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This paper concerns the synthesis of a nonlinear robust output controller based on a full-order observer for a class of
uncertain disturbed systems. The proposed method guarantees that, in finite time, the system trajectories go inside a minimal
neighborhood ultimately bounded. To this end, the attractive ellipsoid method is enhanced by applying the dynamic sliding
mode control performance properties. Furthermore, in order to guarantee the stability of the trajectory around the trivial
solution in the uniform-ultimately bounded sense, the feasibility of a specific matrix inequality problem is provided. With
this feasible set of matrix inequalities, the separation principle of the controller/observer scheme considered also holds. To
achieve a system performance improvement, a numerical algorithm based on the small size ultimate bound is presented.
Finally, to illustrate the theoretical performance of the designed controller/observer, a numerical example dealing with the
stabilization of a disturbed electromechanical system with uncertain and unmodeled dynamics is presented.
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1. Introduction

In situations where we deal with external disturbances
or uncertain models when designing a control system,
the stabilization near the trivial solution of the controlled
system is not guaranteed (Haddad and Chellaboina, 2011;
Poznyak et al., 2014; Utkin et al., 2020). In this case,
only a bound of the trajectories in some neighborhood
of a stable state can be held for the analysis of the
nonlinear systems; this concept is known as the ultimate
uniform bounded stability (UUB-stability) (Haddad and
Chellaboina, 2011). Furthermore, to improve the system
trajectories’ behavior in terms of the UUB-stability,
many controllers based on different approaches have been
presented: such is the case of those using sliding mode
control (SMC) theory (Utkin et al., 2020), or controllers
developed in the frame of the attractive ellipsoid method
(AEM) (Sánchez et al., 2019; Poznyak et al., 2014).
In this order of ideas, SMC rejects all the external
matched bounded disturbances, nevertheless, it produces
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the well-known chattering effect increasing considerably
actuators’ wastage (Utkin et al., 2020).

In the last decades, dynamic sliding mode control
(DSMC), high order, and integral SMC have been
introduced in order to reduce this adverse effect (Utkin
et al., 2020). Cao et al. (2023) focus on achieving
sampled-data stabilization for a class of nonlinear systems
under arbitrary sampling periods. This is accomplished
by introducing Euler’s approximation for unmeasured
states and constructing coordinate transformations for the
continuous system.

According to the traditional state observation
problem, in sliding mode observers (SMOs) state
estimation is required to observe the unmeasured state
variables (Choi and Ro, 2005; Jafari and Mobayen,
2019; Liu and Khalil, 2019). A special case of SMO
is the connection with robust design, where robust
performance is achieved by combining concepts of linear
matrix inequalities (LMIs) and sliding manifold design
(Silva et al., 2009; Choi and Ro, 2005; Jafari and
Mobayen, 2019). On the other hand, the design of robust
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controllers/observers based on the AEM encompasses the
matrix inequalities issues (Poznyak et al., 2014; Ordaz
et al., 2019). Nevertheless, controllers based on the
AEM may provoke a high gain effect in the control
signal, particularly when the control design involves
state estimation (Poznyak et al., 2014). However, in
order to preserve the lifetime of the actuators, it is not
recommendable to use controllers with high gain effects
and/or those producing large breadth chattering effects.

Nowadays, the problem of reducing the effects
of uncertain dynamics and/or external disturbances is
addressed by means of robust control approaches, such
as output sliding mode control or controller/observer
schemes based on Luenberger’s theory and the AEM
(Tsinias and Theodosis, 2016; Sánchez et al., 2019;
Andrade-Da Silva et al., 2009), or combining SMC, the
fuzzy control approach (Zhang et al., 2022), and other
sophisticated schemes (Peng et al., 2021; Kukurowski
et al., 2022). As mentioned above, one of the most
relevant results on linear or nonlinear systems is the
controller/observer for output regulation. This approach
brings about the separation principle, and it has been
studied to be satisfied for nonlinear and uncertain systems
(Atassi and Khalil, 1999). Different approaches that seem
to have a very similar format to the linear case are the
AEM algorithm or methods based on LMIs or bilinear
matrix inequalities (BMIs) (Sánchez et al., 2019; Ordaz
et al., 2019; Poznyak et al., 2014; Choi and Ro, 2005).

Indeed, if there exists some relation between the
storage function and its variations having a decreasing
behavior, then some kind of stability is guaranteed (Utkin
et al., 2020; Haddad and Chellaboina, 2011).

Thus, if the stability analysis is formulated as the
solution of an LMI problem, the feasibility of this one is a
necessary fact to be guaranteed.

In this context, the main contributions and features of
this paper are listed below:

• A nonlinear robust controller/observer is
synthesized, which guarantees the so-called
UUB-stability, and the closed-loop system
considered has a quasi-minimal1 ultimate bound.

• The adverse effects related to the chattering
phenomenon, external disturbances and/or uncertain
dynamics, are significantly reduced by summarizing
the high gain properties obtained from the AEM
approach and robustness provided by the DSMC.

• The separation principle of the designed robust
controller/observer scheme is shown through the
BMI feasibility process.

Another feature of the paper is a comparative study. This
one is presented in order to validate the performance of

1The quasi-minimal bound is not minimal, but it is around the mini-
mal solution.

the proposed controller/observer scheme (in terms of error
analysis and energy consumption).

The outline of this paper is as follows. Section 2
presents the dynamic system description, some useful
mathematical background, and the problem statements.
The main contribution of this paper is introduced in
Section 3. Next, Section 4 is devoted to describe the
numerical aspects to obtain the quasi-minimal ellipsoidal
matrix. The theoretical results are validated in a numerical
benchmark presented in Section 5. Finally, the concluding
remarks are given.

2. Preliminaries and problem statement
Consider the nonlinear system with external dynamic
uncertainties which is governed by the ordinary
differential equation

ẋ = Ax+Bu+ ξx, x(0) = x0,

y = Cx+ ξy,
(1)

where matrices and vectors have the following structure:

A =

[
A11 A12

A21 A22

]
, B =

[
0(n−m)×m

B2

]
,

C =
[
C1 C2

]
, ξx =

[
f1(x) + ζ1(x, t)
f2(x) + ζ2(x, t)

]
,

with x = [xᵀ1 , x
ᵀ
2 ]

ᵀ, x1 ∈ R
n−m, and x2 ∈ R

m being
blocks of the connected manifold x ∈ X of dimension
n ∈ N. The matrices A11 ∈ R

(n−m)×(n−m), A12 ∈
R

(n−m)×m, A21 ∈ R
m×(n−m) and A22 ∈ R

m×m are
blocks of A ∈ R

n×n, which is associated with the system
state x.

