ)
M1−βA2

]

×
∫ t

0

(t− s)qβ−1s1−q‖z(s)‖ ds.

(21)

Set α = 1− T 1−q|A−β |A2, which implies that

t1−q‖z(t)‖

≤ M

αΓ(q)

[

‖z0‖+
(
p− 1

qp− 1

) p−1
p

T 1− 1
p

×
(
‖Bu‖Lp + ‖Φ‖Lp

)
]

+
M

αΓ(q)
T 1−q

[

c+
qΓ(1 + β)

Γ(1 + qβ)
M1−βA2

]

×
∫ t

0

(t− s)qβ−1s1−q‖y(s)‖ ds.

(22)

Let

P (t) = t1−q‖z(t)‖.

Then

P (t) ≤ K +
M

αΓ(q)
T 1−q

[

c+
qΓ(1 + β)

Γ(1 + qβ)
M1−βA2

]

×
∫ t

0

(t− s)qβ−1P (s) ds

≤ K +
M

αΓ(q)
T 1−q

[
c+

Γ(β)

Γ(qβ)
M1−βA2

]

×
∫ t

0

(t− s)qβ−1P (s)ds.

From Corollary 2 of Ye et al. (2007), we obtain

P (t) ≤ KEqβ

(
M

αΓ(q)
b1−q

×
[
c+

Γ(β)

Γ(qβ)
M1−βA2

]
T qβΓ(qβ)

)

.
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Therefore,

‖z(t)‖C1−q

= sup
t∈J

t1−q‖z(t)‖

≤ KEqβ

(
M

αΓ(q)
T 1−q(1−β)

[
c

+
Γ(β)

Γ(qβ)
M1−βA2

]
Γ(qβ)

)

.

Similarly, we obtain

‖z(t)− y(t)‖C1−q

≤ K′Eqβ

(
1

α′
[
T 1−q(1−β) Γ(β)

Γ(qβ)
A1M1−β

+ t1−qMMf

Γ(q)

]
Γ(qβ)

)

‖Buz(·) − Buy(·)‖Lp ,

which completes the proof. �

Now, we are in the position to prove the approximate
controllability of the system (1).

Theorem 2. If H2, H3 and H4 are fulfilled, then the system
(1) is approximately controllable on J if A generates a
differentiable semigroup T (t) on the Banach space Z .

Proof. Since D(A) = Z , it is enough to show that
D(A) ⊂ Ud, i.e., ∀ε > 0 and zd ∈ D(A), ∃uε ∈ U
such that

‖zd − T q−1Tq(T )z0 − h(T, z(T ))

−AKkh(zε)−Kkf (zε)−KBuε‖ ≤ ε,

where zε(t) = z(t; 0, z0, uε) and t ∈ [0, T ].
Since T (t) is differentiable, for any z0 ∈ Z , we

have T q−1Tq(T )z0 ∈ D(A). Therefore, for any zd ∈
D(A), there exists ξ(·) ∈ Lp(J, Z) such that Kξ =
zd−T q−1Tq(T )z0−h(T, zT )−AKkh(zε). For example,

ξ(t) =
[Γ(q)]

2
(T − t)

1−q

T

[

Tq(T − t)− 2t
dTq(T − t)

dt

]

×
[
zd − T q−1Tq(T )z0 − h (T, z(T ))

]

−Akh(zε), t ∈]0, T [.

From H4, for any ε > 0 and u1(·) ∈ U , there is a
u2(·) ∈ U such that

‖Kξ −KΦf (x1)−KBu2‖ ≤ ε

22
,

where z1(t) = z(t; 0, z0, u1), t ∈ [0, T ]. Write z2(t) =
z(t; 0, z0, u2), t ∈ [0, T ] by H4, again there exists u′(·) ∈
U such that

‖K[kf (z2)− kf (z1)]−KBu′‖Z ≤ ε

22

and

‖Bu′(·)‖Lp

≤ L‖kf(z2)(·)− kf (z1)(·)‖
≤ LMf t

1−q‖z2(·)− z1(·)‖

≤ K′Eqβ

(
1

α′

[

T 1−q Γ(β)

Γ(qβ)
A1M1−β

+t1−qMMf

Γ(q)

]

Γ(qβ)T qβ

)

‖Bu2(·)− Bu1(·)‖Lp .

Then define

u3(t) = u2(t)− u′(t), u3(·) ∈ U .

Accordingly, we obtain

‖Kξ −Kkf (z2)−KBu3‖
≤ ‖Kξ −Kkf (z1)−KBu2‖
+ ‖KBu′ − [Kkf (z2)−Kkf (z1)]‖

≤
(

1

22
+

1

23

)

ε.

By induction, we get

‖Kξ −Kkf (zn)−KBun+1‖ ≤
(

1

22
+ · · ·+ 1

2n

)

ε,

where zn = z(·, 0, z0, un), t ∈ [0, T ], and

‖Bun+1(·)− Bun(·)‖Lp

≤ LK′Eqβ

(
T 1−q(1−β)

αA′

[
Γ(β)

Γ(qβ)
A1M1−β

+
MMf

Γ(q)

]

Γ(qβ)

)

‖Bun(·)− Bun−1(·)‖Lp .

