
Int. J. Appl. Math. Comput. Sci., 2024, Vol. 34, No. 1, 65–79
DOI: 10.61822/amcs-2024-0005

RECURSIVE IDENTIFICATION OF NOISY AUTOREGRESSIVE MODELS VIA
A NOISE–COMPENSATED OVERDETERMINED INSTRUMENTAL

VARIABLE METHOD

MATTEO BARBIERI a, ROBERTO DIVERSI a,*

aDepartment of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI)
University of Bologna

Viale del Risorgimento 2, 40136 Bologna, Italy
e-mail: {matteo.barbieri15,roberto.diversi}@unibo.it

The aim of this paper is to develop a new recursive identification algorithm for autoregressive (AR) models corrupted by
additive white noise. The proposed approach relies on a set of both low-order and high-order Yule–Walker equations and
on a modified version of the overdetermined recursive instrumental variable method, leading to the estimation of both
the AR coefficients and the additive noise variance. The main motivation behind our proposition is introducing model
identification procedures suitable for implementation on edge-computing platforms and programmable logic controllers
(PLCs), which are known to have limited capabilities and resources when dealing with complex mathematical computations
(i.e., matrix inversion). Indeed, our development is focused on condition monitoring systems, with particular attention paid
to their integration onboard industrial machinery. The performance of the recursive approach is tested using both numerical
simulations and a laboratory case study. The obtained results are very promising.
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1. Introduction

Autoregressive (AR) models play a very important role
in the description and analysis of time series (Box
et al., 2015) and find many applications, for instance,
in spectral estimation (Kay, 1988; Stoica and Moses,
2005), speech processing (Lim and Oppenheim, 1978;
Kovacevic et al., 1995; Grivel et al., 2002; Bobillet
et al., 2007), biomedical signal processing (Pardey et al.,
1996; Güler et al., 2001; Zhang et al., 2017), structural
health monitoring (Guidorzi et al., 2014), fault diagnosis
and condition monitoring (Basseville, 1988; Baillie and
Mathew, 1996; Wang and Wong, 2002; Wang and Makis,
2009; Sikora and Sikora, 2012; Barbieri et al., 2019),
biotechnology (Hilgert and Vila, 1999) and radar signal
processing (Haykin and Steinhardt, 1992; Abramovich
et al., 2007; Rouffet et al., 2015). The widespread use
of this class of models is mainly due to the existence of
simple and robust algorithms for their identification (e.g.,
least squares), the stability of the associated predictors and
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easy implementation of online estimation algorithms (Box
et al., 2015).

In many practical cases, however, the signal to
be described through an AR process is corrupted by
measurement noise. For this reason, meticulous attention
has been devoted in the literature to the problem of
identifying AR models in the presence of additive
white noise. In this framework, it is well known that
classical identification methods like least squares (LS)
and Yule–Walker (YW) equations lead to biased estimates
(Kay, 1979; Zheng, 1999).

Since an AR model of order p observed in additive
white noise is equivalent to an ARMA(p, p) model, the
estimation of its parameters can be performed through
an (overdetermined) set of the high-order Yule–Walker
equations (Kay, 1980; Chan and Langford, 1982; Cadzow,
1982). It has been shown that more accurate estimates
can be obtained by using both low-order and high-order
Yule–Walker equations (Kay, 1980; Paliwal, 1988; Davila,
1998). However, in order to exploit also the low-order
YW equations, an estimate of the additive noise
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variance is required. The major part of the proposed
algorithms for identifying noisy AR models is based on
bias-compensated least squares techniques. The rationale
behind these methods consists in ‘compensating’ the
bias of classical LS through an estimate of the additive
noise variance (Zheng, 1999; 2000; 2006; Jia et al.,
2003; Mahmoudi and Karimi, 2010; 2011; Xia and
Zheng, 2015; Esfandiari et al., 2020). Diversi et al.
(2005; 2008), Petitjean et al. (2010) and Diversi (2018)
treated the identification of noisy AR processes as an
errors-in-variables (EIV) identification problem. These
approaches consist in searching for the solution of the
problem (AR parameters and additive and driving noise
variances) inside a locus of solutions compatible with the
second-order statistics of the noisy data. Other approaches
rely on a state space representation of the noise-corrupted
AR model (see, e.g., Grivel et al., 2002; Labarre et al.,
2006).

As is well known, in many situations the
identification must be performed online, that is, the
parameter estimates must be updated as soon as new
data become available (Ljung, 1999; Söderström and
Stoica, 1989). Very few papers deal with the recursive
identification of AR models in the presence of additive
noise. The algorithms proposed by Sakai and Arase
(1979) or Zheng (1997) are based on the so-called
bias-compensated least squares (BCLS) technique.
They consist in repeating the following two steps until
convergence: (i) estimate the additive noise variance
employing the current estimate of the AR parameters;
(ii) estimate the AR parameters by ‘compensating’ the
(biased) least squares solution employing the current
estimate of the additive noise variance.

Despite their numerical efficiency, these methods
may be affected by convergence problems and may also
lead to poor results when the signal to noise ratio is
not sufficiently high (Diversi et al., 2008). The bias
compensation principle can also be exploited to modify
the least-mean-square (LMS) method to counteract the
presence of the additive noise. This leads to the γ-LMS
algorithm (Treichler, 1979) and the ρ-LMS algorithm
(Wu and Chen, 1997). It is worth noting that these
techniques require a priori knowledge of the additive
noise variance. Moreover, convergence is achieved by
using a large number of samples (e.g., a few thousand).

The β-LMS algorithm proposed by Zhang et al.
(2000) does not require the knowledge of the additive
noise variance. Nevertheless, at each iteration, a nonlinear
equation must be solved, so this method can no longer be
considered a recursive algorithm. Petitjean et al. (2009)
describe an online version of the EIV approach developed
by Diversi et al. (2008). As previously mentioned, the
offline approach by Diversi et al. (2008) consists in
solving a constrained optimization problem, that is, in
minimizing a loss function inside a locus of admissible

solutions. To make it recursive, Newton’s method is
exploited. However, the resulting identification algorithm
is not ‘fully’ recursive as at each step it is necessary to
compute the inverse of a (p+ 1)× (p+ 1) matrix, where
p is the order of the AR model.