The control input is given by u ∈ R
m, m ∈ N,

and its realizing matrix is denoted by B, where block
B2 ∈ R

m×m is invertible. The measured output y ∈ R
p

is associated with the output matrix C ∈ R
p×n, whereas

ξy ∈ R
p defines the external disturbances. The nonlinear

and uncertain dynamics are represented by fi and ζi,
where the index i = 1, 2 associates the blocks x1 and x2,
respectively. The nonlinear functions fi fulfill the trivial
solution fi(0) = 0. Hereafter it is assumed that

‖ξx‖2 ≤ c1 + c2 ‖x‖2 , ‖ξy‖2 ≤ c3, (2)

at least from the local point of view. Furthermore, the
system (1) is assumed to be controllable and observable.
In this way, the designed controller must attenuate both
the external disturbances and uncertain dynamics, with
the latter including unmatched uncertainties. Thus, the
use of the estimate of the unmeasured state variables
in the control design improves the closed-loop system
performance, and this is the justification of the design of
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a full-order observer. The state estimate is given by an
observer of a full order defined by

˙̂x = Ax̂+Bu+ L (y −Cx̂) , x̂(0) = x̂0, (3)

where L =
[
Lᵀ
1 , L

ᵀ
2

]ᵀ is defined here as the observer
gain-matrix, also to be designed, with L1∈R(n−m)×p and
L2∈Rm×p. In order to match it with the system (1) and
considering the error function e = x − x̂, the previous
observer can be rewritten in the extended form as follows:

˙̂x1 = A11x̂1 +A12x̂2

+ L1C1e1 + L1C2e2 + L1ξy,

˙̂x2 = A21x̂1 +A22x̂2

+ L2C1e1 + L2C2e2 + L2ξy +B2u.

(4)

Remark 1. In the previous equations the estimation errors
e1 ∈ R

n−m and e2 ∈ R
m are used, but in both the

cases, the unavailable state variables are restricted by the
matrices C1 and C2, respectively.

To see this, consider the nonsingular transformation
x̄ = Γx̂, where Γ ∈ R

n×n is given as

Γ =

(
Nᵀ

C

C

)
,

with NC ∈ R
n×(n−p) as the null-space of the output

matrix C. In this way, the estimated system (3) can be
expressed in the new basis changed to x̄ᵀ =

[
x̄ᵀ1 x̄ᵀ2

]
,

where x̄1 ∈ R
n−p should be estimated on-line using the

available information x̄2 ∈ R
p. Thus, the state estimate

can be expressed as

˙̄x = Ax̄+ Bu+ L (y − Cx̄) , x̄(0) = Γx̄0, (5)

and the system output by y = Cx̄, where A = ΓAΓ−1,
B = ΓB, C = CΓ−1 andL = ΓL. The matrices involved
in (5) have the following structure:

A =

[A11 A12

A21 A22

]
, C =

[
0 Ip

]
,

B =

[B1

B2

]
, L =

[L1

L2

]
, (6)

with appropriate matrix dimensions. Thus, (5) can be
written as

˙̄x1 = A11x̄1 +A12x̄2 + L2C2e2 + L1ξy + B1u,

˙̄x2 = A21x̄1 +A22x̄2 + L2C2e2 + L2ξy + B2u.
(7)

Equation (7) indicates that, as previously suggested,
the unmeasured state variables do not play any role in the
dynamic estimation algorithm.

Definition 1. (Attractive ellipsoid (Poznyak et al., 2014))
The ellipsoid E (0, P̄−1

)
= {x ∈ R

n : xᵀP̄x ≤
1, 0 < P̄ = P̄ᵀ} with the center at the origin and the
corresponding n× n ellipsoidal matrix P̄ is attractive for
some dynamic system if, for any trajectory {x}t≥0, the
property lim supt→∞ xᵀ(t)P̄x(t) ≤ 1 holds.

Next, UUB-stability is defined.

Definition 2. (Ultimate uniform bounded stability (Had-
dad and Chellaboina, 2008)) The system trajectory x(t)
of the system (1) is stable around the origin if

‖x(t0)‖≤a =⇒ ‖x(t)‖≤b, ∀t ≥ t0 + T,

for positive b, c ∈ R, a ∈ (0, c), and T = T (a, b)
independent of t0.

However, one problem of SMC is the chattering
phenomenon, an effect that is considerably reduced when
the control signal is included in the sliding variable
structure. Thus, the problem considered here is to
design a robust control based on the available information
{y, x̂, u}t≥0 such that the so-called UUB-stability of the
system (1) is guaranteed in the presence of the external
disturbances and uncertain dynamics. Furthermore, the
state estimation is designed via the full-order observer
(3), and the controller is synthesized in such a way
that the state estimation and the available information
guarantee the output disturbances mitigation. The
controller/observer design combines the concept of the
AEM with DSMC theory. Accordingly, after a finite
time, the control law drives the system trajectories into
a quasi-minimal size attractive ellipsoid and after this
time, all trajectories of the system considered arrive to a
small positive invariant neighborhood around the origin
and remain there.

Proposition 1. (On the attractive set (Poznyak et al.,
2014)) Assume that a real-valued function V : Rn → R

satisfies

d

dt
V (z) ≤ −αV (z) + β, z ∈ R

k, (8)

for positive scalars α and β. Then V (z) is an attractive
set and

lim sup
t→∞

V (z) ≤ β

α
. (9)

Theorem 1. (Attractive-invariant ellipsoid (Poznyak
et al., 2014)) Under the assumption (8), the attractive el-
lipsoid E (0, P̄−1

)
is, just as invariant ones, such that the

function

G (V (z)) :=

([
V

1
2 (z)−

√
β

α

]

+

)2

,

with

[γ]+ :=

{
γ if γ ≥ 0,

0 if γ < 0,

is the Lyapunov function for the dynamic system (1) hav-
ing the invariant set

D :=
{
z ∈ R

k : G (V (z)) = 0
}
,
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and the trajectories satisfy

d

dt
G (V (z)) < 0 if V (z) >

β

α
. (10)

Theorem 1 establishes that any trajectory being in or
arriving into D remains inside of this set during all future
time. Traditionally, the structure of (8) is obtained from a
matrix inequality approach to a control design (Poznyak
et al., 2014; Sánchez et al., 2019). As previously
mentioned, this is the main reason why the feasibility of
the obtained matrix inequality must be guaranteed.

Theorem 2. (On the feasibility of BMI (Gahinet and
Pierre, 1994)) Let Ψ ∈ R

h×h be a symmetric matrix,
PPP ∈ R

l×h, and QQQ ∈ R
k×h be matrices such that

rank(PPP) = rp < h, rank(QQQ) = rq < h. Then the
LMI

Ψ+PPPᵀΘᵀQQQ+QQQᵀΘPPP < 0 (11)

has a solution Θ ∈ R
k×l if and only if WWWᵀ

PΨWWWP < 0
and WWWᵀ

QΨWWWQ < 0, where WWWP , WWWQ are matrices such
that the columns of WWWP form a basis of kern(PPP) and
the columns of WWWQ form a basis of kern(QQQ) satisfying
PPPWWWP = 0, and QQQWWWQ = 0.

