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In this paper, we present a novel approach to calibrating robotic manipulators—calibration by diffeomorphisms. The
method is carried out in detail, placing special emphasis on the mathematical basis of the algorithm. The main idea is
based on the synergy of the theory of singular mappings and the large dense diffeomorphic metric mapping framework, a
method previously unused in robotic applications, together with reproducing kernel Hilbert spaces. The proposed solution
allows the determination of appropriate diffeomorphisms, which, as it were, adjust the arbitrarily chosen kinematics to
match a real one, thus taking into account inaccuracies arising from inaccurately determined parameters or a previously
unmodelled phenomenon, for example, due to high complexity or nonlinearities. The effectiveness of the calibration by
diffeomorphisms is illustrated using a numerical experiment for a manipulator with two degrees of freedom.
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1. Introduction

One of the most significant features of robot manipulators
is their ability to perform repeatable tasks with
exceptional precision and accuracy. This capability
heavily relies on the mathematical model of the
robot’s kinematics, a critical component of the software
controller. Ensuring the correctness of this model is
paramount for optimal robot performance. Typically,
these models are developed during the robot’s design
stage using methods such as the Denavit-Hartenberg or
product of exponentials algorithms. These methods create
a mapping from the Cartesian product of joint space and
parameter space to the task space, relying on assumptions
of ideally rigid joints and links, perfectly aligned joint
axes, as well as fixed dimensions and relative positions
of the links, collectively defining the robot’s geometry.

However, these assumptions may not hold in the
final manufactured product, leading to deviations from the
desired accuracy. In such cases, the mathematical model
must be adjusted to maintain the required precision and
accuracy.

In robotics literature, this adjustment process is
known as the robot kinematics calibration problem. It
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can be described as follows: based on measurements of
the positions of the robot joints and the corresponding
end-effector poses, the nominal kinematics model is
reformulated to minimize discrepancies between the
predicted and actual end-effector poses according to
predefined criteria.

Methodologically and algorithmically, this problem
is often approached through parametric system
identification. The aim is to find a set of parameter
values for the nominal kinematics that better describe
the observed data. Common techniques used for this
purpose include the least squares or Gauss—Newton
methods. These approaches allow for the refinement of
the kinematics model to more accurately reflect the actual
behaviour of the robot, thereby improving the level of
precision and accuracy.

The primary drawback of this approach is that the
solution is searched within a parametrized family of
kinematics model that imposes constraints on the possible
geometries. In other words, the problem can be accurately
solved only if the actual kinematics fall within the scope of
the considered family of kinematics, as defined by certain
parameters. Unfortunately, this is not always the case. For
instance, links or joints might be made from materials that
are not perfectly rigid (e.g., 3D-printed components or
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plastic links), or there could be joint transmission errors.

When considering the general problem of calibration
(not strictly limited to manipulator kinematics), there may
be unknown phenomena, potentially nonlinear, that affect
the nominal model. Such errors are difficult to model or
incorporate into nominal kinematics due to their complex
and nonlinear behaviour. As a result, it is logical to
explore a non-parametric approach.

To the best of the authors’ knowledge, apart
from the use of neural networks (Zhao et al., 2019;
Nguyen et al., 2015; Gadringer et al., 2020; Zhong
et al., 1996), non-parametric approaches have received
limited attention within the robotics community. This
represents a significant research gap that we aim to
investigate. Motivating examples for developing general
non-parametric methods include, e.g., accurate modelling
of automatic telescopes (Pal et al., 2015), drilling
machines (Scraggs et al., 2021) or mesh bed levelling
procedures in the 3D printers.

For completeness, we shall mention that calibrating
the kinematic or dynamic model of a robot is not the only
approach to addressing uncertainties in these systems.
While calibration aims to refine the model parameters
to improve accuracy, an alternative strategy is to design
control algorithms that are inherently robust to model
uncertainties. Such control methods adapt to variations
in the system without requiring precise knowledge of the
exact kinematic and dynamic parameters. An example
of this approach has been presented by Bonilla et al.
(2018), with the proposed control scheme successfully
handling model uncertainties without the need for explicit
calibration.

The entry point of our research is the calibration
by diffeomorphisms introduced by Tchon (1992). To
gently introduce the idea behind let us consider the
following example. Usually, the kinematics model is
mathematically expressed as a smooth mapping k: X —
Y, living in the space of smooth mappings, i.e., k& €
C>(X,Y), that takes configurations € X as arguments
and the end-effector pose y € Y (position, orientation or
both) as values. With compact X and Y being smooth
manifolds. Having a nominal model of kinematics,
the workspace is defined as a subspace of the task
space, consisting of all the end-effector’s reachable poses.
Using a double pendulum as a toy example of nominal
kinematics, the workspace is depicted as an annulus
(Fig. ). Introducing discrepancies to the model affects
this annulus; for instance, increasing the length of the
links makes the annulus larger. When the discrepancies
are nonlinear, the annulus will be affected non—linearly.
For example, bending under gravitational force stretches
the annulus vertically. Usually, the discrepancies
appearing in the robotic systems are small and does not
‘disrupt’ the workspace. Despite these deformations,
the workspace remains topologically ’similar’ to the

