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aInstitute of Computer Science
Polish Academy of Sciences

ul. Jana Kazimierza 5, 01-248 Warsaw, Poland
e-mail: jan.mielniczuk@ipipan.waw.pl

bFaculty of Mathematics and Information Sciences
Warsaw University of Technology

ul. Koszykowa 5, 00-662 Warsaw, Poland

We consider the scenario when two samples of positive unlabeled (PU) data are available and for the second sample
the change in prior probability of classes occurs while distributions of predictors in classes remain the same (label shift
setting). The selection of positive elements may be object-dependent. We study the properties of the underlying probabilistic
structure under the novel augmented PU scenario, proving in particular that label shift occurs also for unlabeled populations.
We introduce and investigate an estimator of prior probability for label-shifted population. Furthermore, in this case we
construct and analyze behavior of Bayes classifier in this setting. It turns out to be a Bayes classifier for the unlabeled class
with a modified threshold. This gives rise to its three empirical counterparts which are compared on benchmark data sets.
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1. Label-shift augmented positive unlabeled
model: An introduction

In the paper we consider two departures from a classic
classification model which frequently occur in practice
and need to be accounted for. The first one is that data
is often only partially available, in particular information
on class indicators may be restricted. More specifically,
for positive unlabeled (PU) data considered here, labeling
information is available only for a subset of observations
belonging to the positive class. Moreover, the mechanism
revealing class indicators may depend on observation’s
features (selection bias) and this influences properties of
standard classifiers. The second departure is that the
distribution of data on which classifiers are trained may
differ from the distribution of data to be classified, in
particular a value of prior probability may shift. Here,
we propose modeling scenario which incorporates these
nonstandard data features and show how to construct
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optimal classifiers in this case.
We first introduce basic notations. Let X be a

random variable corresponding to feature vector, Y ∈
{−1, 1} be a true class label and S ∈ {0, 1} be an
indicator of an example being labeled (S = 1) or not (S =
0). We assume that there is some unknown probability
distribution PXY S such that only positive examples (Y =
1) can be labeled, i.e., P (S = 1|X,Y = −1) = 0. Thus
we know that Y = 1 when S = 1 but when S = 0, Y
can be either 1 or −1. Vector X is a vector of predictors
and we assume w.l.o.g. that X ∈ Rp. Inference for class
indicator Y based on a sample pertaining to PXS is an
actively researched problem of machine learning for PU
data (for a review of approaches, see, e.g., the work of
Bekker and Davis (2020)).

Moreover, we consider the second vector ( ˜X, ˜Y )
such that its distribution P

˜X ˜Y is label-shifted distribution
of PXY , which means that marginal distribution of ˜Y is
different from that of Y , i.e.,

π̃ := P (˜Y = 1) �= P (Y = 1) =: π, (1)
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however we assume distributions in a positive and
negative class (i.e., conditional distributions of predictors
given class indicator) are the same for both distributions:

P
˜X|˜Y=i = PX|Y=i, i = ±1. (2)

Although the proposed method is applicable also in the
case π̃ = π, in order to streamline the presentation,
we assume (1). Note that X and ˜X correspond to the
vectors of variables defined in the same way, which,
have however different distributions in the image space,
the same convention refers to Y and ˜Y . Since PX =
πPX|Y =1 + (1 − π)PX|Y=−1 and analogous expression
holds for P

˜X , marginal distributions of X and ˜X , in
contrast to conditional distributions, also differ: PX �=
P

˜X .
Such situation occurs frequently in practice.

Consider, e.g., the anti-causal case when X denotes
symptoms of a certain disease and Y = 1 when it
occurs. Then when prevalence of disease changes but
characteristics of the symptoms of disease do not, this
corresponds to label shift scenario. We assume that the
second vector is not fully observable either, in the sense
that, as in the case of the first vector, positive labels are
only partially labeled, and denote labeling variable by ˜S
in this case.

Such a scenario corresponds to practical situation
when, e.g., one’s aim is to screen people suffering from
hypertension. People who check their blood pressure
regularly and if its abnormal, report this to a doctor and
are treated. Remaining group consists of people who
are healthy and those who have hypertension but do not
contact a doctor. Having such data for two consecutive
periods of time, we would like to detect those in the
second group who suffer from hypertension, but allowing
for a possible change of its prevalence in the population
considered. Note that this scenario is applicable in many
other cases like COVID-19 detection based on certain
number of symptoms (coughing, difficulty of breathing)
and patient’s characteristics, without the necessity of
performing COVID-19 test.