3. Nonlinear robust control design
Consider a manifold σ ∈ R

m, connected with the state
estimation space x̂ and the control input u, such that

σ =
[
K Im×m

]
⎡
⎣x̂1x̂2
u

⎤
⎦ ,

σ ∈ R
m, K =

[
K1 K2

]
,

(12)

where K1 ∈ R
m×(n−m) and K2 ∈ R

m×m are fixed gain
matrices. Here the sliding variable σ is associated with the
storage function V1(σ(t)) = 1

2σ
ᵀ(t)σ(t).

Proposition 2. (Sliding mode control) Consider the dy-
namic system (1), the estimation error e = x− x̂, and the
sliding variable (12). If the control action u, under the
knowledge of the gain matrices K ∈ R

m×n, L ∈ R
n×p

and 0 < ρρρ ∈ R
m×m, has the following dynamics:

u̇ = −{K1 (A11x̂1 +A12x̂2 + L1C1e1 + L1C2e2)

+K2

(
A21x̂1 +A22x̂2 + L2C1e1

+L2C2e2 +B2u
)
+ ρρρ sign(σ(t))

}
,

u(0) = u0, 0<ρρρ ∈ R
m×m,

δ1<λmin(ρρρ):=δ, κ = δ − δ1,

(13)

then the output disturbance bound can be estimated as fol-
lows:

‖K5ξy‖ = ‖ρρρsign(σ(t))‖,
K5 = KL ∈ Rm×p.

(14)

Moreover, after t = tr where tr =
√
2

κ
V

1
2
1 (σ(t0))+ t0, the

hyperplane σ = 0m is the sliding manifold for the sliding
variable (12) and the observer (3) has the following form:

˙̂x = (A−BK) x̂+ LCe

+ LKᵀ
5 (K5K

ᵀ
5)

−1
ρρρsign(σ(t)).

(15)

The proof is presented in Appendix (Section A1).

The control approach expressed in (13) is known as
DSMC. In this algorithm, the chattering phenomenon is
considerably reduced since signal u̇ is integrated (Ordaz
et al., 2019).

It is worth mentioning that, when the trajectories
arrive to the sliding manifold (12), the control structure
becomes u = −Kx̂.

Note that in the control law (13) the use of error
functions e1 and e2 does not imply the use of unmeasured
state variables, see Remark 1.

Now, by using the output feedback u, the estimation
error e = x− x̂ and an extended vector zᵀ = [x̂ᵀ, eᵀ],

ż =AAAz +FFF ξ̄(x, t), z(0) = z0,

AAA :=

[
A−BK LC
0n×n A− LC

]
,

FFF :=

[
0n×n L
In×n −L

]
, ξ̄ :=

[
ξx(t, x)
ξy

]
.

(16)

It is evident that, for the nominal closed-loop system (16),
when the nonlinearities f , uncertain dynamics ζ, and the
external disturbances ξy are not considered, the eigenvalue
spectrum2 is given by σ̄σσ(λ) ⊆ λi(A − BK) ∪ λi(A −
LC), i = 1, . . . , n, where all the eigenvalues of the
controller are decoupled from those of the observer. Thus,
it is necessary to stabilize the dynamic system (16). For
this purpose, consider the following quadratic function:

V2(z) = zᵀP1z, P1 =

[
P2 0n×n

0n×n P3

]
, (17)

with 0 < P2 = Pᵀ
2 , 0 < P3 = Pᵀ

3 .

Proposition 3. (On the UUB-stability of the closed loop
system) Under the assumption of Proposition 2, if there
exists a set of solutions (α, ε1, ε2 P, K), for the positive

2The eigenvalue spectrum of the extended system z ∈ R
2n consid-

ered is denoted by σ̄σσ(λ).
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scalars α, and εi (with i = 1, 2) such that

W =

⎡
⎢⎢⎣

W11 P2LC P2L 0
CᵀLᵀP2 W22 −P3L P3

LᵀP2 −LᵀP3 −ε2I 0
0 P3 0 −ε1I

⎤
⎥⎥⎦ < 0,

W11 = P2(A−BK) + (Aᵀ −KᵀBᵀ)P2

+ αP2 + c2ε2In,

W22 = P3(A− LC) + (Aᵀ −CᵀLᵀ)P3

+ αP3 + c2ε2In,

(18)

the storage function (17) satisfies

lim
t→∞ zᵀ(t)P̄1z(t) ≤ 1, P̄1 =

α

β
P1,

and the UUB-stability of the system (16) is concluded, for
the parameters

b =

√
β

α
λmaxP

−1
1

and

T =
1

α
ln{1− α

β
[V2(ztr ) + η]}+

√
2

κ
V

1
2
1 (σ0) + t0,

for sufficiently small η ∈ R
+, where

β := ε1μ+ c1ε2,

μ := λmax

{
ρρρᵀ (K5K

ᵀ
5)

−ᵀ
ρρρ
}
.

(19)

The proof is presented in Appendix (Section A2).

Notice that, for K5K
ᵀ
5 greater than ρρρᵀρρρ (in

magnitude terms) and for small enough ε1, the scalar β
is reduced considerably. Thus, β → c1ε2, which means
that external disturbances on the output are mitigated.
Therefore, the controller and observer gain matrices K
and L, respectively, must be high gain matrices. It is
remarkable that the control algorithm is valid if and only
if the matrix inequality (18) is feasible. The following
lemma gives the conditions to guarantee the feasibility of
the matrix inequality (18).

Lemma 1. Consider Theorem 2 and define

Ψ =

⎡
⎢⎢⎣
W11 0 0 0
0 W22 0 0
0 0 −ε2I 0
0 0 0 −ε1I

⎤
⎥⎥⎦ ,

PPPᵀΘᵀQQQ =

⎡
⎢⎢⎣
0 P2LC P2L 0
0 0 −P3L P3

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

(20)

where

PPP =

[
P2 0 0 0
0 I 0 0

]
,

QQQ =

[
0 −LC L 0
0 0 P3L −P3

]
,

Θ = I,

with their respective associated kernels

WWWP =

[
0 0 I 0
0 0 0 I

]ᵀ
,

WWWQ =

[
0 I C LC
I 0 0 0

]ᵀ
.

Then the matrix inequality (18) takes the form (11) and
the feasibility of W is guaranteed.

From the previous lemma, it is evident that

WWWᵀ
QΨWWWQ

=

[
W11 0n×n

0n×n W22 − ε2C
ᵀC− ε1C

ᵀLᵀLC

]
< 0.

(21)

This property indicates that the separation principle in
linear systems for a full-order controller/observer scheme
is achieved.