The aim of this paper is to develop a recursive
identification algorithm for AR models corrupted by
additive white noise without involving the inversion
of matrices whose dimensions depend on the model
order. The proposed approach relies on an offline
algorithm that takes advantage of both the low-order
and the high-order Yule–Walker equations. This
leads to a bilinear system of equations involving both
the AR coefficients and the additive noise variance.
These equations are also known as noise-compensated
Yule–Walker equations. The system can be solved
in an iterative manner by computing, at each step,
the solutions of two separate least-squares problems.
The recursive version of the identification algorithm
is obtained by modifying the overdetermined recursive
instrumental variable (ORIV) method developed by
Friedlander (1984) for the estimation of the autoregressive
part of ARMA processes. The developed algorithm can
then be called the “noise-compensated overdetermined
recursive instrumental variable” (NC-ORIV). It is worth
emphasizing that the NC-ORIV does not require the
knowledge of the additive noise variance. Moreover,
unlike the approach introduced by Petitjean et al. (2009),
the resulting online algorithm requires only the inverse of
a 2 × 2 matrix, which can be easily computed, so that
it is ‘fully’ recursive. Finally, as shown in Section 5, it
achieves convergence by using a small number of samples.

The main motivation behind the paper is about
introducing model identification procedures suitable
for implementation on edge-computing platforms and
programmable logic controllers (PLCs), which are known
to have limited capabilities and resources when dealing
with complex mathematical computations, such as matrix
inversion. In particular, our development was driven
by the need to perform condition monitoring on board
automatic machinery, which is controlled by means of
PLCs (Barbieri et al., 2018; 2021). In this context,
the machinery internal condition can be monitored using
accelerometers. Those sensors are mainly of two
typologies; piezoelectric and MEMS-based. The former
usually provide significantly better noise performance
than the latter, but at higher costs. Indeed, accelerometer
signals can be assumed as time series and modeled
as autoregressive processes (Baillie and Mathew, 1996;
Wang and Wong, 2002; Wang and Makis, 2009; Barbieri
et al., 2021). With the algorithm we propose, we provide
a more robust way to perform condition monitoring using
accelerometers, both with the cheaper and more noisy
MEMS and the more expensive piezoelectric ones. We
introduce an efficient and less resource intensive recursive
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solution to tackle the identification of noisy sensor
measurements (i.e., with MEMS), while also providing
a way to monitor the state of health of the sensors
themselves through the estimation of the measurement
noise level (for both sensor typologies). The noise
variance is an indication of the sensor efficiency; an
increase in such a quantity can signal the degradation of
the measurement.

The performance of the recursive approach has been
tested on both synthetic and real data. For the former
case, the effectiveness of the recursive algorithm has been
evaluated by means of Monte Carlo simulations. For the
latter case, we use a laboratory setup aimed at developing
condition monitoring algorithms for bearings through
vibration signals. It is worth highlighting that bearing
degradation modeling plays an important role in fault
diagnosis of mechanical systems (Lipiec et al., 2022). The
obtained results are very promising.

The paper is organized as follows. Section 2 states
the identification problem. Section 3 describes an offline
identification algorithm that serves as a starting point
for the development of the recursive algorithm proposed
in Section 4. It is also shown how to exploit the
statistical properties of the noisy AR process to validate
the identified model and to estimate the model order.
The effectiveness of the recursive approach is analyzed in
Section 5 by means of simulations performed on synthetic
data. A laboratory case study application is described in
Section 6. Section 7 concludes the paper.

2. Problem statement
Let us consider the following p-th order AR process:

x(t) + a1 x(t− 1) + · · ·+ ap x(t− p) = e(t), (1)

where e(t) is the driving noise. The AR signal x(t) is
corrupted by the additive noise w(t) so that the available
measurement y(t) is given by

y(t) = x(t) + w(t). (2)

Then, we consider the following assumptions.

A1. The AR process (1) is asymptotically stable, i.e., all
roots of the polynomial

A(z) = zp + a1 z
p−1 + · · ·+ ap−1 z + ap (3)

lie inside the unit disc in the z-plane.

A2. The order p of the AR model is assumed to be known
a priori.

A3. The driving noise signal e(t) is a zero-mean ergodic
white process with variance σ2

e .

A4. The additive noise w(t) is a zero-mean ergodic white
process with variance σ2

w.

A5. Lastly, e(t) and w(t) are mutually uncorrelated.

Under these assumptions, the noisy AR identification
problem can be stated as follows.

Problem 1. (Identification problem) Given the set
of noisy output data y(1), y(2), . . . , y(N), determine a
recursive estimate of the coefficients a1, a2, . . . , ap and
the noise variances σ2

e , σ2
w.

By defining the vectors

ϕx(t) = [−x(t− 1) . . . − x(t− p) ]T , (4)

ϕy(t) = [−y(t− 1) . . . − y(t− p) ]T , (5)

ϕw(t) = [−w(t− 1) . . . − w(t − p) ]T (6)

and the parameter vector

θ =
[
a1 a2 · · · ap

]T
, (7)

Equations (1) and (2) can be rewritten as

x(t) = ϕT
x (t) θ + e(t), (8)

ϕy(t) = ϕx(t) + ϕw(t). (9)

The vector form of (8) and (9) will be useful for the
subsequent analysis.

3. Offline identification algorithm
Given the premises of the identification of noisy AR
models, we introduce the offline algorithm for identifying
the model (1), (2). It will represent the starting
point in developing the recursive algorithm described in
Section 4. In the following, we will denote as ry(τ) the
autocorrelation at lag τ of the signal y(t):

ry(τ) = E[y(t) y(t− τ)] = ry(−τ), (10)

where E[·] represents the expectation operator.
From (2) and (8) it is easy to get

y(t) = ϕT
x (t) θ + e(t) + w(t); (11)

then, by using (9), we obtain

y(t) = ϕT
y (t) θ − ϕT

w(t) θ + e(t) + w(t). (12)

Define now the extended regressor vector

ϕ̄y(t) =[−y(t− 1) . . . − y(t− p)

− y(t− p− 1) . . . − y(t− p− q) ]T , (13)

where q is chosen such that q ≥ p (see Remark 1).
Multiplying both the sides of (12) by ϕ̄y(t) and applying
the expectation operator, we get

E[ϕ̄y(t) y(t)]

= E[ϕ̄y(t)ϕ
T
y (t)] θ − E[ϕ̄y(t)ϕ

T
w(t)] θ (14)