Fig. 1. Double pendulum’s workspace under different discrep-
ancies that persist the kinematics diffeomorphically
equivalent to each other (top to bottom): no discrep-
ancies, discrepancies in length parameters, gravitational
bending, large non-linear diffeomorphism. The '+ and
"/ signs denotes the origin of the taskspace’s coordinate
frame and position of the end-effector (corresponding to
the same configuration for each panel), respectively. The
discrepancies are “big” for the visualisational purposes.
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annulus. The mentioned observation drove Tchofi’s to
the conclusion that the actual kinematics may be viewed
as nominal kinematics deformed by stretching, squeezing
or translation. Mathematically speaking, both the actual
kinematics and the nominal one are diffeomorphically
equivalent to each other, i.e., it means that there
exist smooth transformations with smooth inverse that
transform the nominal kinematics to the actual one and
backwards.

To integrate this observation into the calibration
problem, used the theory of stable mapping singularities
to define the problem mathematically. In this framework,
calibration involves finding a pair of diffeomorphisms
such that, when composed with the nominal kinematics,
they yield the actual kinematics. Tchon (1992) presents
an analytical method for computing these transformations
under the assumptions of structural stability and affine
diffeomorphisms. However, the mathematical complexity
of this approach makes it impractical for real-world
applications.

In contrast, our approach relaxes these assumptions
and embed the problem within a computational
framework. We define calibration through the concept
of A-equivalence between mappings ¥/ € C®(X,Y)
and £k € C>®(X,Y). Specifically, k¥’ is A-equivalent
to k if there exist diffeomorphisms ¢ € Diff (X) and
¢ € Diff (V) such that & = ¢ o ko ¢~ 1, Diff (X) and
Diff (Y') being a group of diffeomorphisms of X and
Y, respectively. Assuming k and k' are A-equivalent,
we aim to design a ¢-parametrized curve ky such that
kg = g oko 9051, with endpoints ky—9 = k and
ky—1 =K.

Importantly, the diffeomorphism ¢/, composed with
k from the left, addresses the discrepancies that cannot
be calibrated through the diffeomorphism ¢ alone due to
the singularities of k or the physical constraints of the
robot. This differs from the simpler case (non-singular
kinematics), where only one diffeomorphism is sufficient.

Framing the calibration problem this way allows
us to adjust nominal kinematics to match the actual
kinematics without explicitly modelling individual
phenomena. Instead, discrepancies are inferred from the
differences between the nominal and actual kinematics.
This contrasts with traditional approaches, which rely on
explicit models of discrepancies and require parameter
estimation. In particular, the presented method is more
flexible and offers a solution to calibration problem for
cases when modelling of the discrepancies is hard.

The primary contribution of this paper is the
introduction of a numerical method for calibration using
diffeomorphisms. ~ Secondly, the paper meticulously
introduces the mathematical fundamentals underlying the
new methodology for calibration by diffeomorphisms.
To demonstrate the effectiveness of this approach, we
evaluate the method on the kinematics of a simple two

degree-of-freedom (DoF) double pendulum. The use of
a two DoF robot kinematics model is intentional, as it
avoids obscuring the properties of the algorithm with the
complexity of a more intricate kinematics model.

The composition of the paper is as follows.
Section [2] introduces the results of the formulation of
large dense diffeomorphic metric mapping (LDDMM)
framework (Beg et al., 2005). The formulation of
the calibration by diffeomorphisms in this framework is
described in Section Bl Sections [] and [3] evaluate the
mathematical findings by simulation experiments, discuss
the results and formulate future works. Finally, the
summary in Section[6] concludes the paper.

2. Image registration

To make the idea of calibration by diffeomorphisms more
practical and applicable we decided to embed it in the
framework developed in computational anatomy, namely
the large diffeomorphic metric mapping. The mentioned
methodology relies on the concept of deforming the image
such that it will resemble another one—topologically
and differentially equivalent. This formulation was
developed to solve two problems: an image registration
problem and to construct a mathematical framework for
comparison of the imagery and statistical purposes. In
our study, we constrain ourselves to the scope of the
registration problem, that in fact, is quite similar to
the problem of calibration or identification in the field
of control engineering and robotics. In this setup, the
diffeomorphisms are computed as a flow of the vector
field (the solution of an ordinary differential equation
(ODE) corresponding to the vector field). In particular,
it perfectly suits the calibration of diffeomorphisms.
Mathematically, the problem may be formulated as
follows.