4. Small size ultimate bound

To obtain a solution in terms of a quasi-minimal attractive
ellipsoid, it is necessary to solve the BMI (18). The most
common tool to achieve a matrix inequality solution is by
using a matrix transformation to obtain a constrained LMI
problem (Poznyak et al., 2014). The next lemma presents
an isomorphic LMI related to (18).

Proposition 4. (On the LMI transformation) If the set of
linear matrix inequalities

0 <

⎡
⎣ BY1 +Yᵀ

1B
ᵀ −AᵀX−AX1− αX

I
X

I X
Q 0n×n

0n×n
1

c2ε2
In

⎤
⎦ ,

0 < X ∈ R
n×n, 0 < Q ∈ R

n×n, Y1 ∈ R
m×n

(22)
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and

0 <

⎡
⎢⎢⎣

R
−CᵀYᵀ

2

Yᵀ
2

0n×n

−Y2C
Y2C+CᵀYᵀ

2 −P3A−AᵀP3 − αP3,
−Yᵀ

2

−P3

Y2 0n×n

−Y2 −P3

ε2Ip 0p×n

0n×p ε1In

⎤
⎥⎥⎦ ,

0 < R+Q− 2P3, (0 < P3, 0 < R) ∈ R
n×n,

Y2 ∈ R
n×p,

(23)

holds for positive scalars ε1, ε2 and α, then the matrix
inequality (18) is fulfilled.

The proof is presented in Appendix (Section A3).
In addition to (22) and (23), the following constraint:

[
M I
I P3

]
> 0 (24)

is introduced, which is equivalent to M > P−1
3 . Then, the

problem can be expressed as an approximated solution of
the following constrained optimization problem:

min
P−1

(
β

α
trace

{
P−1

})
, (25)

subject to (22), (23), (24) and 0 < P1, 0 < ε1, 0 <
ε2, 0 < α.

If there exists a solution set (X, P3, Q, R, Y1, Y2,
M, α, ε1, ε2) such that the previous optimization problem
holds, then Proposition 1 holds, too. This means that
the ellipsoid E(0, P̄−1) is attractive and at the same time
invariant; see Theorem 1. According to Proposition 2,
after time tr =

√
2

κ
V

1
2
1 (σ(t0))+t0, the trajectory arrives to

an ultimate bound in exponential form. The arriving rate
is given by α; see, for instance, Eqn. (8) of Proposition 1
or the proof of Proposition 3 in Appendix (Section A2).
Additionally, by decreasing the parameters ε1 and ε2, the
effects of external disturbances and uncertain dynamics
are reduced.

In Algorithm 1, the ultimate bound is computed.
In a numerical sense, this algorithm produces the best
solution set to conclude the UUB-stability of the system
(16), with a small size ultimate bound b associated with a
quasi-minimal invariant-attractive ellipsoid E(0, P̄−1).

Algorithm 1. Ultimate bound numerical computation.
(i) Considering i = 0, set the initial scalar parameters α,

ε1 and ε2 as α0, ε1,0 and ε2,0, respectively. In this
step, propose a small value of α0 and large values of
ε1,0, ε2,0.

(ii) Use some LMI solver tool, and find a solution to the
constrained optimization problem (25).

(iii) While the LMI has a solution, do:

(a) Update the index i to i = i + 1, and modify
the parameters ε1,i and ε2,i as follows ε1,i =
ε1,i−1 −Δε1,i, 0<Δε1,i � 1, ε2,i = ε2,i−1 −
Δε2,i, 0<Δε2,i � 1.

(b) If the solution of (25) holds with ε1,i and ε2,i,
save this solution, as X0, P3,0, Q0, R0, Y1,0,
Y2,0,M0, α0, ε1,0, ε2,0, and return to (a).

(c) If there is no solution, terminate Step (iii).

(iv) Resetting i = 0, and using the last admissible
parameters α0, ε1,0 and ε2,0, once again, it
is necessary to find an updated solution of the
constrained optimization problem (25), doing:

(a) Update the index i to i = i+ 1, and increase the
parameter αi as αi = αi−1 +Δα, 0 < Δα �
1, such that the inequalities (25) holds.

(b) If the solution of (25) holds, save this as (b) of
(iii).

(c) Otherwise, stop this iterative parameter update,
and terminate (iv).

(v) The last admissible parameters X0,= X∗
0, P3,0 =

P∗
3,0, Q0,= Q0,

∗ R0 = R∗
0,Y1,0 = Y∗

1,0, Y2,0 =
Y∗

2,0, M0 = M∗
0, α0 = α∗

0, ε1,0 = ε∗1,0, ε2,0 =
ε∗2,0. are declared as the best iterative solution.

(vi) Finally, the controller/observer gain matrices are
defined as K = Y1,0X

−1
0 , and L = P−1

3,0Y2,0. Also,
under the assumption of (9), the ultimate bound is
declared as

b =

√
ε1,0μ0 + c1ε2,0

α
max(λmaxP

−1
2,0, λmaxP

−1
3,0).

5. Illustrative example

In order to validate the theoretical results previously
presented in this work, a numerical example dealing
with a double mass spring damper system driven by
DC-motor is considered. The use of DC-motors for
validating control algorithms is a common practice among
researchers (see, e.g., Luna et al., 2020; Khalil and
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Fig. 1. Electromechanical system.

Elshenawy, 2021).

5.1. Servomechanism system. A simplified schematic
diagram of the single-input multiple-output system
considered is shown in Fig. 1. The control challenge
for this system is to move the second mass to a desired
set-point or trajectory by controlling the first mass, which
is driven by the armature voltage v(t) of the DC-motor.
Furthermore, the system output is defined by position
measurements, y1 and y2, leaving the velocities ẏ1 and
ẏ2 corresponding to each mass, and the armature current
ia to be estimated.

Therefore, the system variables considered are
defined as xᵀ1 =

[
y1 ẏ1 y2 ẏ2

]ᵀ ∈ R
4, x2 = i ∈ R,

and the system input is associated as u = va ∈ R.
Thus, the mathematical model of the double mass spring
damper system driven by a DC-motor can be expressed
as five-dimensional first-order differential equations of the
type (1), where the associated nominal system is given by

A11=

⎡
⎢⎢⎣

0 1 0 0

−k1+k2

m1
− b1+b2

m1

k2

m1

b2
m1

0 0 0 1
k2

m2

b2
m2

− k2

m2
− b2

m2

⎤
⎥⎥⎦ ,

A12=

⎡
⎢⎢⎣

0
kb

m1

0
0

⎤
⎥⎥⎦ ,

A21 =
[
0 0 0− ka

La
πr2
]
,

A22 = −Ra

La
,

(26)

B1 = 0̄4, B2 =
1

La
,

C =

[
1 0 0 0 0
0 0 1 0 0

]
.

Table 1. Parameters of the double mass spring damper system
driven by a DC-motor.