+ E[ϕ̄y(t)(e(t) + w(t))].
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Because of Assumptions A3–A5 and ϕ̄y(t) = ϕ̄x(t) +
ϕ̄w(t), we have

E[ϕ̄y(t)ϕ
T
w(t)]

= E[ϕ̄x(t)ϕ
T
w(t)] + E[ϕ̄w(t)ϕ

T
w(t)] (15)

= E[ϕ̄w(t)ϕ
T
w(t)],

E[ϕ̄y(t)(e(t) + w(t))]

= E[ϕ̄x(t)(e(t) + w(t))]

+ E[ϕ̄w(t)(e(t) + w(t))] = 0. (16)

The relations (14)–(16) lead to

ρ = Rθ − σ2
w J θ, (17)

where

R = E[ϕ̄y(t)ϕ
T
y (t)]

=

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

ry(0) ry(1) · · · ry(p− 1)
ry(1) ry(0) · · · ry(p− 2)

...
. . .

...
ry(p− 1) ry(p− 2) · · · ry(0)
ry(p) ry(p− 1) · · · ry(1)

...
...

ry(p+ q − 1) · · · · · · ry(q)

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

,

(18)

ρ = E[ϕ̄y(t) y(t)] =− [
ry(1) ry(2) · · · ry(p)

ry(p+ 1) · · · ry(p+ q)
]T (19)

and

J =

[
Ip×p

0q×p

]
. (20)

Since the autocorrelations ry(τ), τ = 0, . . . , p+ q can be
estimated directly from the available noisy measurements,
the relation (17) can be seen as a system of p + q
equations in the p + 1 unknowns a1, a2, . . . , ap and σ2

w .
These equations are also known as “noise-compensated
Yule–Walker (NCYW)” equations. In fact, the first p
equations (low-order equations) are ‘corrupted’ by the
additive noise variance σ2

w whereas the last q equations
(high-order equations) are noise-free.

Remark 1. As shown by Davila (2001), the condition
q ≥ p is both necessary and sufficient to guarantee the
existence of a unique solution to the NCYW equations
(17). Therefore, if q ≥ p, only the true parameter vector
θ and the true additive noise variance σ2

w satisfy the set of
equations (17).

Consider now the following partitions of R and ρ:

R =

[
RL

RH

]
, ρ =

[
ρL
ρH

]
, (21)

Algorithm 1. Offline algorithm.
Step 1. Compute, from the available noisy data
y(1), y(2), . . . , y(N), the sample estimates of R and ρ:

R̂ =
1

N − p− q

t=N∑

t=p+q+1

ϕ̄y(t)ϕ
T
y (t) =

[
R̂L

R̂H

]
,

ρ̂ =
1

N − p− q

t=N∑

t=p+q+1

ϕ̄y(t) y(t) =

[
ρ̂L
ρ̂H

]
.

Step 2. Determine an initial estimate θ̂0 of θ and set θ̂k =
θ̂0.
Step 3. Compute an estimate of the additive noise
variance as follows:

σ̂2k
w =

θ̂k
T (
R̂L θ̂

k − ρ̂L
)

θ̂k
T
θ̂k

.

Step 4. Update the estimate of the parameter vector:

θ̂k+1 =
(
R̂− σ̂2k

w J)+ρ̂.

Step 5. Set θ̂k+1 = θ̂k and go to Step 3.
Step 6. Repeat Steps 3–5 until

‖θ̂k+1 − θ̂k‖
‖θ̂k+1‖ < ε,

where ε is a convergence threshold.

whereRL andRH have dimensions p×p and q×p while
ρL and ρH are p× 1 and q× 1 column vectors. The set of
equations (17) can thus be split as follows:

ρL = RL θ − σ2
w θ, (22)

ρH = RH θ. (23)

If the additive noise variance σ2
w were known, an estimate

of θ could be directly computed from (17):

θ̂ =
(
R− σ2

w J)
+ρ, (24)

where R+ denotes the pseudoinverse of R. Conversely,
if the parameter vector θ were known, the additive noise
variance could be estimated by using the first p equations
of (17), i.e., by means of (22):

σ̂2
w =

θT
(
RL θ − ρL

)

θT θ
. (25)

Starting from (24) and (25), it is possible to devise an
iterative (offline) identification algorithm for estimating θ
and σ2

w, whose steps are summarized in Algorithm 1.
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Remark 2. (Algorithm convergence) It is worth noting
that Algorithm 1 leads to the solution of the optimization
problem

min
θ,σ2

w

f(θ, σ2
w) = ‖ρ̂− (R̂− σ2

w J) θ‖2. (26)

In fact, (17) is bilinear in the unknowns θ and σ2
w (see (24),

(25)) so that Steps 3 and 4 of Algorithm 1 compute the
solutions of two separate least-squares problems. More
precisely, Step 3 solves the LS problem

min
σ2
w

f(θ̂k, σ2
w), (27)

whereas Step 4 solves the LS problem

min
θ
f(θ, σ̂2k

w ). (28)

It follows that

f(θ̂k+1, σ̂2k
w ) ≤ f(θ̂k, σ̂2k

w ) ≤ f(θ̂k, σ̂2(k−1)
w ). (29)

The above property guarantees the convergence of the
iterative identification algorithm. In fact, it is a ‘cyclic
minimizer’ (Stoica and Moses, 2005).

Remark 3. (Estimation of the driving noise variance)
Once θ and σ2

w have been estimated, an estimate of the
driving noise variance σ2

e can be obtained from (12). In
fact, multiplying both the sides of (12) by y(t) and taking
the expectation, we get

E[y2(t)] = E[y(t)ϕT
y (t)] θ − E[y(t)ϕT

w(t)] θ

+ E[y(t) e(t)] + E[y(t)w(t))], (30)

which, since E[x(t) e(t)] = σ2
e , leads to

ry(0) = ρTL θ + σ2
e + σ2

w. (31)

The estimate of σ2
e can thus be easily computed when the

estimates θ̂ and σ̂2
w are available:

σ̂2
e = r̂y(0)− ρ̂TL θ̂ − σ̂2

w. (32)

Remark 4. At each iteration of Algorithm 1, it is
advisable to perform a check on the estimate σ̂2k

w in order
to keep it within the range (0, r̂y(0)). In fact, on the one
hand, σ̂2k

w must be a positive number while, on the other,
it follows from (2) that

ry(0) = rx(0) + σ2
w, (33)

where ry(0) = σ2
y , rx(0) = σ2

x are the variances of y(t)
and x(t), respectively. Consequently, σ2

w is lower than
ry(0).

