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Counterfactuals are widely used to explain ML model predictions by providing alternative scenarios for obtaining more
desired predictions. They can be generated by a variety of methods that optimize various, sometimes conflicting, quality
measures and produce quite different solutions. However, choosing the most appropriate explanation method and one of
the generated counterfactuals is not an easy task. Instead of forcing the user to test many different explanation methods and
analysing conflicting solutions, in this paper we propose to use a multi-stage ensemble approach that will select a single
counterfactual based on the multiple-criteria analysis. It offers a compromise solution that scores well on several popular
quality measures. This approach exploits the dominance relation and the ideal point decision aid method, which selects one
counterfactual from the Pareto front. The conducted experiments demonstrate that the proposed approach generates fully
actionable counterfactuals with attractive compromise values of the quality measures considered.

Keywords: counterfactual explanations, ensemble of explainers, ideal point method, multiple criteria analysis, explainable
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1. Introduction

Despite incredible progress in machine learning (ML),
wide adoption of its algorithms, especially in critical
domains such as finance or medicine, often encounters
obstacles related to the lack of their interpretability. This
is due to the fact that the majority of currently used
machine learning methods are black-box models that do
not provide information about the reasons behind taking
a certain decision, nor do they explain the logic of an
algorithm leading to it. Therefore, there is a growing
research interest in explainable artificial intelligence
methods (Bodria et al., 2021) offering explanations for the
predictions of black-box models.

Counterfactual explanations (briefly counterfactu-
als) are one particular type of such explanations
that provide information about how feature values of
an example should be changed to obtain a desired
prediction of the model (change its decision). On
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the one hand, by interacting with the model using
counterfactuals, the user can better understand how the
system works by exploring “what would have happened
if . . . ” questions. This approach to building human
understanding of machine learning models has some
psychological justifications (Miller, 2019). On the
other hand, a good counterfactual provides a clear
recommendation to the user about what changes are
needed in order to achieve the desired outcome.

There are many practical applications for
counterfactual explanations, including loan
decisions (Wachter et al., 2017), recruitment
processes (Pearl et al., 2016), the discovery of
chemical compounds with similar structures but
different properties (Wellawatte et al., 2022), analysis
of medical diagnosis results (Mertes et al., 2022), and
many others (see, e.g., the recent survey by Guidotti
(2022)). For example, consider a scenario where an
individual submits a purchase offer for a property,
initially rejected by a model assessing such proposals. A
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counterfactual explanation for this situation reveals the
minimal adjustments or enhancements the offeror could
implement to ensure the acceptance of their offer (e.g.,
increase the offered price, relax contingencies). Another
practical scenario involves a company training a neural
network to assist in the recruitment process for a specific
job position, automating the shortlisting of resumes. In
this context, counterfactual explanations can be employed
to verify that the black-box model does not discriminate
against candidates who only differ in terms of a sensitive
and non-actionable feature. Furthermore, for a candidate
facing rejection, a counterfactual explanation can provide
valuable insights into the specific qualifications that were
lacking compared with the most similar candidates who
were shortlisted.

A counterfactual explanation is expected to be
similar to the example that the ML model was queried
with, but it should change a class prediction. This leads
to a situation where one instance can be explained by
many different counterfactuals. This has resulted in the
introduction of several desired properties, optimization
strategies and quality measures that a counterfactual
explanation should possess. Such properties include:1

proximity (a counterfactual should be as similar as
possible to a given instance), sparsity (the number of
modified features should be low), actionability (the
counterfactual should not modify immutable features,
such as race, or violate monotonic constraints, e.g.,
decrease one’s age), discriminative power (the generated
counterfactual examples should be in the region of the
feature space dominated by the expected class), and
others. Even though some of these measures are at
least related to each other (e.g., proximity and sparsity),
many of them are not aligned and even contradictory.
For example, proximity encourages the generation of a
counterfactual that is as close to the decision boundary
as possible, whereas the discriminative power favours
explanations in dense areas dominated by the other
class, which are most likely to be far from the decision
boundary. Related user studies (Spreitzer et al., 2022;
Förster et al., 2021) show that human users prefer
counterfactuals which, on the average, score well on the
various criteria.

Generating an appropriate counterfactual
explanation is, therefore, quite a challenging task
that involves finding a trade-off between divergent aspects
of explanation quality. Nevertheless, the vast majority
of counterfactual generation methods optimize only
one or two measures, usually aggregated by a weighted
sum in the optimized loss function, where the weight
is a hyperparameter of the method (see, e.g., Wachter
et al., 2017; Chapman-Rounds et al., 2021; Mothilal
et al., 2020; Van Looveren and Klaise, 2021). The

1See Section 2 for more details and precise definitions.

choice of a satisfactory weight value, which controls the
trade-off between different aspects of explanation quality,
is a non-trivial task. The few methods (Rasouli and
Chieh Yu, 2022; Dandl et al., 2020) that consider multiple
quality criteria in the process of obtaining counterfactual
explanations generate a large set of explanations, but leave
the task of selecting a final one to the user. We argue that it
is not enough to present too many explanations to the final
user due to the choice overload phenomenon (Iyengar and
Lepper, 2000; Stefanowski, 2023). Iyengar and Lepper
(2000) or Inbar et al. (2011) show that presenting a
limited number of alternatives is superior to posing too
many alternatives, when it comes to the human ability
to analyze these options and make optimal choices. In
order to mitigate these issues, we postulate needs for
developing approaches that would reduce the number
of the proposed counterfactuals and support the user in
choosing the most compromise solution.

In this paper, instead of presenting yet another
method for generating counterfactuals, we claim that
the already existing methods should be sufficient to
provide a diversified set of explanations. However,
the more challenging problem of selecting a suitable,
compromise counterfactual while taking multiple quality
criteria into account is still open. Inspired by the
research on classifier ensembles, which achieve better
classification performance by exploiting the predictions
from a diversified set of base classifiers (Kuncheva, 2004),
we propose to use an ensemble of multiple base explain-
ers to provide a richer set of counterfactuals, each of
which establishes a certain trade-off between values of
different quality measures (often referred to as criteria).
We also put forward an approach to significantly reduce
the number of explanations considered to a smaller and
concise set by constructing a Pareto front, i.e., a subset of
explanations that are no worse than others with respect to
at least one criterion. Then we propose to select a final
counterfactual from this front by applying the multiple
criteria ideal point method (Steuer, 1986; Skulimowski,
1990), which does not require additional preference
elicitation from the user and is computationally efficient.
To sum up, the main contributions of this paper are as
follows:

1. Proposal of a new approach, integrating an ensemble
of explainers with the multiple criteria analysis
to select a counterfactual representing a suitable
trade-off between the quality measures.