Description Notation Value Units
Mass 1 m1 0.52 kg
Mass 2 m2 0.23 kg
Stiffness of the spring 1 k1 0.0923 N

m
Stiffness of the spring 2 k2 0.103 N

m
Damping coefficient 1 c1 0.203 N s

m
Damping coefficient 2 c2 0.197 N s

m
Armature inductance La 0.0218 mH
Motor-torque constant ka 0.767 N·m

A

Armature resistance Ra 1.3 Ohm
Back-EMF constant kb 0.767 V·s

rad

Wheel ratio r 0.0051 m

The parameter ka is the motor-torque constant; in
general, this constant is the same as the back electromotive
force (back-emf) constant, i.e., in magnitude kb = ka.
The armature resistance is denoted by Ra, and La is the
armature inductance, both being positive. All the system
parameters are given in Table 1. For this single-input
multiple-output system, it is evident that pairs (A,B) and
(C,A) are controllable and observable, respectively. The
system trajectories are disturbed by the vector ξx(x, t),
which is assumed to be bounded. This assumption is
supported by the friction phenomena acting on each mass
displacement. The vast majority of mathematical models
for friction effects are strongly nonlinear (Ruderman,
2015; Rudenko and Hedberg, 2013). This dynamic feature
is considered in ξx(t, x), and it can be bounded as the first
part of (2).

Nowadays, the friction models are studied in
the tribology field, where the model synthesis is
done considering traditional viscous and Coulomb
friction effects, or also complex ones like Armstrong,
Lugre and Maxwell-slip formalisms (Ruderman, 2015).
Furthermore, the external disturbances ξy(t, x) are
associated with each mass displacement, and, as was
previously mentioned, they are assumed to be bounded.
In this numerical test, the disturbances and system
uncertainties related to ξx(t, x) are considered as

ξx(t, x)=
[
0 ξx,2 0 ξx,4 0

]ᵀ
,

ξx,2=− 0.002x2 − 0.00041sign(x2)

− 0.22k1x
3
1 − 0.182k2(x1 − x2)

3,

ξx,4=− 0.0021x4 − 0.00241sign(x4)

− 0.182k2(x2 − x1)
3.

(27)

The uncertain dynamic ξx(t, x) is taken from the
classical Viscous and Coulomb friction models; moreover,
this uncertainty contains nonlinear dynamics of the spring



36 P. Ordaz et al.

restoring force. Furthermore, another disturbance is
considered in the system output:

ξy(t, x) =

[
0.012 + 0.12 sin(12t) + ψy1(t),
0.017 + 0.23 sin(22t) + ψy2(t)

]
. (28)

The other parts, ψy1(t, x) = 0.05Ht10 − 0.05Ht10.4

and ψy2(t, x) = 0.066Ht14 − 0.065Ht14.4 , were
introduced at two different time intervals tp1∈[10, 10.4]
and tp2∈[14, 14.4] s, respectively. Here Hts is the
well-known Heaviside step function, defined by

Hts :=

{
1 if ts ≥ 0,
0 if ts < 0.

To assess the effectiveness of the proposed control
algorithm, a comparative study with alternative schemes
is conducted. Firstly, a state-feedback sliding mode
control (SF-SMC) with a Luenberger-type full state
observer is designed. Secondly, a control algorithm
based on the linear quadratic regulator (LQR), where
the unmeasured state variables were estimated using an
SMO, is considered. Next, by following the iterative
algorithm presented in Section 4, the controller and
observer parameters of the proposed scheme are obtained.
Finally, using pole allocation to tune the traditional
controller/observer approach is discussed. It is worth
mentioning that, in each case, the controller/observer
gains are computed such that a fair comparative study is
achieved. This does not imply that there is not a set of
gains that can yield a better performance.

5.2. Sliding mode control with a full order ob-
server. For this approach, assume that the system is
free from uncertain dynamics, nonlinearities, and external
disturbances. The nominal linear system is

ẋ = Ax+Bu, x(0) = x0, y = Cx. (29)

Therefore, a full order observer in the form of (3) is
designed. In this way, the state estimate error function
is considered as e = x − x̂, which means that the error
dynamics are

ė = (A− LC)e. (30)

To ensure that the error function asymptotically
converges to the trivial solution, the matrix (A − LC)
needs to be Hurwitz. Thus, the observer matrix

L =

⎡
⎢⎢⎢⎢⎣

3.6917 −0.0172
1.0646 −0.4201
−0.0172 3.2699
0.3003 0.8463
−0.2880 −0.9510

⎤
⎥⎥⎥⎥⎦ (31)

allocates the observer eigenvalues at λi =
{−68.8403,−1.5338 ± 1.6184j,−2.9838 ± 0.1920j},

with j2 = −1. After the observer design, consider the
SF-SMC as reported by Shtessel et al. (2014). To this
end, consider the following control action:

u(t)=KKKsmcsign(σ), KKKsmc = [KKKpp, 1], (32)

where the sliding manifold is given by σ = [KKKsmc, 1]x̂
(in this case, the state estimate x̂ is considered). After the
tuning procedure via pole allocation, the following gain is
obtained:

KKKsmc =
[− 0.0218 0.0249 − 0.0087

− 1.5739 − 1.2470
]
. (33)

Finally, to attenuate the chattering effect of this control
scheme, the equivalent control is estimated via low-pass
filtering as follows:

ueq(t)=−KKKslidgx̂− 7ψ(t),

ψ̇(t)=− ψ(t) + sign(σ)

h
,

KKKslidg=KKKsmcA11/B2, h = 0.01.

(34)

5.3. Linear quadratic regulator with a sliding
mode observer. As presented in the former scheme, the
controller/observer algorithm is designed for system (29)
under transformation x̄ = Γx̂. The observer was designed
by following the procedure given by Sánchez et al. (2019).
In this way, the SMO is synthesized as

˙̄x = Ax̄+ Bu+ Lφ(e2), x̄(0) = Γx̄0, (35)

with

L =

[
L1

IIIp

]
, φ(e2) = A22e2 +Rssign(e2). (36)

After the tuning procedure, the following observer
gains are achieved:

L1 =

⎡
⎣−1.5712 0.3528
−0.3528 1.7425
0.4079 −1.8067

⎤
⎦ ,

Rs =

[
1.3 0
0 1.21

]
.

(37)

Then, the LQR was used to compute the control law where
the weighting matrices are the following:

Qlqr = diag(
[
2.99, 2.6, 3.25,

2.34, 2.99, 3.51
]
),

Rlqr = 1.2,

(38)

which leads to the control gain

Klqr =
[
1.0661 1.4856 0.9630

0.4394 0.7129
]
.