2.1. Mathematical formulation. In the framework
introduced by Bruveris and Holm (2015), the
transformations are modelled as the elements of a
Lie group G. They act on elements of the space of
objects modelled as a vector space V, by a left action
(9,I) > g-1 €V, g e G, I € V. The transformations
are computed as a flow of a non-autonomous ordinary
differential equation, and thus we shall specify it. To do
that, we need the notion of a Lie algebra of a Lie group.
Simply, the Lie algebra is a tangent space in the identity
element, namely, g = 7.G. Then the non-autonomous
ODE is defined as follows %Lg = Uy - gy, Where uy is a
curve dependent on ¥ in g, and gy a curve in a Lie group
G, i.e., the flow of uy. The right-hand side of the above
equation may be interpreted as an infinitesimal action
of the Lie algebra on the Lie group. The last piece of a
modelling detail is to endow the Lie algebra g and the
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space of the object V' with the inner products (-, -), and
<'7 '>V~

Having defined all the crucial pieces of notation,
the abstract formulation of the registration problem is as
follows. For a given I1,I> € V find a curve uy € g that
optimizes cost function

1t 2 1 2
min§/0 [[uall d19+ﬁ”91'[1_l2”V7 (1)

subject to

gy

8—19 = Uy - g9, 9gGo=E¢€, (2)

where e is a neutral element.

The standard approach to tackle the above
optimization problem is to use variational calculus
to compute the optimal condition. The careful derivation
made by Bruveris and Holm (2015) yields that the
minimizer is given by

wy=—gg- I ogogy -, 3)

with m = L (91 - [, — L)’ € V*, where b: TV — T*V
is an isomorphism between tangent and cotangent bundle
induced by the metric, and ¢: TV — g* being so-called
momentum map that assigns for each element (I, ) of
the phase space an element I ¢ 7 in the dual g* of the Lie
algebra. A detailed explanation of the introduced notion,
along with examples, can be found in the work of Holm
et al. (2009).

As has been observed (Bruveris and Holm, 2015),
the solution wy to the problem (1) is expressed as
a momentum map, and due to conservation of the
momentum, uy satisfies the Euler—Poincare equations.
This allows us to reduce the problem by considering
the evolution equation in the phase space 7*V. So,
the registration problem may be reformulated as follows.
Given Iy, I € V find Py € V* that minimizes

1 1
E(R) = 3 1o o Poll + 252 I -5y, @

where [; is defined as the solution of the system of
equations

% = Cuﬁ (119)’
G = —Ti,Cus o 5)
u%ﬂ = 119 <& Pﬁ,

with (,,: V — TV, being a fundamental vector fields
associated with the G-action.

The system of ordinary differential equations above
is the entry point for settling the calibration by
diffeomorphism in the computational framework.

3. Main result

In this section, we derive the equation governing
calibration by diffeomorphisms. We begin by setting
up basic notions to align with the abstract formulation
introduced by Bruveris and Holm (2015), as discussed and
recalled in the previous section. This foundation is crucial
for deriving the relevant differential equations. Following
this approach, we introduce the transformation group and
the space in which these transformations act. Next, we
define the problem using the abstract formulation and,
finally, we derive the necessary equations.

3.1. Basic notions. We begin by detailing the space
of objects V. These objects represent the kinematics
model of a robot, so the space V' should encompass
all possible kinematics models. To formalize this, we
introduce the notion of the kinematics model, which will
be used throughout the following sections.

Generally, the mathematical model of robot
kinematics is described as a mapping between the
configuration space X (where the joint positions reside)
and the task space Y (where the end-effector’s position
and orientation reside), concisely denoted as k : X — Y.
Typically, for n DoF manipulator with r revolute joints,
X is R"™" x 1", where T" denotes the r-dimensional
torus, while Y is a smooth manifold and a subgroup of
the SE(3) Lie group. In special cases, the configuration
space and task space can be identified with the Euclidean
spaces R™ and R™, respectively. This representation
specifies previously introduced notion of kinematics to a
particular case, namely,

k: R™ — R™, (6)

known as kinematics in coordinates. We will focus on
this particular representation for two reasons. Firstly,
it describes the kinematics of several classes of robots.
Starting with such kinematics representation allows us to
study and develop the algorithm without the complexities
that could obscure the subtleties, details and properties
of the method. Secondly, to set the calibration problem
within the formalism discussed in the previous section,
we assume that the space of objects V' is a vector space.
Representing the kinematics in this form satisfies this
assumption.

As a careful reader may observe, we work with
kinematics in local coordinates, meaning that the solution
is local. However, the method can be made global through
the careful definition of vector fields on appropriate
manifolds. Therefore, the generalisation of the method
to more complex kinematics appears possible and is
under consideration, but some challenges arise that
we aim to address in the future, such as the global
definition of vector fields and the curse of dimensionality.
Nevertheless, we will briefly discuss these issues in
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Section In summary, we limit ourselves to the
kinematics in the form given by (€). Consequently, the
space of objects, now called the space of kinematics,
takes the form V' = C'°(R", R™). Obviously we endow
V' with the inner product (-, )y, being a usual L? inner
product, i.e.,

(uskaly = [ K @ha()de, keV. ()

It is easy to check that V' is a vector space.