2. Experimental evaluation of the proposed approach,
demonstrating that it provides the best trade-off
between different quality measures for a wide range
of user preferences for these criteria.

3. Multi-criteria analysis of counterfactuals generated
by various methods, which provides insights into the
dominance relationship between them.
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2. Related works
Following Wachter et al. (2017), a counterfactual
explanation is defined as a perturbation of the instance x,
denoted as x′, that results in a different prediction from
the same black box model b, i.e., b(x) �= b(x′).

2.1. Counterfactual explanation methods.
Numerous methods for generating counterfactual
explanations have already been introduced. According
to Guidotti (2022), they can be divided into four categories
based on their methodological paradigms. Instance-based
explainers select the most similar examples with a
desired class from the dataset (e.g., FACE (Poyiadzi
et al., 2020)). Decision tree approaches approximate
the behaviour of a black box model with a decision
tree and exploit its structure to generate counterfactual
explanations (e.g., Tolomei et al., 2017). The next
approaches optimize a certain loss function by adopting
specific optimization algorithms (e.g., Wachter (Wachter
et al., 2017), CEM (Dhurandhar et al., 2018),
Dice (Mothilal et al., 2020), Fimap (Chapman-Rounds
et al., 2021), CFProto (Van Looveren and Klaise, 2021),
ActionableRecourse (Ustun et al., 2019)). Heuristic
search strategies find counterfactuals through
iterative heuristic choices minimizing the chosen
cost function (e.g., Cadex (Moore et al., 2019),
GrowingSpheres (Laugel et al., 2018)). This taxonomy
is only one of many; however, it exhibits different
approaches to the process of obtaining counterfactual
explanations. Another thorough review with an alternative
categorization is provided by Verma et al. (2020).

Most of the papers introducing counterfactual
generation methods do not report experiments
that compare them with previous methods on data
benchmarks. In general, the field of counterfactual
explanations suffers from a lack of comparative studies
examining multiple methods, and the work by Guidotti
(2022) is the rare exception.

2.2. Most related methods for generating sev-
eral counterfactual explanations. So far, only one
paper has considered combining multiple methods for
the same data, namely, Guidotti and Ruggieri (2021)
has studied the committee of counterfactual explainers.
In their proposal base explainers may produce several
explanations which are, then, combined (selected up to
the required number) by optimizing a simple two criteria
distance-driven aggregation function.

The multi-criteria approach to generating a set
of counterfactuals has only been explored in a few
papers (Dandl et al., 2020; Rasouli and Chieh Yu,
2022). They utilize genetic algorithms to generate a large
(tens to hundreds of explanations) set of non-dominated
counterfactual explanations based on multiple criteria.

Table 1. Quality measures of counterfactual explanations: x′ is
the counterfactual for instance x ∈ X , neighk is the
k-th nearest neighbour of x′ in X .

Measure Definition
proximity(x, x′) distance(x, x′)
feasibility(x′) 1

k

∑k
i=1 distance(x

′, neighi)
sparsity(x, x′) number of features changed

in x to get x′

discriminative
power(x′)

1
k

∑k
i=1 1[[b(x

′)=
b(neighi)]]

instability(x′) dist(x′, x′
1) where x′

1 is a
counterfactual obtained for
example x1 ∈ X being the
closest neighbour of x

However, these approaches do not tackle the problem of
reducing the choice overload, and the selection of the
best counterfactual explanation is left to the final user or
decision-maker. The needs for adapting the multi-criteria
decision analysis to support such users is also postulated
by Stefanowski (2023).

2.3. Quality measures for counterfactuals. The
research on counterfactual explanations and their
psychological analysis show that they should fulfil some
expectations that a human decison-maker might have.
Here we list the properties most frequently mentioned in
the literature (Guidotti, 2022; Wachter et al., 2017): (i)
validity: a counterfactual x′ has to change the prediction,
i.e., b(x) �= b(x′); (ii) sparsity: a valid counterfactual
should change as few features as possible; (iii) proxim-
ity: a counterfactual should be a result of the smallest
perturbation, i.e., x′ should be as similar to original x
as possible. It is also postulated that counterfactuals
need to be (iv) distributionally faithful, i.e., they should
be located in feature space regions that ensure their
feasibility/plausibility (as some generation methods
may produce examples of out-of-data distributions or
with unrealistic feature values). In order to take into
account fairness and real world utility, many works
also introduce (v) actionability: a counterfactual should
not alter any attributes from x that are sensitive and
immutable in certain scenarios (e.g., changing race in a
loan application setting). Other proposed properties are
discussed by Guidotti (2022).

The above-mentioned properties have led to defining
different quality measures evaluating either a single
counterfactual or a set of counterfactuals. For our
further experiments, we choose the most commonly used
measures in the literature; see their specific definitions in
Table 1.

In the rest of the paper we use the following
notation: x is the original instance, classified by the
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black box model b; x′ is the generated counterfactual that
corresponds to x; distance stands for the distance between
two examples calculated with a chosen metric; neighk is
the k-th closest neighbour to the instance x in the training
data X .

3. Proposed multi-criteria approach
We propose a new multi-stage approach that integrates
an ensemble of different methods for generating coun-
terfactuals with a multi-criteria approach for selecting
the counterfactual that provides a compromise solution
with respect to conflicting criteria. It consists of four
consecutive steps illustrated in Fig. 1. Firstly, each
explainer included in the ensemble is queried to generate
counterfactuals for a given instance x (Section 3.1). Next,
all explanations are combined to form a set of candidate
solutions. This resulting set is filtered to remove invalid
and non-actionable instances (Section 3.2). In the third
step (Section 3.3), we employ the dominance relation
to reduce the set of remaining explanations without loss
of quality for any criterion considered. As the final
step, we use the ideal point method to select the best
solution (Section 3.4). The pseudocode of the proposed
approach can be found in Algorithm 1. To ease the
comprehension of the proposed approach, we present an
illustrative example in Section 3.5.