(39)
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5.4. Proposed controller/observer scheme. The
numerical solution of the iterative algorithm based on
Proposition 4, presented in Section 4, is implemented
in MATLAB via the YALMIP/SeDuMi Toolbox. After
applying the numerical algorithm, an approximation of the
solution of the optimization problem (25) is obtained, and
it has the following numerical values:

K =
[
5.4412 7.2827 0.3289 17.9521 1.8720

]
,

L =

⎡
⎢⎢⎢⎢⎣

128.2573 −98.0199
208.9008 −198.5837
−46.1011 79.4384
−138.3495 138.9273
84.9406 −76.8294

⎤
⎥⎥⎥⎥⎦× 102

(40)
for the positive-definite matrices

P2 =

⎡
⎢⎢⎢⎢⎣

0.0467 0.0143 0.0043
0.0143 0.0191 0.0009
0.0043 0.0009 0.1272
0.1614 0.0484 0.1987
0.0000 0.0000 0.0000

0.1614 0.0000
0.0484 0.0000
0.1987 0.0000
2.6928 0.0000
0.0000 0.0001

⎤
⎥⎥⎥⎥⎦×102,

P3 =

⎡
⎢⎢⎢⎢⎣

0.0005 −0.0002 0.0001
−0.0002 0.0003 −0.0000
0.0001 −0.0000 0.0005
−0.0001 0.0002 0.0000
−0.0001 −0.0001 0.0002

−0.0001 −0.0001
0.0002 −0.0001
0.0000 0.0002
0.1785 0.3022
0.3022 0.5126

⎤
⎥⎥⎥⎥⎦×103,

(41)

and the additional matrices

Q =

⎡
⎢⎢⎢⎢⎣

7.0632 −0.0838 0.0036
−0.0838 7.1007 −0.0358
0.0036 −0.0358 6.9795
−0.0725 0.0266 −0.0545
−0.0125 0.0485 0.0574

−0.0725 −0.0125
0.0266 0.0485
−0.0545 0.0574
7.1237 0.0300
0.0300 7.1721

⎤
⎥⎥⎥⎥⎦×104,

R =

⎡
⎢⎢⎢⎢⎣

0.9344 0.0140 −0.0443
0.0140 0.9153 0.0281
−0.0443 0.0281 1.0112
0.0531 0.0357 −0.0159
0.0136 −0.0606 −0.0695

0.0531 0.0136
0.0357 −0.0606
−0.0159 −0.0695
0.8905 −0.0371
−0.0371 0.8401

⎤
⎥⎥⎥⎥⎦×105,

(42)

with the scalar parameters α = 0.25, ε1 = 0.0006, ε2 =
0.012, μ = 0.0016, c1 = 0.012 and the output disturbance
bound ‖ξy(t, x)‖ ≤ 0.0088.

5.5. Linear controller with a full order Luenberger
type observer. The observer used for this scheme is the
same as that designed in Section 5.2. Hence the full order
observer of the system (29) is given by (30), under the
same observation gain (31). At this point, consider the
linear feedback u = −KKKx̂ via Ackermann’s algorithm,
where the desired closed-loop system poles were placed
at λi = {−149.18,−3.86,−0.87,−0.63± 0.43j}.

5.6. Numerical results. The numerical test was
implemented in MATLAB-Simulink R2016a, under the
4th order Runge–Kutta ODE solver with a fixed step
hp = 0.001 s. The considered simulation time belongs
to the time interval t ∈ [0, 50] s. The initial conditions, of
the electromechanical system were assigned as

x0 = [0.4, 0.05 0.2 − 0.07 0]ᵀ ,

x̂0 = [0 0 0 0 0]
ᵀ
, u0 = 0.

Table 2 presents the nomenclature used to represent
each controller/observer scheme 2–6. The real system
positions y1(t) − y2(t) and the estimated positions are
depicted in Fig. 2, which contains a zoom of this
estimation. Moreover, Fig. 3 shows the system velocity
estimates ẏ1 and ẏ2. The armature current and the
armature voltage are plotted in Fig. 4. Notice that
Fig. 4 shows signals resembling noise however, this effect
is not noise, it is given by a chattering phenomenon
not entirely avoided by the controller design. They
are present although DSMC reduces considerably the
chattering effect. The reduction in this effect given in u̇

Table 2. Nomenclature of Figs. 2–6.
Description Controller/observer scheme
Method 1 SF-SMC + full order observer
Method 2 LQR + SMO
Method 3 Proposed controller/observer
Method 4 Full order controller/observer
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Fig. 2. Estimated positions y1(t) and y2(t).
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Fig. 3. Estimated velocities ẏ1(t) and ẏ2(t).

is depicted in Fig. 5. Actually, this noisy like effect is
given by the viscous friction effects. The control signal
u̇ and the sliding variable are depicted in Fig. 5, which
shows how the variable σ attains the sliding manifold in
finite time t = 4.201 s. Finally, the sliding surfaces of the
SMC and SMO are shown in Fig. 6.

It is remarkable that, after the time t ≥ 4.201 s, the
system trajectories go around the trivial solution x̂(t) =
0̄5, in exponential form. This because

trace{P−1} = 2.8858× 103,

λmin(P
−1) = 1.8031× 10−9,

λmax(P
−1) = 2.7187× 103,

β

α
= 1.0992× 10−6,
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Fig. 4. Armature current and voltage, ia(t) and Va(t), respec-
tively.
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Fig. 5. Proposed control signal and its sliding surface.

thus √
β

α
λmaxP−1 ≤ 0.00301.

Moreover T=8.23 s. To support the effectiveness
of the output control strategy proposed here, the integral
absolute error (IAE), the integral time absolute error
(ITAE), the integral square error (ISE) and the integral
time square error (ITSE) criteria of the proposed
controller/observer versus others schemes are shown in
Table 3. In this paper, which is based on numerical
simulation, the error function can directly be computed
as e = x− x̂.3 Furthermore, an energy analysis was made

3The error analysis is given for the square error and the absolute error
defined as ‖e‖2 = eᵀe and ‖e‖ = (eᵀe)

1
2 , respectively.
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Fig. 6. Sliding surfaces.

Table 3. Error analysis of the servomechanism system.
Scheme ISE IAE ITAE ITSE
Method 1 1.0253 4.4851 50.6411 0.0250
Method 2 0.0426 1.1056 22.4117 0.0069
Method 3 1.5940 0.1344 23.8746 0.0068
Method 4 0.0685 1.2113 22.5705 0.0071

by considering another function:

ET =

∫ t

0

u(τ)ᵀu(τ) ds. (43)

In this way, the energy of the control signal produces the
following results:

ETM1 = 2.7214 V2 · s,

ETM2 = 0.2109 V2 · s,

ETM3 = 0.1327 V2 · s,

ETM4 = 0.2639 V2 · s.

Note that, for the ISE criterion, the scheme that had
the best performance corresponds to Method 2, for the
IAE to the Method 3, for the ITAE the Method 2, and
for the ITSE to the Method 3. In energy consumption
terms, the algorithm with the best performance is the
scheme Method 3. Thus, for this comparative study,
the scheme with the best performance is the proposed
controller/observer algorithm.