Remark 5. Steps 3 and 4 of Algorithm 1 can be swapped.
In this case, an initial estimate σ̂20

w of the additive noise
variance has to be set in Step 2. As stated in Remark 4,
σ̂20
w should lie in the range (0, r̂y(0)).

3.1. Model assessment. An important step in system
identification consists in checking the validity of the
estimated model and of the assumptions behind the
identification algorithm. When dealing with the noisy AR
model described by Eqns. (1) and (2) a model assessment
can be performed by exploiting the statistical properties of
its residual. By inserting (2) into (1) we get

y(t) + a1 y(t− 1) + · · ·+ ap y(t− p)

= e(t) + w(t) + a1 w(t− 1) + · · ·+ ap w(t − p).
(34)

Once a model is available, the following residual can be
computed:

ε(t) = y(t) + a1 y(t− 1) + · · ·+ ap y(t− p). (35)

From (34) it is clear that the residual is not white
as it is given by the sum of the white process e(t) and
the moving average (MA) process w(t) + a1 w(t − 1) +
· · · + ap w(t − p). Starting from Assumptions A3–A5, it
is easy to show that the autocorrelation function rε(τ) =
E[ε(t) ε(t− τ)] is given by

rε(0) = σ2
w

p∑

i=0

a2i + σ2
e ,

rε(τ) = σ2
w

p−τ∑

i=0

ai ai+τ , 0 < τ ≤ p,

rε(τ) = 0, ∀τ > p.

Therefore, rε(τ) behaves like the autocorrelation function
of a moving average process of order p. It is thus possible
to consider the normalized autocorrelation function

γ(τ) =
rε(τ)

rε(0)
, τ > 0, (36)

and check its statistical properties (Box et al., 2015).
In practice, we expect that the values of γ(τ) will be

negligible for τ > p. Once a model has been estimated,
model assessment can be based on the following steps:

1. Compute the residual sequence ε(1), ε(2), . . . , ε(N)
by using (35).

2. Compute the autocorrelation samples r̂ε(0),
r̂ε(1), . . . , r̂ε(M), where M > p is a user-chosen
parameter.

3. Compute the normalized autocorrelation samples
γ̂(1), . . . , γ̂(M).

4. Check if γ̂(τ) is negligible for τ > p by using
Bartlett’s approximation (Box et al., 2015).

It is worth noting that the above procedure can also be
exploited to find an estimate of the model order p.
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4. Recursive identification algorithm
In order to develop a recursive version of Algorithm 1, it
is not advisable to use (24) directly as in Step 4 because of
the presence of the pseudoinverse of R̂ − σ̂2k

w J . Instead,
let us start from Eqn. (17) and rewrite it as

Rθ = ρ+ σ2
w J θ, (37)

from which the parameter vector θ may be obtained as

θ = R+ ρ+ σ2
w R

+ J θ, (38)

where R+ is the pseudoinverse of R. In what follows, we
denote by θ̂(t) an estimate of θ obtained from the output
samples y(1), y(2), . . . , y(t). This notation will also be
used for other estimated variables. Equation (38) can be
exploited to compute the estimate of θ at time t given its
value at time t− 1:

θ̂(t) = R̂+(t) ρ̂(t) + σ̂2
w(t− 1) R̂+(t)J θ̂(t− 1). (39)

In this fashion, at each iteration we need to update
R̂+(t), ρ̂(t) and rely on the last computed value of
σ̂2
w by using Eqn. (25); note that, in the absence of

measurement noise (σ2
w = 0), Eqn. (39) reduces to θ̂(t) =

R̂+(t)ρ̂(t), which can be seen as an extended instrumental
variable estimate of the AR model (Söderström and
Stoica, 1989). This is also called an ‘overdetermined
instrumental variable method’ by Friedlander (1984), with
reference to the identification of the autoregressive part of
ARMA models. Therefore, the recursive update of the
quantities R̂+(t) and ρ̂(t) can be obtained by exploiting
the results developed by Friedlander (1984) (see also
Söderström and Stoica, 1989). To apply that reasoning,
we start by rewriting Eqn. (39), expanding R̂+(t) =(
R̂T (t)R̂(t)

)−1
R̂T (t) into its components:

θ̂(t) = P̂ (t)R̂T (t) ρ̂(t)

+ σ̂2
w(t− 1) P̂ (t)R̂T (t)J θ̂(t− 1),

(40)

where
P̂ (t) =

(
R̂T (t)R̂(t)

)−1
. (41)

In the next subsection we will show how to achieve
the recursive update of P̂ (t), R̂(t) and ρ̂(t) in the absence
of noise (i.e., σ2

w = 0). Then, the obtained results will be
extended to the case of noisy autoregressive models.

4.1. Recursive algorithm: The noise-free
case. The original overdetermined recursive
instrumental-variable (ORIV) method (Söderström
and Stoica, 1989; Friedlander, 1984) refers to the estimate

θ̂ =

[
N∑

s=p+q+1

ϕ̄y(s)ϕ
T
y (s)

]+ [
N∑

s=p+q+1

ϕ̄y(s)y(s)

]

,

(42)

which does not involve the cross-covariance quantities R
and ρ required by Algorithm 1. Instead, our starting point
is the estimate

θ̂ = R̂+ρ̂

=

[
1

N − p− q

N∑

τ=p+q+1

ϕ̄y(τ)ϕ
T
y (τ)

]+

×
[

1

N − p− q

N∑

τ=p+q+1

ϕ̄y(τ)y(τ)

]

. (43)

To introduce a recursive version, Eqn. (43) is
rewritten in the following way:

θ̂(t) = R̂+(t)ρ̂(t) = P̂ (t)R̂T (t)ρ̂(t), (44)

where

R̂(t) =
1

t− p− q

t∑

s=p+q+1

ϕ̄y(s)ϕ
T
y (s), (45)

ρ̂(t) =
1

t− p− q

t∑

s=p+q+1

ϕ̄y(s)y(s), (46)

and P (t) is defined in (41). Now, as stated by Söderström
and Stoica (1989) as well as Friedlander (1984), the
derivation of the recursive algorithm is obtained starting
from the equation to estimate θ̂(t), given its previous value
θ̂(t− 1):