3.1. Constructing an ensemble of explainers. In
order to obtain a set of diversified counterfactuals, we
construct an ensemble of different methods chosen under
the following premises: they are based on different
paradigms and thus generate quite diverse explanations,
they have positive literature recommendations, and their
stable open source implementations are available.

In Section 4.1, we list the specific methods used
in our ensemble, although we argue that our approach
is general enough to employ different sets of base
explainers. While some methods may generate few
solutions and others produce a single counterfactual,
experiments have shown that none of the examined
methods is superior to others with respect to any of the
criteria considered (see Stepka et al., 2023). This supports
our hypothesis that a set of solutions obtained by using
different explanation methods provides a broader and
richer set of possible counterfactuals than searching for
a single best method.

3.2. Enforcement of validity and actionability con-
straints. Some of the chosen base explainers may
generate counterfactuals which do not change the
black-box prediction to the desired value, and also some
generated solutions may violate actionability constraints.
Therefore, in this step we perform an additional filtering
of counterfactuals generated by the ensemble, i.e.,

Algorithm 1. Pseudocode for the proposed approach.

b← black-box classifier
X ← training data
x← query instance s.t. x ∈ X
E ← set of base explainers

STEP 1 (Ensemble of explainers):
C ← ∅
for explainer ∈ E do
c← explainer(x,X, b) {run the base explainer}
C ← C ∪ {c}

end for

STEP 2 (Enforcement of validity and actionability):
for c in C do

if ¬is valid(c) ∨ ¬is actionable(c) then
C ← C \ {c}

end if
end for

STEP 3 (Filtering dominated solution):
D ← ∅{empty set of dominated solutions}
for c in C do

for d ∈ (C \ {c}) do
if d is better than c on one criterion and better or
equal on all criteria then
D ← D ∪ c

end if
end for

end for
ND ← C \D {set of non-dominated solutions}

STEP 4 (Selection with ideal point)
p← vector()
for each criterion i do
pi ← maxc∈ND ci

end for
s← argminc∈ND distance(c, p)

return s

we discard explanations which are not valid or non-
actionable. Actionability is examined with respect to
restricted attributes that have to be distinctly pre-defined
for any given dataset.

3.3. Filtering of dominated solutions. The
ensemble of base explainers produces a large number of
counterfactuals characterized by different and sometimes
conflicting quality criteria (see the discussion of proximity
and discriminative power in Section 1). The problem
of selecting the best solution is challenging, since the
objective comparison of two explanations that excel
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Fig. 1. Visualization of the algorithm steps in our approach.

on different criteria is impossible and largely depends
on the preferences of the user/decision-maker. Such
problems are of interest to the field of multi-criteria
decision-aid (MCDA) (Ehrgott, 2005), which deals
with sets of alternative solutions/decisions x evaluated
by many criteria gi(x). In brief, for each criterion,
the direction of the user’s preference is defined as
increasing (gain criteria) or decreasing (cost criteria).
The values of criteria for contemplated alternatives may
be contradictory, but some of them are more preferred
than others because of the preference directions. MCDA
methods can solve the trade-off between them.

This leads us to exploiting the dominance rela-
tion (Ehrgott, 2005), which is defined as follows. Let us
assume the gain direction of preferences for all criteria
g(x) and consider two alternatives: counterfactuals x′ and
y′. We say that x′ dominates y′ if for each criterion i
holds gi(x′) ≥ gi(y

′) and exists at least one i for which
gi(x

′) > gi(y
′). In other words, criteria values of x′ are

better than or equal to the corresponding values of y′. The
dominated counterfactuals can be removed from the set
of solutions as they are objectively worse than the non-
dominated alternatives.

Then, our approach constructs a Pareto front, i.e., it
builds a set of all non-dominated counterfactuals obtained
by applying the dominance relation on all explanations
in a given set. In other words, each counterfactual
explanation is examined to see whether there exists any
other counterfactual that has better or equal scores in
relation to all criteria considered. Only if such examples
do not exist is the counterfactual non-dominated and
therefore included in the Pareto front. Our experiments
show that, thanks to exploiting this relation, the size of
the candidate solution set can be significantly reduced, on
the average by approximately 80% (see the experiments
in Section 4.2).

3.4. Selection of a counterfactual with the ideal point
method. As the final set of non-dominated alternatives
on the Pareto front may still be too large for a user to be
analysed manually, it is necessary to support the choice of
the counterfactual that represents the trade-off best suited
to the user. There exist many MCDA methods that allow
this by acquiring the global model of user preferences for
these criteria by interacting with them (Ehrgott, 2005).
However, we will follow a simpler approach which is, in

our opinion, more suited for our problem and better for
carrying out our automatic experiments.

Note that the criteria that characterize different
counterfactuals are quality measures (e.g., proximity). A
typical decision situation considered in MCDA assumes
that the user/decision maker is able to compare the
alternatives based on the criteria values (i.e., in the feature
space). However, in our case the quality measures of
counterfactuals are not so intuitive for non-expert humans
to interpret and compare.

This also limits the possibility of using typical
interactive MCDA methods to elicit the decision maker’s
preferences, which require accurate assessments about
the relative importance of criteria or comparing different
variants usually in the original features.

Therefore, we propose to use the ideal point method,
which is a simple and computationally-efficient approach
recommended in the literature for the case of equally
important criteria (Branke et al., 2008; Skulimowski,
1990). We briefly explain this method below:

• Let D be a set of non-dominated counterfactuals in
the Pareto front with c criteria. The ideal solution is
artificially created in the criteria space by selecting
the best possible value for every criterion. Assuming
that all criteria gi(x) have an increasing direction of
preference (gain), the ideal point z = [z1, z2, . . . , zc]
can be formally defined as having zi = max{gi(x) :
x ∈ D} for all i = 1, . . . , c. Usually z is an abstract
point which does not belong to D.