6. Conclusion
In this paper, the DSMC and AEM theories
were combined in order to obtain a UUB-Stable
controller/observer algorithm. The designed control

scheme implies effective state estimation by using
a full-order observer, where the disturbed system
considered includes external disturbances, unknown
uncertainties, and/or non-modeled dynamics. Since the
design procedure is an extension of the conventional
AEM, it incorporates an auxiliary nonlinear optimization
problem, where the feasibility of the matrix inequalities
is guaranteed, and therefore, it assures that the
separation principle, for the controller/observer algorithm
considered, is fulfilled for this class of systems.
Furthermore, a numerical procedure to reduce the
ultimate bound was presented, and the time to arrive to
this invariant set was estimated as

T =
1

α
ln{1−α

β
[V2(ztr ) + η]}+

√
2

κ
V

1
2
1 (σ0) + t0,

where tr was given in Proposition 2 and estimated using
(14). Finally, to validate the theoretical results, the control
approach was tested on a benchmark electromechanical
system, producing a successful system behavior.
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Appendix

A1. Proof of Proposition 2

First, note that following equation is fulfilled:

σ̇(t) = K1 {A11x̂1 +A12x̂2 + L1C1e1

+L1C2e2 ++L1ξy}+K2 {A21x̂1

+A22x̂2 + L2C1e1

+L2C2e2 + L2ξy + u}+ u̇.

(A1)
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By using the control action (13), the time derivative of
V (σ(t)) along the trajectories (A1) is given by

V̇1(σ(t)) = σᵀ(t)K5ξy(x, t)− σᵀ(t)ρρρsign(σ(t)),
(A2)

where K5 = K1L1 +K2L2. In view of (A2), we get

V̇1(σ(t)) ≤ ‖σ(t)‖ · ‖K5ξy(x, t)‖
− σᵀ(t)ρρρsign(σ(t)).

(A3)

Using the assumption ‖K5ξy(x, t)‖ ≤ δ1 <∞,

V̇1(σ(t))≤‖σ(t)‖ · δ1 − σᵀ(t)ρρρsign(σ(t)). (A4)

Thus, by using the well-known norm in the
Hilbert space of finite-dimensional matrices,4 the product
σᵀ(t)ρρρsign(σ(t)) yields

σᵀ(t)ρρρsign(σ(t)):=〈σ(t), ρρρsign(σ(t))〉
=trace{ρρρ}‖σ(t)‖. (A5)

Moreover, since the trace operator is the sum of all
matrix eigenvalues, if ρρρ is a positive definite matrix and
λmin(ρρρ) ≤ trace{ρρρ}, we have

V̇1(σ(t)) ≤ ‖σ(t)‖ · δ1 − δ · ‖σ(t)‖
= − (δ − δ1) ‖σ(t)‖,

(A6)

where δ := λmin(ρρρ). If 0 < κ = δ − δ1, we get

V̇1(σ(t) ≤ −α‖σ(t)‖ = −κ

√
2 V

1
2
1 (σ(t)), (A7)

and the solution along the time interval τ ∈ [t0, t) of the
previous differential inequality is

V
1
2
1 (σ(t)) ≤ V

1
2
1 (σ(t0))− κ√

2
(t− t0), (A8)

which means that the sliding variable converges to the
origin in finite time

tr =

√
2

κ
V

1
2
1 (σ(t0)) + t0.

When t ≥ tr, the sliding motion σ = 0̄m is reached.
This means that after the time tr, the sliding surface yields
0̄m = Kx̂ + u, and the control law becomes to the linear
form u = −K1x̂1 − K2x̂2. Additionally, the system
trajectory in the sliding manifold implies that σ̇(t) = 0̄m,
which means

ξy = Kᵀ
5 (K5K

ᵀ
5)

−1
ρρρsign(σ(t)). (A9)

Finally considering (A2), it is evident that K5ξy(x, t) =

K5K
ᵀ
5 (K5K

ᵀ
5)

−1
ρρρsign(σ(t)). Then introducing (A9) in

(3) results in (15), and the proposition is proven.
4The operator 〈·, ·〉 denotes the inner product for two n-dimensional

vectors.

A2. Proof of Proposition 3
The time derivative of the storage function V2(z) along
the system trajectories (16) is given by

V̇2(z) = zᵀ {P1AAA+AAAᵀP1} z
+ 2zᵀP1FFF ξ̄(x, t).

(A10)

By adding and subtracting the terms αV2(z),
ε1‖ξy(x, t)‖2, ε2‖ξx(x, t)‖2, for some positive scalars α,
ε1 and ε2, we have

V̇2(z) = z̄ᵀ

⎡
⎢⎢⎣

M11 P2LC P2L 0n×n

CᵀLᵀP2 M22 −P3L P3

LᵀP2 −LᵀP3 −ε1Ip 0p×n

0n×n P3 0n×p −ε2In

⎤
⎥⎥⎦ z̄

− αV2(z) + ε1‖ξy(x, t)‖2
+ c1ε2 + c2ε2‖x‖2,

(A11)

where

z̄ᵀ :=
[
x̂ᵀ eᵀ ξᵀy (x, t) ξᵀx(x, t)

]
,

M11 = P2(A−BK) + (Aᵀ −KᵀBᵀ)P2 + αP2,

M22 = cP3 (A− LC) + (Aᵀ −CᵀLᵀ)P3 + αP3.

From the error estimate e = x − x̂, it is evident that
x = e+ x̂ =

[
In In 0p×p 0n×n

]
z̄. In this way,

V̇2(z) = z̄ᵀWz̄ − αV2(z)

+ ε2‖ξy(x, t)‖2 + c1ε1.
(A12)

Note that, if W is a negative definite matrix, then
V̇2(z)< −αV2(z) + ε2‖ξy(x, t)‖2 + c1ε1. On the other
hand, ‖ξy(x, t)‖2 = signᵀ(σ)ρρρᵀ (K5K

ᵀ
5)

−ᵀ
ρρρsign(σ) =

μ. Thus, if there exists a set of solutions (ε1, ε2 α, P, K),
such that the matrix inequality W < 0 is fulfilled, then
(8) holds. This means that the initial time of the storage
function V2(z) is tr. Consequently, following inequality
is fulfilled:

V2(z(t))

≤ β

α
+

(
V2(z(tr))− β

α

)
exp {−α(t− tr)} , (A13)

for all t0 ≤ tr, t ∈ R
+, where β is defined by (19).