To model the transformations, we recall that in
calibration by diffeomorphisms, two diffeomorphisms are
considered: ¢ and v, one acting on the left (¢) and the
other on the right () such that the action on an element k&
becomes ¢ o ko o~

We define the group of transformations as a Lie
group G, specifically as the Cartesian product of two Lie
groups ' and H, G = F x H. Thus, any element
g = (f,h) € G has two components, where f € F
and h € H. The neutral element e € G consists of
the neutral elements ep € F' and ey € H. The group
operation is component—wise and is inherited from F' and
H:g1-92=(f1" fo,h1-h2), 1,92 € G. The Cartesian
product of Lie groups is itself a Lie group, thus all axioms
and properties hold. Specifically, the group G will act on
the element k of V by g - k = ho ko f~1. Itis easy to
check that the action is a left action.

In the previous section, we introduced the notion of
a Lie algebra to specify ordinary differential equations
(ODE?s) on the Lie group. The Lie algebra of a Lie group
is the tangent space in the identity element. In our case,
the Lie algebra ¢ = T.G is the direct sum of the Lie
algebras of F' and H, i.e., g = §f @& b. This allows us
to specify the ODEs. For gy = (pg,%y) € G and
uy = (vy,wy) € g, the system of ODEs becomes

el

5‘.:919 = Vy * Py,
Oy _

8190 *w'ﬂ'wﬁv

Yo = €r,
w0:€H~

(®)

The last piece of notation to quantify the deformations
is the inner product (-, -)4, which, for the introduced Lie
group G, splits into the sum of the inner products of the
corresponding Lie algebras

(- '>9 = <'7 '>f + (- '>h' )

3.2. Calibration by diffeomorphisms. Leveraging
the introduced framework, we can formally address the
main problem of robot calibration. We establish the space
of objects on which we act by a group of diffeomorphisms
as the space C*°(X,Y") of smooth mappings between the
internal space X and the external space Y. Given that we
are calibrating the kinematics of a robot, it is clear that V'
consists of kinematic mappings. Hence, we define V' as
the space of kinematics.

As we already mentioned, we constrain ourselves
to robot kinematics that can be expressed in coordinates,
with X =R"and Y =R™, s0 V = C*>°(R",R™).

To maintain consistency with calibration by
diffeomorphisms, we define the group of transformations
as G = Diff (X) x Diff (Y) = Diff (R™) x Diff (R™).
Due to numerical and computational constraints, it is not
practical to work with the entire group of diffeomorphisms
G. Instead, we focus on a more manageable subgroup
generated by the flow of appropriate ordinary differential
equations (ODEs). This approach is rooted in considering
a group of diffeomorphisms arising from an admissible
space of vector fields, as thoroughly detailed in the work
of Younes (2019).

The process begins by selecting a space of vector
fields V that is admissible, meaning it is continuously
embedded in C}(R? RY). An admissible space
of vector fields ensures that the vector fields and
their first derivatives vanish at infinity, providing the
necessary regularity and decay properties. The group
of diffeomorphisms, Diffy, is then defined as the set of
diffeomorphisms that are flows from time O to 1 of the
vector fields in V. This means that any diffeomorphism
in Diff), can be represented as the result of integrating
a vector field from the chosen space V over a unit time
interval. Consequently, the elements of Diffy, inherit the
smoothness properties of 1, ensuring the transformations
are sufficiently smooth for practical purposes.

For our specific application, we choose the space
H*°, which is the intersection of all Sobolev spaces. The
Sobolev spaces H* are function spaces that provide a
measure of smoothness by considering both the function
and its derivatives up to a certain order. The intersection
H*®° includes functions that are infinitely differentiable
and have all their derivatives in L2, ensuring a high degree
of smoothness. By selecting H°°, we ensure that the
vector fields used to generate our diffeomorphisms are as
smooth as possible, which is coherent with the original
setting of calibration by diffeomorphisms.

Thus, we define G as Diffy,(X) x Diffyy(Y),
consisting of diffeomorphisms that emerge as the flow of
vector fields in the product space V x W = H>(X) x
H>(Y),ie.,

80 = vy (ps), @0 = idx,
8o = wy () , Yo = idy,

for gy = ((,019,1/)19) € Gand uy = (vg,wg) eV xW.

To make the introduction complete we shall choose
the inner products and dual pairings for g and V. For the
former one inner product takes the form

(10)

(vi,w;) € g,

(11)
where the inner products on the right hand side are the
inner products for the appropriate admissible vector space,

(u1,u2)g = (v1,v2)y + (Wi, wa)yy, U =

‘Ii:il’ dmcs
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(v1,v2)yp :/ v (z)Lyve(x)dz, wv1,ve €V,

with Ly, being a positive definite, self-adjoint, differential
operator. Analogous definition holds for (-,-)y. One
should notice that to be compatible with the H > space the
chosen operator shall be of infinite order, i.e., it is a power
series of differentials. In similar fashion we introduce
the dual pairing between g and g* = {(Lyv, Lyw),
(v,w) € g}, ie, foru = (v,w) € g, v = (a, B) € g*,
we get

(U, U grxg = (@, V)V« xv + (B, W)w=xw, (12)

so the b map for the inner product (-,-)4 is given by
u}) = (v,w)} = (Lyv, Lyyw). For the case of the space
of kinematics we choose L? inner product and canonical

pairing thus
<k1,k2>vz/ k| (2)ko(z)dz, k; €V,  (13)
and

(w,k>v*xv:/ 7 (2)k(z)dz, keV,meV*,

(14)
then the b map is the identity mapping k% =k.