• Then, for each counterfactual x ∈ D, its distance
measure to the ideal point z is computed.

• The closest counterfactual to z is selected as the final
best solution.

The ideal point method originates from the works
on multi-objective mathematical programming, proposed
in the previous century (Steuer, 1986).2 It has been
further extended for different scalarized distances with
criteria weights or to so-called reference points (see the
discussions by Ehrgott (2005) and Skulimowski (1990)).
Nevertheless, in our paper we want to show that even the

2It can be easily extended to use other ways of calculating distances
with the hyper-plane connecting the ideal point with the anti-ideal/nadir
point (Ehrgott and Tenfelde-Podehl, 2003) (which we will consider in
Section 4.4).
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Table 2. Characteristics of datasets. From left: size—the total number of instances, test size—the size of the holdout test set, contin-
uous/categorical—the number of continuous/categorical features, immutable—the names of features which were designated
as non-actionable.

Dataset Size Test size Continuous Categorical Immutable
Adult 32561 250 5 6 race, sex, native-country
German 1000 100 7 13 foreign-worker
Compas 7214 250 7 3 age, sex, race, charge-degree
Fico 10459 250 23 0 external-risk-estimate

simplest version is sufficient to demonstrate the usefulness
of the MCDA approach in the proposal of the ensemble of
explainers.

3.5. Approach walkthrough with a toy example.
In order to help understand the proposed method, we
will go step by step through the computations for the
following instance taken from the Adult3 dataset: x =
{age: 24, education.num: 10, capital.gain: 0, capital.loss:
0, hours.per.week: 30, workclass: Self-emp-not-inc, mar-
ital.status: Never-married, occupation: Prof-specialty,
race: Asian-Pac-Islander, sex: Male, native.country:
United-States, income >50K }.

First, we run all the explainers from the ensemble to
construct counterfactuals. Assuming the set of methods
used in our experiments (see the experimental setup in
Section 4.1), 82 counterfactuals are returned. We provide
the full list of returned counterfactuals and further details
in the online appendix.4

We then feed these counterfactuals into the next step
of our approach, which focuses on enforcing validity
and actionability. The validity filter eliminates the
counterfactuals that do not change the predicted class
from > 50K to ≤ 50K , reducing the candidate set
by 5. Subsequently, actionability enforcement excludes
all the alternatives that alter the values of non-mutable
features, in this case: race, sex, and native.country. This
actionability test removes 18 additional counterfactuals,
reducing the total number of candidates to 59. Nine of the
removed counterfactuals suggested changing the person’s
native country from the United States to other countries
such as France, the Philippines, or China. All but one of
the non-actionable counterfactuals suggested changing the
person’s race, and eight of them suggested changing both
race and country of birth. This demonstrates the need for
actionability and validity testing.

In the next step, the multi-criteria analysis of the
remaining 59 counterfactuals is already in progress.
Initially, we apply the dominance relation to reduce the
candidate set to the Pareto front, which consists of 13
alternatives, discarding 46 dominated alternatives. This

3See Section 4.1 for dataset details.
4https://www.cs.put.poznan.pl/mlango/publicati

ons/amcs24.pdf.

means that we remove all counterfactuals with criteria
values objectively worse in regard to all criteria than a
set of other counterfactuals. We visualize this process
in Fig. 2, where dominated alternatives are denoted with
squares, and alternatives forming the Pareto front are
marked with dots.

Subsequently, we calculate the coordinates of the
ideal point (marked with an ‘x’ in the figure) from
the Pareto front. The coordinates of the ideal point
correspond to the best criteria values obtained by any of
the alternatives considered. In this case, these values are
0.04 for proximity, 0.11 for feasibility, and 1 for discrimi-
native power.

The final step involves calculating the distance
between the alternatives from the Pareto front and the
ideal point, and selecting the closest one (indicated by the
dotted red line) as the final counterfactual. The distance
is calculated using the Euclidean metric, preceded by
feature min-max normalization. In the analysed example,
the selected counterfactual is c = {age: 24.0, educa-
tion.num: 10.0, capital.gain: 17327.0, capital.loss: 0.0,
hours.per.week: 30.0, workclass: Self-emp-not-inc, mar-
ital.status: Never-married, occupation: Prof-specialty,
race: Asian-Pac-Islander, sex: Male, native.country:
United-States}, and it has scores of 0.173 for proximity,
0.962 for feasibility, and 0.11 for discriminative power.

4. Experimental evaluation

The aims of the experiments are to assess the utility of
the proposed approach and to compare the quality of
counterfactuals obtained by different methods.

Firstly, we analyse the Pareto front and utility
of different steps in our approach. To investigate if
constructing an ensemble is justified, we examine the
impact that each step has on the size of a set of candidate
counterfactual explanations, as well as the contribution
of each of the methods incorporated into the ensemble
(Section 4.2).

Then, we analyse the results obtained by different
explanation methods and our ensemble, by comparing
them on different quality metrics (Section 4.3).

We also study the impact of individual components
of our approach on the final result (Section 4.4).

https://www.cs.put.poznan.pl/mlango/publications/amcs24.pdf
https://www.cs.put.poznan.pl/mlango/publications/amcs24.pdf
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Fig. 2. Example demonstrating the application of dominance re-
lations and the ideal point method. Note that the opti-
mization directions for proximity and feasibility are min,
and for discriminative power—max.

Finally, using a utility function model of
user preferences, we verify whether the returned
counterfactuals represent useful trade-offs between
quality criteria considered (Section 4.5).

In order to ensure reproducibility and allow future
benchmarking, we publicly release the code used for the
experiments.5

4.1. Experimental setup. Experiments were
conducted on four widely adopted datasets in the
related literature, namely: Adult, German, Compas
and Fico, the characteristics of which can be found
in Table 2. For every dataset, we defined a set of
immutable attributes which were later used to evaluate the
actionability of provided explanations. The information
about immutability of certain attributes was passed as an
additional input to all methods capable of handling it.
Note that these subsets could be different depending on
the perspective of a particular stakeholder.

As a black-box classification method, we employed
an artificial neural network consisting of two hidden
layers with 16-128 neurons in each layer. The number
of neurons was optimized for each dataset separately to
maximize the accuracy on the validation set. We used
the ReLU activation and a dropout between layers. More
details of its topology and hyperparameters are provided
in the electronic appendix.