θ̂(t) = θ̂(t− 1)

+ P̂ (t)R̂T (t)[ρ̂(t)− R̂(t)θ̂(t− 1)].
(47)

Now, we will study the recursion of the terms
involved in the above equation (we will drop the hat
symbol for the sake of clarity). Starting from (46) and
setting τ = t− p− q, we get

ρ(t) =
1

τ

t∑

s=p+q+1

ϕ̄y(s)y(s)

=
1

τ

[
t−1∑

s=p+q+1

ϕ̄y(s)y(s) + ϕ̄y(t)y(t)

]

=
1

τ

[
τ − 1

τ − 1

t−1∑

s=p+q+1

ϕ̄y(s)y(s) + ϕ̄y(t)y(t)

]

=
τ − 1

τ
ρ(t− 1) +

1

τ
ϕ̄y(t)y(t), (48)

with t > p+ q. Analogously,

R(t) =
τ − 1

τ
R(t− 1) +

1

τ
ϕ̄y(t)ϕ

T
y (t). (49)

P (t) is computed following the course of actions
presented by Friedlander (1984) as well as Söderström
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and Stoica (1989); the starting point is P−1(t) =
RT (t)R(t):

P−1(t) =

[
τ − 1

τ
RT (t− 1) +

1

τ
ϕy(t)ϕ̄

T
y (t)

]

×
[
τ − 1

τ
R(t− 1) +

1

τ
ϕ̄y(t)ϕ

T
y (t)

]

=
(τ − 1)2

τ2
P−1(t− 1) +

τ − 1

τ2
ϕy(t)w

T (t)

+
τ − 1

τ2
w(t)ϕT

y (t)

+
1

τ2
ϕy(t)ϕ̄

T
y (t)ϕ̄y(t)ϕ

T
y (t)

=
(τ − 1)2

τ2
P−1(t− 1) +

1

τ2
[w(t) ϕy(t)]

×
[

0 τ − 1
τ − 1 ϕ̄T

y (t)ϕ̄y(t)

] [
wT (t)
ϕT
y (t)

]

=
(τ − 1)2

τ2
P−1(t− 1) +

1

τ2
φ(t)Λ−1(t)φT (t),

(50)

wherew(t) = RT (t−1)ϕ̄y(t), φ(t) = [w(t) ϕy(t)] and

Λ−1(t) =

[
0 τ − 1

τ − 1 ϕ̄T
y (t)ϕ̄y(t)

]
. (51)

Starting from (50), the derivation of P (t) relies on
the matrix inversion lemma (or the Woodbury identity)

P (t) =
τ2

(τ − 1)2
P (t− 1)− P (t− 1)φ(t)

(τ − 1)2

×
[
Λ(t) +

φT (t)P (t− 1)φ(t)

(τ − 1)2

]−1

× τ2

(τ − 1)2
φT (t)P (t− 1), (52)

where, given

Λ(t) =
1

(τ − 1)2

[ −ϕ̄T
y (t)ϕ̄y(t) τ − 1
τ − 1 0

]

=
Λ̄(t)

(τ − 1)2
,

(53)

we have

P (t) =
τ2

(τ − 1)2
P (t− 1)− τ2

(τ − 1)2
P (t− 1)φ(t)

× [
Λ̄(t) + φT (t)P (t− 1)φ(t)

]−1

× φT (t)P (t− 1). (54)

At this point, the remaining part of the update of θ̂(t)

becomes

RT (t)(ρ(t)−R(t)θ̂(t− 1))

=

(
τ − 1

τ
RT (t− 1) +

1

τ
ϕy(t)ϕ̄

T
y (t)

){
τ − 1

τ
ρ(t− 1)

+
ϕ̄y(t)y(t)

τ
−

(
τ − 1

τ
R(t− 1)

+
ϕ̄y(t)ϕ

T
y (t)

τ

)
θ̂(t− 1)

}

=
1

τ 2

[
ϕy(t) (τ − 1)RT (t− 1)ϕ̄y(t) + ϕy(t)ϕ̄

T
y (t)ϕ̄y(t)

]

×
[

ϕ̄T
y (t)

(
ρ(t− 1)− (τ − 1)R(t− 1)θ̂(t− 1)

)
y(t)− ϕT

y (t)θ̂(t− 1)

]

=
1

τ 2
[w(t) ϕy(t)]

[
0 τ − 1

τ − 1 ϕ̄T
y (t)ϕ̄y(t)

]

×
{[

ϕ̄T
y (t)ρ(t− 1)

y(t)

]
−

[
wT (t)
ϕy(t)

]
θ̂(t− 1)

}

=
1

τ 2
φ(t)Λ−1(t)

(
v(t)− φT (t)θ̂(t− 1)

)
, (55)

where v(t) = [ ϕ̄T
y (t)ρ(t − 1) y(t) ]T . By substituting

(55) in (47) and by exploiting the push-through identity to
further develop the term 1

τ2P (t)φ(t), we get

1

τ2
P (t)φ(t)

= P (t− 1)φ(t)

× [
Λ̄(t) + φT (t)P (t− 1)φ(t)

]−1
Λ(t). (56)

The above computations lead to the time-weighted ORIV
(T-ORIV) algorithm reported in Algorithm 2. The initial
step may be defined in the following way:

θ̂(0) = 0, P (0) = ψI,
ρ(0) = 0, R(0) = 0,

(57)

with ψ being any large positive number.