As we already mentioned the problem may be
reformulated analogously to the optimization problem
with the cost function {@). Considering our case, we
shall compute appropriate mappings (3). Let us start
with computing the fundamental vector field associated
with the action of the group G — (,,. This can be done

as follows, for a given v = (v,w) € gand k € V
with gy being a curve such that g9 = (Idx,Idy) and
g9 —u
20 | gy L
0
W(k) = — -k
Cu(k) 59 19:0919
o (k(ep")
v 90
- Doy
+D (¥ (ko5 )| - =55
9=0 9=0

=w(k) — Dk-v. (15)

Having defined (,, mapping, the momentum map can
be computed in the following way:

<k 0”»“>g*><g = <7T7<u(k)>V*><V

= /n 7 (x)w(k(z)) de — /n 7' (x)Dk(x) - v(z) dz
= {((—=Dk "7, 7), (v,w)) g xg. (16)

To compute the map 7;'(, we shall consider the
tangent lifted action and takes its dual. Thus,

0
TiCu(U) = 39 l,_, Culky)
0
= 9|, (W) = Dko-v)
= Dw(k)U — DU -v, (17)
where u € g, ky is a curve in V with kg = k and
%Lf 9—o = U. Considering the dual pairing

(T3 Cu(P), U)vexv = (P, TiCu(U))vexv  (18)
which according to (I4) and using the integration by parts

may be rewritten as

/n P (x) (Dw(k(z))U(x) — DU(z) - v) dz

= - P (z)Dw(k(z))U(x) dz
+/ndiv(P(:1c)vT(x))U(:1c)dx
= ((Dw(k)) TP +div(Pv"),Uvexv. (19)

Finally, we get

<T1:Cu(P)7 U>V*><V
= (Dw(k)) TP +div(Pv"),U)vexy. (20)

Now, we may formulate our problem as follows.
For given nominal kinematics ky and actual kinematics
k (ko,k € V) find Py € V* that minimizes

1 1
E(Fo) = 5 Ilko o Poll% + 557 k1 — Ky, @D

where ki is defined as the solution of the system of
equations

%o = wy(kg) — Dky - vo,

925 — —(Duwy(ky))T Py — div(Pyvy),
Lyvy = Dkgpg,

Lyywy = Py.

(22)

It is important to note that the Jacobian of the current
kinematics ky must be computed at every evaluation of
the differential equations. Unfortunately, an analytical
expression is not feasible. Instead, we compute the
Jacobian along the evolution curve using the following
equation

0Dky

55 = Dwlks)Dky — DkyDuy. (23)
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By supplementing the system of equations (22)) with (23)),
we can determine the initial momenta F, using a
numerical optimization procedure.

Solving the above optimization problem effectively
addresses the calibration issue. Starting from the nominal
kinematics and the optimal initial momenta, the nominal
kinematics can be evolved to match the actual kinematics
using the equations 22). However, for simplicity, we
assumed that the actual kinematics is already known. In
practice, the actual kinematics is not directly available,
and the objective is to reconstruct this model using sparse
data obtained from measurements of joint positions and
corresponding end-effector poses.

In the next section, we will demonstrate the
application of the introduced formalism to scenarios
where the actual kinematics is only accessible through
sparse measurement data. This will address the challenge
of reconstructing the actual kinematics model with limited
information.

3.3. Implementation. As discussed in the previous
section, the actual kinematics is not directly available to
us as a functional mapping. Instead, we can sample the
kinematics through measurements at discrete points in the
internal and external spaces. This limitation necessitates
adopting a more flexible approach that accommodates
these constraints. With this understanding, we begin by
formalizing the notion of measurements.

The robot’s nominal kinematics, ko, is represented as
a mapping (@), typically obtained using a standard method
such as the Denavit-Hartenberg algorithm. Let k& denote
the actual kinematics of the robot—the mapping we aim to
determine. We assume that £ € V' and that it is accessible
only through discrete measurements.

From a practical perspective, these measurements
consist of N pairs of joint positions and their
corresponding end-effector positions. The joint
positions are denoted by (z1,...,2zy), where z; € R,
and the corresponding end-effector positions are
(k(z1),....k(zNn)) = (y1,...,yn), with y; € R™.