To compute the measures described in Section 2.3, it
is necessary to select a distance function. We chose the

5https://github.com/istepka/MCSECE.

HEOM distance (Wilson and Martinez, 1997) due to its
ability to handle both nominal and continuous variables
than other measures.

The evaluated ensemble uses the collection of
nine popular and diversified counterfactual generation
algorithms as base explainers, namely, Wachter (Wachter
et al., 2017), CEM (Dhurandhar et al., 2018),
Dice (Mothilal et al., 2020), Fimap (Chapman-Rounds
et al., 2021), Cadex (Moore et al., 2019), FACE (Poyiadzi
et al., 2020), CFProto (Van Looveren and Klaise, 2021),
ActionableRecourse (Ustun et al., 2019) and
GrowingSpheres (Laugel et al., 2018). In addition
to diversity, we were also guided by their popularity
in related works and the availability of their
implementations. We employed the following open
source libraries: CARLA (Pawelczyk et al., 2021),
ALIBI (Klaise et al., 2021), CFEC (Falbogowski
et al., 2022). The methods were mostly used with
default parameters in their implementations; however, to
construct a more extensive set of possible explanations,
we exploited the possibilities of generating multiple
counterfactuals from these methods.

To obtain several counterfactuals from some of the
methods, we apply different strategies; because only Dice
natively supports generating a set of explanations (in our
case k = 20).

The first adopted strategy involves random sampling
of counterfactuals discovered during the optimization
process, but not selected as the final solution by the
method. Therefore, it not only gathers the explanation
that the method ultimately selects, but also incorporates
randomly sampled counterfactuals discovered during
optimization that may perform better on some criteria that
the method does not directly optimize. We apply this
strategy to CFProto (k = 10) and Wachter (k = 10).

The second strategy is to restart the method with
a different set of hyperparameters to slightly change the
optimization process and obtain different explanation. We
use this strategy for GrowingSpheres (k = 20 restarts
with a different random seeds), FACE (k = 10 restarts
with different random seeds), Cadex (k = 15 different
numbers of features to change ranging from 1 to 14), and
Fimap (k = 7 different combinations of parameters for
the objective function6).

While selecting the final counterfactual with our
approach, we analysed three criteria: proximity, feasi-
bility and discriminative power. Recall that in MCDA
criteria must form a coherent family of diverse views on
the problem. Indeed, these three criteria were relatively
poorly correlated in our preliminary experiments (Stepka
et al., 2023). As a distance function for the ideal point

6The following combinations of (Gumbel-softmax temperature τ , L1
regularization, L2 regularization) were applied: (0.1, 0.001, 0.01),(0.1,
0.05, 0.5),(0.2, 0.01, 0.1),(0.2, 0.08, 0.8),(0.5, 0.001, 0.01),(0.5, 0.01,
0.5).

https://github.com/istepka/MCSECE
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Table 3. Comparison of the explainers used in the ensemble according to their average number of generated counterfactuals per instance
per dataset. The columns, listed from left to right, indicate the number of counterfactuals left after applying consecutive steps
from our approach: all (no filters applied), val (after applying the validity requirement), act (after applying both the validity
and actionability requirements), front (after exploiting the dominance relation), and ideal (after using the ideal point method
for selection). The best results are bolded, the second best are underlined, and the third best are in italics.
Dataset Adult German

all val act front ideal all val act front ideal
Dice 20.00 20.00 20.00 0.52 0.16 20.00 20.00 20.00 0.94 0.33
FACE 10.00 9.68 8.16 3.48 0.69 10.00 9.94 0.37 4.30 0.01
Cadex 6.62 6.47 6.47 1.18 0.34 13.99 11.50 11.50 2.64 0.28
Fimap 6.00 4.70 4.70 0.37 0.07 6.00 5.02 3.04 0.57 0.09
Wachter 9.60 5.03 5.03 1.54 0.02 10.00 7.15 7.15 1.40 0.14
CEM 1.00 0.66 0.66 0.26 0.00 1.00 1.00 1.00 0.09 0.43
CFProto 7.63 7.57 0.78 0.06 0.01 5.63 3.98 2.25 1.48 0.08
GrowingSpheres 20.00 15.54 15.54 0.14 0.01 20.00 10.54 10.54 1.00 0.02
ActionableRecourse 0.40 0.10 0.10 0.20 0.01 0.00 0.00 0.00 0.00 0.00

Dataset Compas Fico
all val act front ideal all val act front ideal

Dice 20.00 20.00 20.00 1.83 0.35 20.00 20.00 20.00 2.77 0.33
FACE 10.00 9.93 0.45 0.42 0.14 10.00 9.94 0.37 0.37 0.01
Cadex 6.00 4.78 4.74 1.08 0.19 13.99 11.50 11.50 3.72 0.28
Fimap 6.00 5.58 3.30 1.26 0.33 6.00 5.02 3.04 1.13 0.09
Wachter 10.00 6.07 6.07 1.03 0.03 10.00 7.15 7.15 1.65 0.14
CEM 1.00 1.00 1.00 0.33 0.07 1.00 1.00 1.00 0.30 0.04
CFProto 5.75 3.65 0.73 0.13 0.00 5.63 3.98 2.25 0.95 0.08
GrowingSpheres 20.00 8.80 8.80 1.73 0.06 20.00 10.54 10.54 0.71 0.02
ActionableRecourse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

method, we considered the Manhattan distance (L1),
Euclidean distance (L2) and Chebyshev distance (L∞)
(following, e.g., Branke et al., 2008; Skulimowski, 1990).

4.2. Analysis of the Pareto front of counterfactuals
generated by the base explainers in the ensemble. In
the first experiment, we take a closer look at the degree
of the base explainers’ contribution to the Pareto front.
For each dataset and base explainer method, we computed
the average number of counterfactuals generated for
an instance (all), the number of valid counterfactuals,
i.e., those that change the model’s prediction (val),
the number of actionable and valid counterfactuals
(act), the number of non-dominated, valid, actionable
counterfactuals on the Pareto front (front), and finally the
percentage of cases for which the counterfactual generated
by a given method was selected as the final answer (ideal).
The results are reported in Table 3 and some additional
data visualizations are provided in the online appendix.