4.2. Recursive algorithm for noisy autoregres-
sive models. Starting from the procedure described in
Section 4.1, it is possible to obtain a recursive version
of Algorithm 1. Since P (t), R(t) and ρ(t) in (40) are
the same matrices derived for the time-weighted ORIV,
the recursive noise-compensated algorithm based on the
overdetermined instrumental variable method follows
easily from Algorithm 2 and is described in Algorithm 3.
Note that, in Step 10, R11(t) is the top-left element of
R(t), which is an estimate of the output noise variance
E[y2(t)] = ry(0). The initial step of Algorithm 3 may be
defined in the following way:

θ̂(0) = α1, P (0) = ψI,
ρ(0) = β1, R(0) = γJ,

(58)

with α, β and γ being any small positive number and ψ a
large positive one.
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Algorithm 2. Time-weighted ORIV (T-ORIV).
1. w(t) = RT (t− 1)ϕ̄y(t)

2. φ(t) = [w(t) ϕy(t)]

3. Λ̄(t) =
[ −ϕ̄T

y (t)ϕ̄y(t) τ − 1
τ − 1 0

]

4. v(t) =
[
ϕ̄T
y (t)ρ(t − 1)

y(t)

]

5. K(t) = P (t− 1)φ(t)
[
Λ̄(t) + φT (t)P (t− 1)φ(t)

]−1

6. θ̂(t) = θ̂(t− 1) +K(t)
(
v(t)− φT (t)θ̂(t− 1)

)

7. R(t) =
τ − 1

τ
R(t− 1) +

1

τ
ϕ̄y(t)ϕ

T
y (t)

8. ρ(t) =
τ − 1

τ
ρ(t− 1) +

1

τ
ϕ̄y(t)y(t)

9. P (t) =
τ2

(τ − 1)2
(
P (t− 1)−K(t)φT (t)P (t− 1)

)

Algorithm 3. Noise-compensated ORIV (NC-ORIV).
1. w(t) = RT (t− 1)ϕ̄y(t)

2. φ(t) = [w(t) ϕy(t)]

3. Λ̄(t) =
[ −ϕ̄T

y (t)ϕ̄y(t) τ − 1
τ − 1 0

]

4. K(t) = P (t− 1)φ(t)
[
Λ̄(t) + φT (t)P (t− 1)φ(t)

]−1

5. R(t) =
τ − 1

τ
R(t− 1) +

1

τ
ϕ̄y(t)ϕ

T
y (t)

6. ρ(t) =
τ − 1

τ
ρ(t− 1) +

1

τ
ϕ̄y(t)y(t)

7. P (t) =
τ2

(τ − 1)2
[
P (t− 1)−K(t)φT (t)P (t− 1)

]

8. θ̂(t) = P (t)RT (t)ρ(t)+σ2
w(t−1)P (t)RT (t)Jθ̂(t−1)

9. σ̂2
w(t) =

θ̂(t)T
(
RL(t)θ̂(t)− ρL(t)

)

θ̂(t)T θ̂(t)

10. σ̂2
e(t) = R11(t)− ρTL(t) θ̂(t)− σ̂2

w(t)

The implementation of Algorithm 3 is indeed a bit
more complex than that of the standard recursive least
squares (RLS) and requires a few more computations than
the standard ORIV. Here are some remarks to be taken
into account when implementing the algorithm.

Remark 6. The algorithm does not need any matrix
inversion of dimension p × p; however, it requires the
inverse of a 2 × 2 matrix at Step 4, which can be easily
tackled during algorithm implementation.

Remark 7. To ensure numerical consistency, the
algorithm implementation should monitor the value of σ̂2

w

in order to keep it at least nonnegative. Numerical errors
introduced by the deployment of the algorithm may occur,
in particular when σ̂2

w is close to zero.

4.3. Forgetting factor. Recursive identification
algorithms are usually employed in control identification
to track system parameters evolution or in calibration
and auto-commissioning procedures during system
initialization to estimate relevant system parameters. For
instance, electric drives perform such routines to identify
motor resistance and inductance when configured for the
first time. In other cases, these algorithms may be used
for condition monitoring and diagnostics, exploiting the
growing edge-computing power of machinery controllers.
In this fashion, the estimation of parameters and noise
variances continuously in time may be required when
tracking variations of those quantities during system
operation. However, the recursive formulation of the
algorithm we developed in the previous sections does not
permit real-time parameter tracking. To do this, we need
a version of the algorithm that includes a forgetting factor.

The easiest way to introduce the forgetting factor is
to replace the time-weighting part of Algorithm 3 with a
suitable coefficient,

λ =
τ − 1

τ
.

For instance, the update of R(t), ρ(t), P (t) becomes

R(t) = λR(t− 1) + (1− λ)ϕ̄y(t)ϕ
T
y (t), (59)

ρ(t) = λρ(t− 1) + (1− λ)ϕ̄y(t)y(t), (60)

P (t) =
1

λ2
[
P (t− 1)−K(t)φT (t)P (t− 1)

]
, (61)

with 0.95 ≤ λ < 1. Unlike in standard formulations
where no noisy measurements are involved, we have to
take into account the estimate of σ2

w(t) when adding the
forgetting factor. This is done by keeping the estimates
of R(t), ρ(t), P (t) in line with their counterpart obtained
through the expectation operator by using (1 − λ) in the
update term. This operation is analogous to setting τ
to a fixed time window, thus fixing the weights between
the past samples and the new sample in the update.
Finally, following the reasoning unfolded previously, the
recursive algorithm with a forgetting factor is reported
in Algorithm 4. The initial step may be defined in the
following way:

θ̂(0) = α1, P (0) = ψI,
ρ(0) = β1, R(0) = γJ,

(62)

with α, β and γ being any small positive numbers and ψ a
large positive one.

5. Simulation results
The performance of the proposed recursive approach has
been tested by means of Monte Carlo simulations and
compared with that of the offline method described in
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Table 1. True and estimated values of the model coefficients and of the output noise variance: Monte Carlo simulation of 1000 runs
performed with N = 5000 and q = 10.

a1 a2 a3 a4 σ2
w

Model (63) SNR = 10 dB
True −2.1690 2.8227 −2.0408 0.8853 3.6

Algorithm 1 −2.1674± 0.0087 2.8191± 0.0161 −2.0369± 0.0157 0.8836± 0.0081 3.5986± 0.0970
Algorithm 3 −2.1674± 0.0087 2.8191± 0.0160 −2.0372± 0.0153 0.8837± 0.0079 3.5980± 0.0971

Model (64) SNR = 10 dB
True −1.6771 1.6875 −0.9433 0.3164 0.6

Algorithm 1 −1.6778± 0.0472 1.6883± 0.0827 −0.9439± 0.0727 0.3167± 0.0294 0.5988± 0.0229
Algorithm 3 −1.6780± 0.0510 1.6884± 0.0900 −0.9441± 0.0791 0.3167± 0.0318 0.5989± 0.0230

Algorithm 4. NC-ORIV with a forgetting factor.
1. w(t) = RT (t− 1)ϕ̄y(t)