This representation acknowledges that our
understanding of k is derived from a finite set of
discrete data points rather than a continuous mapping.
Consequently, we must develop methods to effectively
infer the overall kinematic behaviour of the robot from
these sparse measurements.

Given these collections of measurements x and vy,
our objective is to find diffeomorphisms ¢ and ¢ that
transform the nominal kinematics kg to resemble the
actual kinematics k. This can be expressed as

pokooyp =k (24)

However, obtaining such transformations for the entire
domain is often infeasible. Instead, we relax the problem

by enforcing the transformation to match the kinematics at
the measured points and interpolate between these points
to approximate the kinematics over the domain.

To achieve this, we leverage the reproducing property
of reproducing kernels to parametrize vector fields,
overcoming previous technical challenges. This widely
adopted method embeds the problem in a reproducing
kernel Hilbert space (RKHS) (Younes, 2019), effectively
reducing it from an infinite-dimensional problem to
a finite-dimensional one based on the number of
measurements.

A key outcome of the theory of RKHS is that
every properly defined kernel K uniquely defines a
corresponding RKHS (see, e.g., Saitoh and Sawano,
2016). By selecting a suitable kernel, we can construct
an RKHS that imposes specific smoothness properties
on vector fields. This correspondence can also be
derived directly from bijective, self-adjoint differential
operators (Younes, 2019). Specifically, for a given
differential operator L, the reproducing kernel K is its
inverse, K = L', and may also be interpreted as the
Green'’s kernel associated with L.

The considered spaces of vector fields V and W
are both Hilbert spaces equipped with Sobolev inner
products defined by the differential operators Ly, and Lyy,
respectively. We assume that the vector fields vy € V and
wy € YV belong to the RKHS associated with VV and W,
with the reproducing kernels Ky and Kyy corresponding
to Ly and Lyy.

What sets RKHS apart from general Hilbert spaces is
its reproducing kernel, which enables the straightforward
integration of smoothness and other functional properties
into optimization processes. This characteristic is
particularly valuable for calibrating robot kinematics from
sparse data. In particular, it allows for interpolation
of vector fields (I0) at arbitrary locations, e.g., vy at
particular point x may be computed with use of the
reproducing property as follows

va(z) = /X Ky(z, £)a(9,€) d, 25)

where Ky (x,£) represent the reproducing kernel for V),
while a(9,€) and 8(¢,n) are vectors in R™ that serve
as weighting coefficients in the kernel construction for
multi-dimensional vector fields (as discussed in more
detail by Younes (2019) and Carmeli et al. (2006)).

In practical scenarios involving a finite set of N
sample points, the approximation of the vector fields may
be evaluated with use of the following formulas:

N
vo(x) = Kv(x, &) (V),
i=1 26)

wy (y) = Z Kw(y,n:)Bi(0).

i=1

aamcs
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Glueing the introduced pieces, the calibration by
diffeomorphisms boils down to solving the following
optimization problem. Given the nominal kinematics kg
and the measurements (z;,y;), ¢ = 1,..., N, taken from
the actual kinematics k, where ko, k € V, find Py € V*
that minimizes

E(Ry)
N
1 ;T '
=5 O By Dhowi)Ky(ai,z;)Dkg (a,)P]
i,j=1
N
1 0T j 27)
+ 5 Z Py Kyw(ko(z;), ko(x;)) P

i,j=1
1 XN
2
t52 z; [k (i) = will
i=
with respect to

ko) — g (kg (1)) — Dheo(x:) - vo(x2),

BP'L 1 . 1
S5 = —(Dwy (ky(2:))) " Py — div(Pjuvg (z:)),
EE5L = Dl (i) Do (1) — Dho (i) Dua (1),
vo(wi) = 35 Ky(wi,2;)Dko(z;)" Py,
wy(yi) = X7 Kw(ys, y5) Py,

(28)
where k1 (x;) is a solution of the ODEs above evaluated at
the point ¥ = 1.

The procedure driving one towards calibrated
kinematics may be summarized in the following steps:

1. Design a nominal kinematics model using one of
the common procedures, e.g., Denavit—Hartenberg,
product of exponentials.

2. Take N measurements of the joint positions and
corresponding end-effector poses.

3. Find the initial momenta Py for chosen reproducing
kernels and algorithm parameters by solving (7).

4. Online evaluation. The calibrated kinematics is
encoded in the initial momenta and the nominal
kinematics, to obtain its value at the particular point
& one have to solve for ¥ = 1, the following system
of ODEs

5t = w(k(€)) — Dko(€) -9 (©),
OPME) — Duw(ky(€)) Dk (&) — Dk () Dug(€),
vo(i) = 27 Ky(wi,2;)Dky(x;)T P),
wy (ko (2:) = Y73 Kw(ko(:), ko () P],
_ (29)
reusing Pj and ky(x;) the solution of the previous
system of equations for the measurement points x;.