Results show that there is no single method that
is superior to the others considered in the experiments.
Some of the methods clearly contribute much more
frequently to the Pareto front, but there is no method

whose contribution is negligible on all examined datasets.
Contribution to the Pareto front can be treated as a
good indicator of the performance of the method across
different measures, as it shows that counterfactuals
generated from some methods dominate others on all
quality measures. Building on that we justify the utility of
incorporating all these methods into the ensemble, as all of
them produce best explanations, although with differing
frequencies.

Further analysis indicates that all steps of our
approach eliminate many counterfactuals. First, enforcing
validity constraints reduces the number of candidates
considered by 17%. Second, examining actionability
eliminates 16% of examples from the previous step.
Third, the use of the dominance relation reduces the
remaining set by another 83%. Finally, the ideal point
method selects one compromise counterfactual from the
remaining set of explanations.

Employing consecutive steps of or approach, with an
exclusion of the last one, it shrinks the original set of
explanations, without the loss of quality, on the average
by 88%.
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Table 4. Results obtained for the German dataset. The best results are marked in bold, the second best are underlined, and the third
best are in italics.
Method prox ↓ feas ↓ dpow ↑ spars ↓ instab ↓ cover ↑ act ↑ rank ↓
Dice 1.69 3.92 0.44 1.93 4.15 1.00 1.00 3.14
FACE 5.05 1.91 0.60 8.12 3.82 1.00 0.98 3.14
Cadex 1.38 3.74 0.41 2.64 3.87 0.97 0.97 5.43
Fimap 6.85 3.01 0.60 9.91 3.71 0.97 0.97 4.57
Wachter 11.67 7.29 0.64 14.65 5.91 0.37 0.37 5.14
CEM 0.62 4.18 0.31 2.15 3.99 0.13 0.13 7.00
CFProto 3.56 4.40 0.48 4.79 4.53 0.99 0.91 5.29
GrowingSpheres 7.65 5.79 0.60 10.73 5.42 1.00 1.00 2.71
ActionableRecourse 1.01 3.55 0.44 1.39 3.60 0.23 0.23 6.29
Random selection 4.39 3.95 0.50 6.28 4.61 1.00 0.98 6.86
Our approach (Manhattan) 3.83 2.15 0.85 6.06 3.50 1.00 1.00 1.86
Our approach (Euclidean) 3.21 2.46 0.80 4.99 3.68 1.00 1.00 2.00
Our approach (Chebyshev) 2.90 2.70 0.74 4.38 3.71 1.00 1.00 2.14

Table 5. Tesults obtained for the Adult dataset.
Method prox ↓ feas ↓ dpow ↑ spars ↓ instab ↓ cover ↑ act ↑ rank ↓
Dice 1.03 0.77 0.37 1.65 1.13 1.00 1.00 3.00
FACE 0.98 0.90 0.36 1.92 1.10 0.10 0.10 3.43
Cadex 0.20 0.30 0.17 2.27 0.65 0.99 0.99 4.86
Fimap 2.12 0.35 0.59 5.75 1.17 0.99 0.99 4.00
Wachter 4.36 1.23 0.84 7.76 3.07 0.52 0.20 5.29
CEM 0.13 0.32 0.17 1.16 0.67 0.66 0.66 6.14
CFProto 1.45 1.13 0.25 7.00 2.97 0.98 0.06 6.14
GrowingSpheres 2.87 1.39 0.47 6.17 1.70 0.99 0.99 4.14
ActionableRecourse 1.14 0.10 0.70 3.72 0.56 1.00 0.84 6.57
Random selection 1.55 0.81 0.38 3.56 1.17 1.00 0.88 3.86
Our approach (Manhattan) 1.02 0.17 0.94 3.34 0.63 1.00 1.00 1.86
Our approach (Euclidean) 0.99 0.21 0.93 3.22 0.63 1.00 1.00 2.00
Our approach (Chebyshev) 0.96 0.26 0.89 2.97 0.66 1.00 1.00 2.14

4.3. Evaluating counterfactuals with different qual-
ity measures. In the second experiment, we compare
the performance of the proposed approach with other
methods for generating counterfactuals. The quality of the
generated counterfactual explanations is evaluated using
a wide spectrum of measures employed in the related
works: proximity (prox), feasibility (feas), discrimina-
tive power (dpow), sparsity (spars), instability (instab),
and actionability (act), all of which are discussed in
Section 2.3. Additionally, to further assess the reliability
of the methods in finding counterfactuals, we report
the coverage (cov) metric, which represents the ratio of
instances for which a counterfactual is found. The results
of the experiments for the German, Adult, Compas, Fico
datasets can be found in Tables 4, 5, 6 and 7, respectively.

Among the methods under consideration, the
proposed approach was the only one that was always
able to generate an actionable counterfactual for all
instances of tested datasets. Looking at the remaining five
quality aspects (other than actionability and coverage),

the proposed approach rarely obtains the highest score,
however, for the vast majority of cases it arrives at one of
the top three results. This was expected since our method
looks for a trade-off between multiple quality measures;
therefore it is not surprising that in the individual ranking
for each measure it may not obtain superior results.