2. φ(t) = [w(t) ϕy(t)]

3. Λ̄(t) =
[ −ϕ̄T

y (t)ϕ̄y(t)
λ

1−λ
λ

1−λ 0

]

4. K(t) = P (t− 1)φ(t)
[
Λ̄(t) + φT (t)P (t− 1)φ(t)

]−1

5. R(t) = λR(t− 1) + (1− λ)ϕ̄y(t)ϕ
T
y (t)

6. ρ(t) = λρ(t− 1) + (1 − λ)ϕ̄y(t)y(t)

7. P (t) =
1

λ2
(
P (t− 1)−K(t)φT (t)P (t− 1)

)

8. θ̂(t) = P (t)RT (t)ρ(t)+σ2
w(t−1)P (t)RT (t)Jθ̂(t−1)

9. σ̂2
w(t) =

θ̂(t)T
(
RL(t)θ̂(t)− ρL(t)

)

θ̂(t)T θ̂(t)

10. σ̂2
e = R11(t)− ρTL(t) θ̂(t)− σ̂2

w(t)

Section 3. The following two AR processes have been
considered (Diversi et al., 2008):

x(t)− 2.1690 x(t− 1) + 2.8227 x(t− 2)

− 2.0408 x(t− 3) + 0.8853 x(t− 4) = e(t), (63)
x(t)− 1.6771 x(t− 1) + 1.6875 x(t− 2)

− 0.9433 x(t− 3) + 0.3164 x(t− 4) = e(t). (64)

The model (63) represents a narrowband process with two
sharp peaks which are quite close, whereas the model (64)
represents a broadband process with a smooth spectrum.
For both the above models, the driving process is white
noise with the unit variance. Monte Carlo simulations of
1000 runs have been carried out by considering additive
noise sequences with variances σ2

w = 3.6 for the model
(63) and σ2

w = 0.6 for the model (64), corresponding to a
signal-to-noise ratio (SNR) of 10 dB per model. The SNR
is defined as

SNR = 20 log10

√
E[x2(t)]

σ2
w

(dB). (65)

The number of available noisy output samples is

N = 5000. For both the identification approaches
(Algorithms 1 and 3), the parameter q (i.e., the number
of high-order YW equations in (23)) has been set to
q = 10. The obtained results are summarized in Table
1, which reports, for each experimental case, the obtained
mean value of the parameters and noise variance estimates
along with the associated standard deviations. The results
show remarkable accuracy in estimation for both the
algorithms and, in particular, suggest that the recursive
approach (Algorithm 3) exhibits performances on par with
its batch counterpart of Algorithm 1. This is valuable from
an algorithm exploitation and deployment perspective,
since Algorithm 3 brings in all the benefits of recursive
algorithms in terms of computational resources.

In Fig. 1(a) we show the time evolution of the
quantities involved in the solution of Problem 1 applied
to the identification of the model (63), i.e., θ̂ and σ̂2

w.
A second simulation scenario has been considered to

test the tracking ability of Algorithm 4 (NC-ORIV with
a forgetting factor). A sequence of N = 3000 samples
has been generated as follows. The first 1000 samples
have been generated according to the model (64). Then,
the AR coefficients and the additive noise variance change
linearly from the values of the model (64) to those of
the model (63) (data samples from 1000 to 2000). The
last 1000 samples have been generated according to the
model (63). The AR coefficients and the additive noise
variance have been identified by means of Algorithm 4
with a forgetting factor λ = 0.999. The results of this
simulation are reported in Fig. 1(b), showing the tracking
capabilities of Algorithm 4.

6. Case study application
In this section, we test the proposed algorithm in
a laboratory case study application. In particular,
we use a setup aimed at developing algorithms
for condition monitoring of bearings on commercial
hardware: programmable logic controllers (PLCs).

The main concept behind the use of recursive
estimation algorithms in prognostics of automatic
machines is that meaningful signals coming from the
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Fig. 1. Simulation results: estimation of the coefficients and noise variance of the model (63) with the NC-ORIV (Algorithm 3) under
an SNR of 10 dB (a), estimation of the coefficients and noise variance with a varying underlying model structure from the
model (64) to the model (63) with the NC-ORIV under an SNR of 10 dB and λ = 0.999 (Algorithm 4) (b). The dashed lines
correspond to true values.

Fig. 2. Condition monitoring setup. From left to right: a PC
supervisor with Automation Studio, a B&R PLC with
accelerometer acquisition, and a bearing mechanism
frame.

machinery can be modeled and estimated using system
identification theory rules and guidelines, and we call
this method the model-of-signals (MoS) (Barbieri et al.,
2018). In this way we can use industrial computers as
edge-computing devices to retrieve valuable information
regarding the machinery state of health. In particular,
vibration signals can be successfully modeled by means
of autoregressive processes (Baillie and Mathew, 1996;
Wang and Wong, 2002; Wang and Makis, 2009; Barbieri
et al., 2019).

PLCs process information under real time
constraints, their primary function being logic control.
Complex matrices operations, such as inverses, are
resource demanding in this kind of environment and
the available computational power and memory are

limited. However, recursive versions of identification
algorithms that avoid inverse matrix computations
require only basic matrix operations. In our previous
work (Barbieri et al., 2018), the implementation of the
condition monitoring library for industrial computers
laid the foundations for implementing the recursive
least-squares (RLS) algorithm. Then, the library became
wider and more advanced, introducing prognostics in the
work of Barbieri et al. (2021) where the ORIV algorithm
was implemented and tested with complementary
decision-making algorithms, and fully integrated within
the automation pyramid. In this work, we deployed
effectively “on edge” Algorithm 3 and tested it in a
laboratory case study application.

The monitoring architecture is shown in Fig. 2,
where we supervise the processing on the PLC
with a laptop that uses B&R Integrated Development
Environment, Automation Studio. Then, the PLC is a
X20 CP1586 model from B&R that is sampling at 5
kHz with the module X20CM4810-C01, a piezoelectric
accelerometer, 356B21 from PCB, mounted on the frame
of the bearing condition monitoring setup. This setup has
three bearings at different wearing conditions, from new
to almost broken, with one in between.