34. Comparison with classical approach. In this
section, we aim to provide a qualitative comparison
between the classical approach and the one presented here.
To highlight the differences, we will focus on the sets
within which the solution is sought. As we observed,
the space we operate in is the space of smooth mappings
between X and Y, namely C*°(X,Y). Our objective
is to find a mapping k£ € C°°(X,Y) that describes the
kinematics of the actual robot, which we do not know
explicitly. Instead, we are equipped with a nominal model
kn, € C*(X,Y) (a first-guess model constructed using
prior knowledge of geometry and physical phenomena).
The calibration procedure can thus be described as a
method for improving our nominal model based on
experimental data, such that the final outcome closely
resembles the actual kinematics k. Broadly, this problem
can be viewed as finding a path in C*(X,Y) that
connects k,, with k; see Fig.[2(a). The primary differences
between the approaches can be uncovered by addressing
the following questions: in which sets do we search for
a solution, and how do we constrain these sets? In the
classical approach, the set of attainable kinematics, K, is
described by the family of kinematics K: X x P — Y,
parametrised by the model’s parameter p € P. In the
case of a model obtained through the Denavit—Hartenberg
algorithm, the parameters describe the geometry of the
robot. Thus, the set can be formally expressed as

K={K(.,p)|Vpe P} CC®X,)Y).

If a solution exists within the set above, i.e., if there
exist parameters py, describing the actual kinematics k =
K (-, pr), then the path ky = K (-, py) between k,, and k
may be induced by a path py € P, such that py—o = p,
and py—1 = pi; see Fig. Rb). The main difficulty of
this approach lies in selecting the family of kinematics,
which requires a deep understanding of the phenomena
involved in the robotic system to calibrate non-geometric
discrepancies. In the case that the solution lies outside
the set, one may find the parameters whose corresponding
kinematics approximate the actual ones.

On the other hand, in the calibration of
diffeomorphisms, the set of attainable kinematics is
different. It consists of kinematics that are A-equivalent
to the nominal one. This set can be formally described as
the orbit of the nominal kinematics k,,

Ok, = {¥okyop™" | (p,4) € Diff (X) x Diff (Y)},

where it is clear that O, C C*°(X,Y"). In this case, if
the actual kinematics k lies within the orbit, the path is
givenby ky = 1y o k,, o <p;1; see Fig.2(c).

One may observe that the sets of attainable solutions
are qualitatively different. In general, O, # IC, but there
is a non-empty intersection between the sets. Of course,
one may attempt to find a family of kinematics K such
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Fig. 2. Schematic figure visualizing the idea of manipulator calibration as a path search in C°°(X,Y") and the sets of solutions: in
general (a), model identification (b), calibration by diffeomorphisms (c).

that Ok, C K, but in practice, this appears difficult. In
such cases, the methodology introduced here allows one to
find a solution outside the set K that is diffeomorphically
equivalent to the nominal kinematics k,. On the
other hand, one may observe that there are kinematics
attainable by the classical approach which cannot be
attained through calibration by diffeomorphisms. These
kinematics are not diffeomorphically equivalent to the
nominal kinematics. It should be pointed out that,
in the proposed practical implementation, the method
is further constrained by the number of measurements
and the considered kernels. However, even with these
constraints, there is a noticeable increase in the accuracy
of the calibrated kinematics, as demonstrated in the next
section. One should view the proposed method as a
complementary approach rather than a substitute. Future
developments of the method should consider combining
both approaches.

4. Numerical experiments

Based on the abstract formulation of the image
registration  problem, we introduced a novel
computational framework utilizing the calibration
by diffeomorphisms approach for robot manipulator
kinematics calibration, originally presented by Tchoni
(1992). Specifically, the k; solution to the system of
differential equations (3) minimizes the optimization
task’s cost function (2), thereby redefining the robot
kinematics calibration problem.

To evaluate the mathematical findings, we conducted
three simulation experiments on the double pendulum,
introducing the following types of discrepancies to
the nominal kinematics: geometric discrepancies (such
as variations in link length parameters), gravitational
bending, and artificially induced large diffeomorphic
discrepancies. The simulations followed the procedure
described in Section B3]l For implementation details,
please refer to the work of Orozco and Ratajczak (2025).

The nominal kinematics of the double pendulum
used as the test-bed in our experiment had the form

_ (licos(xr) + Iz cos(xy + x2)
k(x) = (11 sin(z1) + la sin(xy + ;52)) ) (30)

where [y = 1 and ls = 0.5. The kinematics of an
actual robot used in those experiments as the ground
truth was simulated as the nominal one perturbed by the
appropriate discrepancies. As we already mentioned in
the first scenario we perturbed the link length parameters,
taking the values [y = 0.98 and /3 = 0.53. In the second
scenario, we model the gravitational based discrepancies
relying on Book’s model (Book, 1979). In the third one,
the large diffeomorphic discrepancies had been obtained
asy = (k(z))~ 1 + ¢, i.e., a nonlinear shearing followed
by translation t = (9%, ). For each scenario, from
accordingly prepared kinematics, we generated a dataset
of measurements, namely the pairs (2;,y,,) for i =
1,...,169 taken from a regular grid of an actual robot
joint positions x; with the corresponding end-effector
positions y,, to feed the calibration algorithm. The
algorithm has been implemented with the use of Matlab
framework exploiting built-in algebraic and differential
equation solvers as well as the Kernel Operations
(KeOps) library (Charlier et al., 2021), supplying Matlab
with functions for efficient calculations of kernel-related
operations.