We also ranked the data for each quality measure
and computed the average rank for each method (the
lower the better), and the results can be observed in the
last column of Tables 4–7. Taking all the metrics into
account, the proposed approach always achieves the best
(lowest) rank for all datasets under study. The lowest
rank for Adult, German and Compas datasets is achieved
by the variant of our approach employing the Manhattan
distance. Only for the Fico dataset is the order of three
best methods different. Nevertheless, for all datasets
included in the experiments, variants of our approach
take consistently the best three ranks, meaning that they
offer the best compromise between all the seven quality
measures considered.
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Table 6. Results obtained for the Compas dataset.
Method prox ↓ feas ↓ dpow ↑ spars ↓ instab ↓ cover ↑ act ↑ rank ↓
Dice 0.93 0.80 0.34 1.71 1.33 1.00 1.00 3.00
FACE 0.53 0.04 0.69 3.55 0.15 1.00 0.07 4.14
Cadex 0.29 0.23 0.15 2.72 0.36 0.98 0.97 5.43
Fimap 0.52 0.11 0.69 3.53 0.17 0.99 0.58 5.00
Wachter 0.69 0.12 0.73 2.92 0.36 0.67 0.67 5.00
CEM 0.33 0.32 0.29 1.57 0.38 1.00 1.00 3.14
CFProto 0.91 0.21 0.28 3.17 0.41 0.54 0.13 6.29
GrowingSpheres 0.29 0.19 0.18 3.09 0.32 0.80 0.80 5.57
ActionableRecourse 0.07 0.32 0.89 1.00 0.66 0.00 0.00 5.29
Random selection 0.63 0.37 0.40 2.74 0.61 1.00 0.70 3.86
Our approach (Manhattan) 0.54 0.12 0.87 2.40 0.28 1.00 1.00 2.00
Our approach (Euclidean) 0.55 0.14 0.86 2.45 0.28 1.00 1.00 2.14
Our approach (Chebyshev) 0.55 0.17 0.84 2.44 0.30 1.00 1.00 2.29

Table 7. Results obtained for the Fico dataset. Note that the ActionableRecourse method is missing, as it failed to provide any valid
counterfactual.
Method prox ↓ feas ↓ dpow ↑ spars ↓ instab ↓ cover ↑ act ↑ rank ↓
Dice 1.11 2.15 0.38 1.88 2.53 1.00 1.00 3.00
FACE 2.34 0.82 0.70 17.88 1.78 1.00 0.03 3.57
Cadex 0.92 1.72 0.38 7.66 2.04 1.00 1.00 3.14
Fimap 1.55 1.78 0.62 16.01 1.87 0.98 0.62 4.71
Wachter 6.66 3.50 0.81 18.39 6.45 0.49 0.49 4.71
CEM 1.12 2.08 0.50 5.80 2.47 1.00 1.00 2.71
CFProto 0.82 1.53 0.35 10.82 1.76 0.58 0.39 6.29
GrowingSpheres 1.44 1.90 0.35 16.48 2.39 0.97 0.97 5.29
Random selection 1.30 1.84 0.40 9.67 2.21 1.00 0.84 3.86
Our approach (Manhattan) 0.87 1.51 0.60 7.33 1.89 1.00 1.00 2.57
Our approach (Euclidean) 0.90 1.59 0.63 7.48 1.93 1.00 1.00 2.14
Our approach (Chebyshev) 0.99 1.66 0.63 7.11 2.03 1.00 1.00 2.14

As a form of ensemble baseline, we also report
the results of the ensemble that includes all the base
explainers of the proposed method but chooses the final
counterfactual at random (random selection) without
employing our algorithm. This ensemble was never better
than any of the three tested variants of our approach for
any dataset and any quality measure, demonstrating that
the performance of our ensemble is a result of choosing
an appropriate final counterfactual with the multi-criteria
analysis (i.e., applying the dominance relation and ideal
point method selection) rather than just using an ensemble
of different methods.

Regarding the comparison of various variants of
our method employing different distance measures, the
discrepancies between the obtained scores are usually
very small (except for sparsity in regard to the German
dataset, where the difference between the extreme scores
is 1.68). The variant employing the Manhattan distance
obtains a slightly lower average rank for most datasets,
hence we choose this variant to represent our method in
the next experiment.

4.4. Analyzing the impact of the elements in
our approach. In this section, we provide a concise
analysis of how the components of our approach influence
the selection of the final counterfactuals and their
corresponding evaluation measures. The experimental
data used for this analysis is available in the online
appendix.

The first element in our approach emphasizes
validation and actionability enforcement. Our
experiments demonstrate the critical role this
element plays in achieving fully actionable and valid
counterfactuals. Without it, the scores for the validity and
actionability criteria range from 24% to 54% and 78% to
98%, respectively (varies by dataset). Such performance
falls short of suitability for most real-world scenarios,
proving the usefulness of this operation.

The second element in our approach involves
applying the dominance relation to filter out dominated
alternatives. Omitting this component does not lead to
a decrease in the values of various quality measures.
This is because, in our approach, the ideal point
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selects the counterfactual closest to the (0,0,0) point in
the proximity-feasibility − (1 − discriminative power)7

min-max normalized criteria space, which is attained
through min-max normalization performed on the dataset.
Consequently, the dominance relation do not enhance the
performance of the ideal point method. Nevertheless,
removing dominated, i.e., worse, solutions is necessary
for considering other multi-criteria methods. Moreover,
as we have already shown in experiments (see Table 3),
this step significantly reduced the number of solutions.

The final component of our approach involves
selecting the counterfactual by means of the ideal point
method. On the average, this method yields significantly
better-scoring counterfactuals compared with random
selection from the Pareto front. An interesting comparison
lies in contrasting the ideal point method with the
simple unweighted sum (s = proximity + feasibility +
(1 − discriminative power)) of the criteria scores. Our
experiments (see the online appendix) reveal that the
variant employing the Manhattan distance achieves the
best average scores across the examined datasets. This
variant is equivalent to the unweighted sum (s =
cManhattan), as, in the previously mentioned min-max
normalized criteria space, the ideal point coordinates are
p = (0, 0, 0). Therefore, the distance to the ideal point
cManhattan = |p0 − proximity + p1 − feasibility + p2 −
(1−discriminative power)| is just the sum of scores on all
criteria, equivalent to the unweighted sum: s = cManhattan.
It is worth noting that other variants of our approach
using the Euclidean or the Chebyshev distance are not
equivalent and select different alternatives.

While this paper primarily utilizes the simplest
multi-criteria selection method, we also conducted
preliminary experiments (included in the online
appendix) with a slightly more advanced selection
method based on the distance to the nadir-ideal plane
(Ehrgott and Tenfelde-Podehl, 2003), showing slightly
superior results compared with unweighted sum selection.
This underscores the value of employing multi-criteria
selection methods. Even this simple distance methods are
also useful for possible further extensions of the methods
towards an interactive dialogue with the decision-maker.