In particular, we focus on the healthy bearing to test
the proposed estimation algorithm under semi-synthetic
conditions. This means that we use the aforementioned
setup with a piezoelectric sensor, which is known to
have low measurement noise, and we artificially inject
measurement noise into the system. This is done via
software by using a random number generating function
within the PLC program, before passing the vibration
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Fig. 3. Accelerometer signal: 0.1 s portion of the signal mea-
sured from the setup with and without additive noise.

samples to the estimation function block. Thus, we can
control the signal to noise ratio of the injected disturbance.
The noise variance estimation introduced by Algorithm 3
permits not only to exploit the algorithm in the standard
MoS fashion, but also to monitor the measurement noise,
allowing diagnosing and possibly prognosing also the
sensor state of health, which has been a limit of our
implementations until now.

The test is performed by running the bearing setup
at a constant speed while the accelerometer is sampling
vibrations on the healthy bearing. The PLC executes
two functions, one that handles the signal buffering,
storing 10 s of data (i.e., 50000 samples), and one
processing those data with both Algorithms 2 and 3.
The buffering function is appended to a high priority
task, having a period of 0.4 ms. In this way, the
program stores two samples per period. Then, once
the buffer is full, the second program receives the
samples, adds the measurement noise to the input to
Algorithm 3, and subsequently executes the identifications
algorithms. In particular, this task computes the T-ORIV
estimates with uncorrupted and corrupted output and
the NC-ORIV estimates with corrupted output. This
procedure is appended to a low-priority task having a 10
s period. It estimates the model from the previous 10
s of measurements while the current buffer of samples
is getting collected. As explained by Barbieri et al.
(2021), the proposed scheduling of the programs on the
PLC, despite losing actual real-time tracking capabilities,
still allows monitoring the condition of mechanisms
on-line while considerably less impacting the device’s
resources. Finally, the computed model of signals is
sent via OPC-UA, as done by Barbieri et al. (2018), to
a running MATLAB program collecting them every 10 s.
In Fig. 3 a measurement of 0.1 s is presented to show both
the uncorrupted measurement and the corrupted one.

The purpose of the test here is to show that both
Algorithms 2 and 3, the former performed on noise-free
measurements, the latter on noise-corrupted ones, provide
similar sets of estimated parameters. In addition, we also
show that Algorithm 2 produces a different model under
corrupted measurements. Before starting the test we
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Fig. 4. Residual autocorrelation decay on the corrupted ac-
celerometer measurements collected for the model order
assessment when using p = 6.

need to select a suitable model order for the estimation
problem. Following the steps described in Section 3.1,
we logged 50000 corrupted accelerometer samples when
the system was running. Then, we used this set of
measurements to compute the residual autocorrelations to
check if, among a set of model orders (from 1 to 20), we
were able to find a order-matching autocorrelation decay
using Barlett’s approximation. As shown in Fig. 4, we
found p = 6 as a suitable model order for our experiment.
The number of high-order YW equations in (23) has been
set to q = 12.

To show the performance of the proposed solution
the models estimated by applying Algorithm 2 (T-ORIV)
to uncorrupted data are compared with the models
identified by applying both Algorithms 2 and 3
(NC-ORIV) to corrupted data. Figure 5 reports the
AR parameters collected over time for Algorithm 2 with
noise-free and noisy data, whereas Fig. 6 reports the
AR parameters collected over time for Algorithm 2 with
noise-free data and Algorithm 3 with noisy data. As
shown in Fig. 6, although the models have been estimated
on real data, the NC-ORIV with noisy data and the
T-ORIV with uncorrupted data provide approximately the
same set of models; this is not the case for the models
identified by using Algorithm 2 with noise-free and noisy
data, see Fig. 5. Figure 7 shows that the additive noise
variances estimated over time are very close to the true
value.

To further validate our statement, we made use of the
normalized root mean square error, which measures the
distance between two given estimations: the closer it is to
zero, the closer are the models. In particular, the following
two NRMSEs are considered:

NRMSETcor-Tunc =

√
‖θ̂Tcor − θ̂Tunc‖

‖θ̂Tunc‖
, (66)

NRMSENCcor-Tunc =

√
‖θ̂NCcor − θ̂Tunc‖

‖θ̂Tunc‖
. (67)

In the above expressions, θ̂Tunc denotes the AR model
estimated by applying the T-ORIV to uncorrupted data,
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Fig. 5. Collected AR model parameters over time: âi,1, i = 1, . . . , 6 (solid lines) are computed by means of Algorithm 2 using
directly the uncorrupted accelerometer signal, âi,2, i = 1, . . . , 6 (dashed lines) are computed by means of Algorithm 2 using
the corrupted accelerometer signal.
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Fig. 6. Collected AR model parameters over time: âi,1, i = 1, . . . , 6 (solid lines) are computed by means of Algorithm 2 using
directly the uncorrupted accelerometer signal, âi,2, i = 1, . . . , 6 (dashed lines) are computed by means of Algorithm 3 using
the corrupted accelerometer signal.

which can be considered the reference model, θ̂Tcor is
the AR model estimated by using the T-ORIV with
noise-corrupted data, whereas θ̂NCcor is the AR model
estimated by means of the NC-ORIV with noise-corrupted
data. The results are shown in Fig. 8, where the estimates
of Algorithm 3 (NC-ORIV) are shown to be closer to
those obtained with Algorithm 2 (T-ORIV) applied to
uncorrupted data, with an overall NRMSE < 10%. On
the other hand, T-ORIV estimates under corrupting noise
are far apart from the reference ones (NRMSE > 100%).

7. Conclusion
A new recursive algorithm for estimating autoregressive
models in the presence of additive noise was devised.
The proposed approach takes advantage, on the one
hand, of a set of low-order and high-order Yule–Walker
equations, on the other and, of a modified version of the
overdetermined recursive instrumental variable method.
The obtained recursive algorithm is able to update, at
each time, both the AR coefficients and the additive noise
variance, and requires only the inverse of a 2 × 2 matrix,

which can be easily computed.
The presented case study showed how such an

algorithm can be deployed directly into industrial
machines computers (PLCs) for condition monitoring.
Indeed, we exploited the algorithm’s low requirements in
computational resources to show that it can be used to
monitor the working condition of bearings using vibration
signals. Further developments include the extension
of the proposed algorithm to other model structures,
such as ARX models, and the integration of Algorithm
3 with machine learning algorithms to perform fault
detection and isolation, not only regarding the monitored
machinery, but also the monitoring sensor.
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