It follows from (19) that {Bun(·)}n∈N� is a Cauchy
sequence on Lp(J, Z); then

∃w(·) ∈ Lp(J, Z)

such that Bun(·) → w(·) in Lp(J, Z), asn→ +∞.

Thus, for all ε > 0, there exists N ∈ N
� such that

‖KBuN+1 −KBuN‖ ≤ ε/2·
Furthermore,

‖Kξ −Kkf (zN)−KBuN‖
≤ ‖Kξ −Kkf (zN )−KBuN+1‖
+ ‖KBuN+1 −KBuN‖

≤
(

1

22
+ · · ·+ 1

2n

)

ε+
ε

2
< ε.

Therefore, the system (1) is approximately controllable
on J . �
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Remark 2. If h(t, z(t)) ≡ 0, ∀t ∈ (0, T ], then the
system (1) is transformed to the fractional system given
by

⎧
⎨

⎩

Dq
RLz(t) = −Az(t) + Bu(t) + f(t, z(t))
t ∈ J = (0, T ] (T ≥ 1),

I1−q
t z(t)|t=0 = z0.

which is, according to Theorem 4.3 by Liu and Li (2015),
approximately controllable under Assumptions H2, H3

and H4.

5. Application
Consider the following system, and apply the previous
results to it:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
2/3
RL

(
w(t, x) −

∫ π

0

G(x, y)w(t, y) dy
)
= Δw(t, x)

+ρt
2
3 sin(w(t, x)) + Bu(t, x) t ∈ [0, 1], x ∈ Ω,

w(t, 0) = w(t, π) = 0, t ∈ [0, 1],

I
1
3

0+

[
w(t, x) −

∫ π

0

G(x, y)w(t, y) dy
]
|t=0 = w0,

(23)
where Ω = [0, π], Z = L2([0, π],R), U = L2([0, π]) and
ρ ≥ 0, the operator A is given by Az = −z′′, and its
domain is

D(A) :=
{
z ∈ Z : z, z′ are absolutely continuous,

z′′ ∈ Z, z(0) = z(π) = 0
}
.

The operator −A generates a uniformly bounded
differentiable strongly continuous semigroup {T (t)}t≥0

which is compact, analytic and self-adjoint. Then, let
γn = n2 and

ψn(y) =

√
2

π
sin(ny)

be, respectively, the eigenvalues and eigenfunctions of A,
for all n ∈ N

�. Thus, 0 < γ1 ≤ γ2 ≤ · · · , γn → ∞ as
n → ∞, and {ψn}∞n=1 form an orthonormal basis of Z .
Moreover,

Az =

∞∑

n=1

γn〈x, ψn〉ψn, z ∈ D(A).

We also have the following:

(i) T (t)z =
∑n=∞

n=1 e−n2t〈x, ψn〉ψn. In particular,
‖T (t)‖ ≤ e−t < 1 =M.

(ii) For all z ∈ Z , A−1
2 z =

∑n=∞
n=1

1
n 〈x, ψn〉ψn, and

‖A−1
2 ‖L2[0,π] = 1.

(iii) For all z ∈ Z ,

A 1
2 z =

n=∞∑

n=1

n〈x, ψn〉ψn,

with

D
(
A 1

2

)
=

{

z(·) ∈ Z :
n=∞∑

n=1

n〈x, ψn〉ψn ∈ Z

}

.

Clearly, (2) and (3) are satisfied.
The system (23) can be formulated as the following

control system in Z:
⎧
⎪⎪⎨

⎪⎪⎩

RL
0 Dq

t [z(t)− h (t, z(t))]
= −Az(t) + Bu(t) + f(t, z(t)),

t ∈ J = (0, T ], (T ≥ 1),

I1−q
t [z(t)− h(t, zt)]|t=0 = z0,

(24)
where (z(t))(x) = w(t, x), t ∈ [0, 1], x ∈ [0, π].
The function h : [0, 1]× C([0, 1], Z) → Z is given by

(h(t, z(t))(x) =

∫ π

0

G(x, y)w(t, y) dy

Let

(Gh (v)) (s) =

∫ π

0

G (y, s) v (y) dy,

for v ∈ L2 ([0, π] ,R) , s ∈ [0, π] .
In addition, assume that the following conditions

hold:

(i) (y, s) → G(y, s) is a measurable function for all
y, s ∈ [0, π], and

∫ π

0

∫ π

0

G2(y, s) dy ds <∞,

(ii) ∂G(y, s) is measurable,G(0, y) = G(π, y) = 0, and

A =
(∫ π

0

∫ π

0

(∂zG(y, s))
2 dy ds

) 1
2

<∞.