The previous result indicates that, independently of
the initial time (in this case tr), if the matrix inequality
(18) holds, the system trajectories x(t) belong to an
ellipsoid E(0, P̄−1), with ellipsoidal matrix P̄ = α

βP. In
fact, from Proposition 1 and Theorem 1, trajectories reach,
involved by an exponential bound, an invariant set

Ω =

{
z : ‖z‖ ≤

√
β

α
λmaxP−1

}
,
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with the arriving rate given by α. Moreover, notice that
for sufficiently small η > 0, under assumption (A13),

tr2 ≤ T =
1

α
ln

{
1− α

β
[V (ztr ) + η]

}
+ tr,

and the UUB-Stability of the system trajectories around
the origin is concluded, see Definition 2.

A3. Proof of Proposition 4
Apply the non-singular transformation

W = −MᵀWM,

where M = diag([P−1
2 P3, I, I, I]), the matrix W is

positive definite, having the following structure:

W =

⎡
⎢⎢⎣

W11 −P3LC −P3L 0n×n

−CᵀLᵀP3 W22 P3L −P3

−LᵀP3 LᵀP3 ε1Ip 0p×n

0n×n −P3 0n×p ε2In

⎤
⎥⎥⎦ ,

W11 = P3(BK−A)P−1
2 P3

+P3P
−1
2 (KᵀBᵀ −Aᵀ)P3

− αP3P
−1
2 P3 − c2ε2P3P

−2
2 P3,

W22 = P3 (LC−A) + (CᵀLᵀ −Aᵀ)P3

− αP3 + c2ε2In.

(A14)

By selecting

Q−1 < (BK−A)P−1
2 +P−1

2 (KᵀBᵀ

−Aᵀ)− αP−1
2 − c2ε2P

−2
2 ,

from Schur’s complement, we get (A15). Note that
previous inequality is equivalent to

H =

[
(BK−A)P−1

2 +P−1
2 (KᵀBᵀ −Aᵀ)− αP−1

2

In

In
Q

]
−
[
P−1

2

0n×n

]
c2ε2In

[
P−1

2 0n×n

]
.

(A16)

By using Schur’s complement, another inequality is
obtained,

0 <

⎡
⎣ (BK−A)P−1

2 +P−1
2 (KᵀBᵀ −Aᵀ)− αP−1

2

In
P−1

2

In P−1
2

Q 0n×n

0n×n
1

c2ε2
In

⎤
⎦ .

(A17)

which means that, from (A14), the inequality (A18) is
fulfilled. by defining R = P3Q

−1P3, for some 0 <

R. Thus, by adding and subtracting the positive matrix
0 < Q ∈ R

n×n, here we get R +Q = P3Q
−1P3 +Q,

and therefore P3Q
−1P3+Q is a positive definite matrix,

too. Recall the ΛΛΛ-inequality X ᵀY +YᵀX ≤ X ᵀΛΛΛ−1X +
YᵀΛΛΛY, which is valid for any X ∈ R

n×q , Y ∈ R
n×q and

0 < ΛΛΛ ∈ R
q×q . By selecting X = P3, Y = In, and

ΛΛΛ = Q, this implies that Pᵀ
3 + P3 ≤ Pᵀ

3Q
−1P3 + Q,

which means Pᵀ
3 +P3 ≤ R+Q = Pᵀ

3Q
−1P3 +Q, and

the LMI (A19) obtained.

0 < R +Q− 2P3.

In this sense, if (A17)–(A19) hold, the positivity
of matrix W is guaranteed. Furthermore, based on
Theorem 2 and using the change of variable X = P−1

2 ,
from (A17) it follows that

Ψ2 =

⎡
⎣ AX+AᵀX−BKX−XKᵀBᵀ + αX

0n×n

0n×n

0n×n 0n×n

−Q 0n×n

0n×n − 1
c2ε2

In

⎤
⎦ ,

(A20)

and

PPPᵀ
2Θ

ᵀ
2QQQ2 :=

⎡
⎣0n×n −I −X
0n×n 0n×n 0n×n

0n×n 0n×n 0n×n

⎤
⎦ ,

where the matrices PPP2, Θ2 and QQQ2 are
selected as PPP2=

[
0n×n 0n×n In

]
,

Θ2=X, QQQ2=
[
I 0n×n 0n×n

]
.

The null-space of PPP2 and QQQ2 can be defined as
WWWᵀ

P2
=
[
In In 0n×n

]
, WWWᵀ

Q2
=
[
0n×n In In

]
,

which means thatPPP iWWWPi = 0, QQQiWWWQi = 0, ∀i = 1, 2.
In the same sense, the matrix inequality (A19) can be
rewritten in the format (11), and it becomes (A21) and

PPPᵀ
1Θ

ᵀ
1QQQ1 :=

⎡
⎢⎢⎣
0 P3LC −P3L 0
0 0 P3L P3

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (A22)

with
Θ1 = I,

PPP1 =

[
P3 0 0 0
0 I 0 0

]
,

QQQ1 =

[
0 −LC L 0
0 0 P3L −P3

]
.

Its null-space is obtained and it has the following
structure:

WWWᵀ
P1

=

[
0 0 I 0
0 0 0 I

]
,

WWWᵀ
Q1

=

[
0 I Cᵀ LᵀCᵀ

I 0 0 0

]
.

(A23)
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0 <

[
(BK−A)P−1

2 +P−1
2 (KᵀBᵀ −Aᵀ)− αP−1

2 −c2ε2P−2
2 In

In Q

]
= H. (A15)

⎡
⎢⎢⎣

P3Q
−1P3 −P3LC P3L, 0n×n

−CᵀLᵀP3 P3 (LC−A) + (CᵀLᵀ −Aᵀ)P3 − αP3 −P3L −P3

LᵀP3 −LᵀP3 ε2Ip 0p×n

0n×n −P3 0n×p ε1In

⎤
⎥⎥⎦ <W . (A18)

⎡
⎢⎢⎣

R −P3LC P3L 0n×n

−CᵀLᵀP3 P3 (LC−A) + (CᵀLᵀ −Aᵀ)P3 − αP3 −P3L −P3

LᵀP3 −LᵀP3 ε2Ip 0p×n

0n×n −P3 0n×p ε1Ip

⎤
⎥⎥⎦ <W . (A19)

Ψ1 =

⎡
⎢⎢⎣

−R 0 0 0
0 P3A+AᵀP3 −P3LC−CᵀLᵀP3 + αP3 0 0
0 0 −ε2I 0
0 0 0 −ε1I

⎤
⎥⎥⎦ . (A21)

Therefore, it is evident that WWWᵀ
Pi
ΨiWWWPi < 0,

WWWᵀ
Qi
ΨiWWWQi < 0, ∀i = 1, 2 are fulfilled, which implies

that the feasibility of BMIs (A17)–(A19) is guaranteed.

Finally, from (A17)–(A19), under a change of the
variables X = P−1

2 , Y1 = KP−1
2 , the matrix inequalities

Y2 = P3L, (22)–(23) are obtained, and the proposition is
proven.
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