4.5. Using user preference models to evaluate
selected trade-offs between different quality mea-
sures. The main aim of our work is to generate a
counterfactual for a given instance, which represents a
suitable trade-off between various aspects of explanation
quality. Let us recall that in our approach we do
not use criterion weights due to the difficulty of being
estimated by humans. However, for the purpose
of examining possible trade-off criteria in potential

7For simplicity, we invert the discriminative power criterion to have
the min optimization direction.

models of decision-makers’ preferences, we decided
to experimentally simulate a simple utility function
model, where we analyzed the impact of all possible
weight configurations. Since an objective comparison of
different non-dominated trade-offs is impossible without
additional information about user preferences towards
optimizing particular quality precisely, we employ
a simple mathematical model of user preference to
verify the utility of counterfactuals under all possible
configuration of preferences. Specifically, we model the
utility of an explanation as a weighted sum of three
selected quality criteria:

U(x′) = wp · proximity(x′)
+ wd · discriminative power(x′)
+ wf · feasibility(x′),

(1)

where wp, wd, wf ≥ 0, wp + wd + wf = 1 are
parameters which control the importance of individual
quality measures for a potential user. It is assumed that
the user should select the solution which maximizes the
utility function.

Since the space of all possible utility functions has
only three parameters (wp, wd, wf ) which sum up to 1,
it can be easily visualized on a 2-dimensional plot (see
Fig. 3) with the Barycentric coordinate system. The
barycentric plot takes the form of an equilateral triangle
with each vertex associated with one weight of the utility
function. Each point inside the triangle represents one
possible user utility function, i.e., one possible setup of
wp, wd, wf weights. For instance, a point at the vertex
corresponding to proximity (wp) represents the utility
function with wp = 1 and wd = wf = 0. A point in the
middle of the edge connecting the vertices corresponding
to proximity (wp) and feasibility (wf ) represents the utility
function with wp = wf = 0.5 and wd = 0. Finally,
the central point in the middle of the triangle corresponds
to a user having equal preferences for all quality criteria
(wp = wd = wf = 1/3).

We computed the utilities of the counterfactuals
returned by all the methods under study using utility
functions for all8 possible combinations of weight values.
Later, we verified which counterfactual method would be
selected as the preferred one by a potential user with such
preferences. The results of this experiment are visualized
in Fig. 3.

For the Adult dataset, despite being uninformed
about user preferences and always selecting the same
counterfactual with the ideal point method, our proposed
approach would be selected as the best one according to
approximately 85% of all possible utility functions. It is
only when the user has a strong preference towards one
criterion that the proposed approach loses to CADEX on

8More precisely, we evaluated a grid of 136 weight combinations,
approaching weight values from 0 to 1 with a step of 1/16.
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Fig. 3. Barycentric plots depicting the best method for a given dataset according to the utility functions with different weights assigned
to quality criteria. The datasets are: German (upper-left), Adult (upper-right), Compas (lower-left), Fico (lower-right).

proximity and to FACE on feasibility. For the user solely
interested in discriminative power the counterfactuals
produced by Fimap would be the most appropriate.
Similar observations can be made for the German and
Compas datasets, where the results of our method
constitute the best trade-off for all users who are not too
strongly biased towards one particular criterion.

It is only for the Fico dataset that the counterfactuals
produced by FACE seem to represent a good trade-off
between feasibility and discriminative power for many
cases. However, it is important to note that for this dataset
FACE generates actionable explanations only for 3% of
examples (see Table 7). Therefore, this result does not
demonstrate inefficiency of our selection procedure since
we automatically discard all non-actionable explanations
beforehand. Nevertheless, our proposed method achieves
good trade-offs for users who are more inclined towards
obtaining explanations similar to the instance being
explained (proximity) but who are also interested in
reasonable feasibility and discriminative power. In other
words, unless the decision-maker is interested solely in

counterfactual explanations that score high only on one
criterion, our proposed method provides more preferred
counterfactuals.

5. Conclusions and future work
The main message of our work is to promote the
use of the multi-criteria decision analysis (MCDA) to
select contractual explanations for predictions made by
black-box machine learning models.

The proposed approach has at least two original
contributions to current research. Firstly, we propose to
construct an ensemble of various explanatory methods
that are effective in generating a fairly large (in our
experiments about 80–90) set of diverse solutions.
Secondly, we employ further multi-criteria analysis to
first reduce the number of counterfactuals considered to
only non-dominated explanations, and then, to support the
selection of a solution that offers a compromise between
the values of the evaluation measures considered.

In the present work, we have consciously and
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deliberately chose relatively simple and well-known
MCDA proposals: (i) the use of the dominance relation,
which is the only approach that is fully objective to filter
out the worse evaluated solutions; (ii) the ideal point
method, which is also a no preference approach (i.e., it
does not require any acquisition of user preferences on the
relative importance of criteria—weights or comparisons
of alternatives). It is also computationally simple to run
automated experiments.

Additional experiments (Section 4.4) also showed
that all steps of our approach are essential. Moreover,
even a relatively simple multi-criteria ideal point method
leads to good choices of counterfactuals and can be easily
further extended, e.g., to the ideal-nadir version.

Despite the simplicity of these multi-criteria
methods, we believe that the presented experiments
demonstrated the utility of our approach. Indeed, the
selected counterfactuals are competitive with the solutions
offered by the best of the single methods used, which
often optimize only one criterion. Furthermore, our
additional experiments simulating the utility model of a
potential decision maker show that when they do not have
a strong preference for a single criterion, the proposed
multi-criteria approach is highly beneficial and provides
a good trade-off between criteria.

Furthermore, our comparative study reveals that no
method is superior to others in all criteria. Therefore,
we conclude that more attention should be given to
comparing different counterfactual generation methods
using multi-criteria analysis to highlight the various
trade-offs made by these methods.

We also argue that looking at explanations from
different perspectives should be studied more extensively,
and we believe that multi-criteria analysis is the
natural choice for this type of investigation. As
a next step, we suggest that research should focus
on whether the proposed framework aligns with the
human perspective, and whether humans make trade-offs
between criteria when selecting the best explanations or
whether they prefer only one of them. Moreover, it
is worth considering adaptations of interactive, dialogue
multi-criteria selection methods, which will be the subject
of further research.
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