From (1), we have that Gh is a bounded and linear
on L2([0, π],R) and Gh(v) ∈ D

(
(−A)

1
2

)
, where

‖A 1
2Gh‖L2[0,π] < ∞. From the definition of Gh and (2),

we obtain

〈Ghv, ψn〉 =
∫ π

0

ψn(y)
( ∫ π

0

G(y, s)v(z)ds
)
dy

=
1

n

√
2

π
〈G(v), cos(ny)〉,

where

(G (v)) (s) =

∫ π

0

∂G (y, s) v (y) dy.
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From (2), we have that G : L2([0, π],R) →
L2([0, π],R) is bounded and linear with ‖G‖L2[0,π] ≤ A.
Furthermore, ‖A 1

2Gh(v)‖L2[0,π] = ‖G(v)‖L2[0,π]; then
(12) and (13) are satisfied.

The function f : [0, 1] × C([0, 1], Z) → Z is given
by

f(t, z) = ρt
2
3 sin(z(t)).

For all t ∈ [0, 1], z ∈ [0, π], we have

|f(t, z)| ≤ t+ ρt1/3|z(t)|.

Then the inequality (14) is satisfied.

Further, for any z, y ∈ Z , t ∈ [0, 1], we have

|f(t, z)− f(t, y)| ≤ ρt
1
3 t

1
3 | sin(z(t))− sin(y(t))|

≤ ρt
1
3 |z(t)− y(t)|C 1

3
([0,1],Z).

Then, the inequality (15) holds.
Hence, according to Theorem (1), the system (23)

has a unique mild solution provided that the inequality
(16) of Theorem (1) is satisfied.

For u(·) ∈ V = L2([0, 1], U), we get

u(t) =

n=∞∑

n=1

un(t)ψn, un(t) = 〈u(t), ψn〉.

The control operator B is defined by

Bu(t) =
∞∑

n=1

un(t)ψn,

with

un(t) =

{
0, 0 ≤ t < 1− 1

n2 ,

un(t), 1− 1
n2 ≤ t ≤ 1,

n = 1, 2, . . .. Since ‖Bu(·)‖ ≤ ‖u(·)‖, we have that B ∈
L(V , L2([0, 1], Z)).

Now, write

k =

∫ 1

0

(1− s)−
1
3 T 2

3
(1 − s)h(s) ds =

∞∑

n=1

knψn,

kn = 〈 k, ψn〉, ∀ k(·) ∈ L2([0, 1], Z).

Choose ũn(t),

ũn(t) =
2n2

1− e−2
kne

−n2(1−t), 1− 1

n2
≤ t ≤ 1

and

kn =

∫ 1

1− 1
n2

∫ ∞

0

(1− t)−1/3θΨ2/3(θ)

× e−n2θ(1−t)
2
3 ũn(t) dθ dt.

Define

u(t) =
∞∑

n=1

un(t)ψn,

where

un(t) =

{
0, 0 ≤ t < 1− 1

n2 ,

ũn(t), 1− 1
n2 ≤ t ≤ 1,

n = 1, 2, . . .. Moreover, for each function h(·) ∈
L2([0, 1], Z), there exists u(·) ∈ V such that

∫ 1

0

(1 − s)−
1
3 T 2

3
Bu(s) ds

=

∫ 1

0

(1− s)−
1
3 T 2

3
(1− s)h(s) ds.

It is clear that (17) is satisfied. Furthermore, we have

‖Bu(·)‖2

=

∞∑

n=1

∫ 1

1− 1
n2

|ũn(t)|2 dt

= (1− e−2)−1
∞∑

n=1

2n2k2n

=
2

3
(1 − e−2)−1

∞∑

n=1

(1− e−2n2

)

∫ 1

0

|hn(t)|2 dt

≤ 3

2
(1 − e−2)−1|h(·)|2.

Then (18) is fulfilled, and the system (23) is
approximately controllable on [0, 1] if

3

2
(1− e−2)−1K ′E 1

3

(
1

3

[
Γ(12 )

Γ(13 )
A+

ρ

Γ(12 )

]
1

3

)

< 1.

6. Conclusion
In this paper, we established sufficient conditions for
the existence and uniqueness of the mild solution,
and approximate controllability for a class of nonlinear
fractional evolution neutral systems in the sense of a
Riemann–Liouville derivative in Banach spaces. More
precisely, we obtained the existence of the mild solution
by using the Laplace transform and semigroup theory.
Furthermore, we proved the uniqueness of the solution
using the Banach fixed-point theorem. A proof of
approximate controllability was also established by
constructing a Cauchy sequence, which is a weaker
concept present in most application problems. An
example was given to validate our findings.

Our work can be extended to the case of hyperbolic
systems in the deterministic case, for a stochastic one,
and for a class of fractional neutral systems with damping
(Dhayal et al., 2019; Du et al., 2020; Almarri and
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Elshenhab, 2022; Mabel Lizzy and Balachandran, 2018).
Various topics of interest remain open, for instance, the
case of approximate controllability of a semilinear neutral
evolution equation with impulses, delay and nonlocal
conditions (Agarwal et al., 2022; Leiva and Sundar, 2017).
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