Figure [3| illustrates the evaluation of this calibration
process for the kinematics of a double pendulum,
taking into account both geometric and non-geometric
discrepancies. The heatmaps in the figure present the
resulting error between the real robot’s position and
the kinematics prediction before and after calibration.
These errors were measured at 3000 pseudo-randomly
generated positions throughout the workspace, ensuring
a comprehensive evaluation across different regions.

The shades of the points in the heatmaps depict the
exponent of the norm of the error, providing a clear visual
representation of the error magnitude. One can observe
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Fig. 3. Heatmaps present the resulting error between the position of the real robot and the kinematics model before (left column) and
after calibration by diffeomorphisms (right column). The kinematics have been perturbed with the following discrepancies:
discrepancies in link lengths (top), gravitational bending (middle), and large diffeomorphism (bottom).

that the calibration process significantly reduces the error,
with a decrease of about one to three orders of magnitude,
depending on the region of the workspace and the nature
of the discrepancies. This substantial reduction in error
highlights the effectiveness of the calibration process
in improving the accuracy of the kinematic predictions,
thereby enhancing the overall performance and reliability
of the double pendulum system.

5. Discussion and future work

We demonstrated that the introduced method effectively
handles kinematics expressed in coordinates. Despite
its potential, it is crucial to extend this approach to a
broader class of robot manipulator kinematics that map

the configuration space to a subgroup of the Euclidean
motion group. Several challenges arise in generalizing
the method for such kinematics. The primary challenge
is efficiently designing a smooth nonlinear vector field on
the special Euclidean group SE(3). While the machinery
of reproducing kernel Hilbert space efficiently addresses
this problem in Euclidean spaces, leveraging the method
for SE(3) requires constructing an appropriate RKHS
on the SE(3) manifold. De Vito et al. (2021) provides
insights into this construction.

When setting the task space to a special Euclidean
group, the space of objects is no longer a vector space,
necessitating adjustments in methodology, including the
evolution equations and the matching term in the cost
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function. The landmark LDDMM approach on manifolds,
as explored in the work of Glaunes et al. (2004), offers
considerations.

The presented calibration method is highly general
and applicable to models expressed as mappings
between Euclidean spaces, making it a valuable tool
in system identification. = For example, it can be
employed for the identification or calibration of nonlinear
sensor characteristics or any other system that may be
characterized by static models.

The large deformation diffeomorphic metric
mapping framework, beyond producing optimal
deformations for image registration, serves as a powerful
tool for quantitative shape analysis in computational
anatomy. Its formulation gives rise to the field of
diffeomorphometry, a metric study of shapes and
imagery, which opens new opportunities for analysing
and inferring anatomical shapes in medical sciences.
One promising application of using calibration by
diffeomorphisms based on the LDDMM approach is
leveraging diffeomorphometric features as theoretical
foundations for predictive maintenance. This direction
appears to be highly valuable and worth exploring further.

6. Summary

In this paper, we introduce the mathematical foundation
for a novel computational method for calibration by
diffeomorphisms, based on the LDDMM approach, which
has not yet been applied within the field of robotics. This
approach effectively addresses the calibration problem, as
demonstrated both theoretically and through simulation
experiments. Our methodology extends the concept of
calibration by diffeomorphisms previously proposed by
Tchori (1992).

It is important to highlight that, unlike Tchon’s work,
our method does not assume the nominal kinematics
to be stable. Instead, the calibrating transformations
are designed to be smooth and diffeomorphic, ensured
by a regularization term in the cost function and the
computation of final transformations as the flow of
ordinary differential equations. Consequently, once the
nominal kinematics are selected, we remain within the
class of kinematics that are diffeomorphically equivalent
to the nominal model.

However, this approach has its limitations,
particularly in cases of unstable kinematics where
minor parameter perturbations can significantly alter
the topological structure of the mapping. For example,
if the nominal kinematics are represented by a double
pendulum with both links of equal length, transforming
this nominal model into one with links of different
lengths is impossible due to their lack of diffeomorphic
equivalence. In such scenarios, only the best possible
approximation can be achieved. To address this limitation,

we propose relaxing the diffeomorphic constraints within
the framework, enabling greater flexibility and facilitating
more accurate transformations.

From practical and implementation perspectives,
the method requires further investigation to evaluate its
robustness against variations in the number, placement,
and accuracy of measurements. Such an analysis could
provide valuable insights into its practical applicability
and identify potential limitations under real-world
conditions. Those will be a key focus of our future work,
as outlined in the discussion section.
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