We consider a realistic setting when labeling
mechanism may be object dependent, i.e., selection bias
occurs. This corresponds to the general selected at random
(SAR) scenario considered for PU data (see the work
of Bekker and Davis (2020) for a discussion of various
labeling mechanisms for PU data). In selected completely
at random (SCAR), the case labeling mechanism is
independent of features (see, e.g., Wawrzeńczyk and
Mielniczuk, 2022). In the following, we assume that the
labeling which censors positive observations acts in the
same manner in the first and in the second case, namely

e(x) := P (S = 1|Y = 1, X = x)

= P (˜S = 1|˜Y = 1, ˜X = x) =: ẽ(x),
(3)

i.e., that propensity scores e(x) and ẽ(x) are the same
and they will be denoted by e(x) henceforth. Note
that as PXY S is characterized by marginal distribution
PY and conditional distributions PX|Y and PS|XY , the
probabilistic structures of PXY S and P

˜X ˜Y ˜S are uniquely
determined by the assumptions above. We also define
posterior probabilities of Y = 1 given X = x
as y(x) = P (Y = 1|X = x) and s(x) =
P (S = 1|X = x); conditional probabilities ỹ(x) and s̃(x)
are defined analogously. We denote by fX either a
density of X or its probability mass function and the same
convention applies to fX|S=1.

Note that due to the definition of a conditional
probability we have

s(x) = P (S = 1|X = x)

= P (S = 1|Y = 1, X = x)P (Y = 1|X = x)

= e(x)y(x),

(4)

and we analogously obtain

s̃(x) = e(x)ỹ(x). (5)

Assume that D = (Yi, Xi, Si), i = 1, . . . , n is an
iid sample drawn from distribution PXY S and ˜D =
(˜Yi, ˜Xi, ˜Si), i = 1, . . . ,m is iid sample drawn from
distribution P

˜X ˜Y ˜S independently of D. Observed data
consists of (Xi, Si), i = 1, . . . , n and ( ˜Xi, ˜Si), i =
1, . . . ,m, thus in both cases only partial information on
labels is available. Our aim is to construct a classification
rule and predict class indicator Ỹ = ±1 for observations
in ˜D. Note that since ˜Si = 1 ⇒ ˜Yi = 1 the task reduces to
classification of unlabeled observations (˜Si = 0) in ˜D. We
note in passing that the considered setting corresponds to
single-training sample training scenario, and case-control
setting is also frequently considered for PU data (Kiryo
et al., 2017).

We emphasize that under the standard label
shift probability scenario, one observes samples
(Xi, Yi), i = 1, . . . , n and ˜Xi, i = 1, . . . ,m and the task
is to predict class indicators for the second sample which
is shifted and for which class indicators are missing. For
representative examples of methods designed for such
scenario we refer to the works of Saerens et al. (2002),
Lipton et al. (2018) and Garg et al. (2020); see also
the works of Iyer et al. (2014), Vaz et al. (2019), Ye
et al. (2024) and the references therein. We note that
estimation of shifted prior probability (quantification
task) is of importance in business applications (see, e.g.,
González et al., 2017). The scenario considered here, in
the case when no label shift occurs, i.e., PXY = P

˜X ˜Y ,
called augmented PU scenario, was recently introduced
by Wawrzeńczyk and Mielniczuk (2024), who considered
classification of new observation (X,S) following PXS .
To the best of our knowledge, despite its practical
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importance, label shift for augmented PU data has not
been analysed in the literature.

The main contributions of the paper are: (i) we
construct a model for PU data which takes into account
selection bias and potential label shift of target data; (ii)
we establish properties of probabilistic structure of main
entities in the constructed model and a form of Bayes
classifier for unlabeled observations in target data; (iii) we
consider empirical counterparts of the Bayes rule using
different estimators of prior probability for target data and
compare their behaviour on real data sets.

2. Main theoretical results
Below we present some basic facts concerning the
label-shift augmented PU model (Section 2.1) and form
of the Bayes classifiers under this scenario (Section 2.2).

2.1. General results. Lemma 1 below describes
the basic facts on interplay between PXY S and P

˜X ˜Y ˜S ,
which will be useful for construction of classification rule
based on ( ˜X, ˜S). In particular, we prove in part (ii)
that distribution P

˜X ˜Y |˜S=0 is label-shifted distribution of
PXY |S=0. Denote by c = P (S = 1|Y = 1) and
c̃ = P (˜S = 1|˜Y = 1) overall conditional probabilities of
being labeled for the first and second sample, respectively.
Moreover, define odds of positive class occurring for the
first sample as OD(x) = P (Y = 1|x)/P (Y = −1|x)
with ˜OD(x) defined analogously for the second sample.
Odds Ratio OR(x) equals OR(x) = ˜OD(x)/OD(x).

Lemma 1.
The following equalities hold:

(i) c̃ = c.

(ii) Assume that π̃ �= π. Then distribution P
˜X ˜Y |˜S=0 is

label shifted distribution of PXY |S=0. Namely, we
have

P (˜Y = 1|˜S = 0) =
π̃ − cπ̃

1 − cπ̃
,

�=P (Y = 1|S = 0) =
π − cπ

1 − cπ
,

and

f
˜X|˜Y=1,˜S=0(x) = fX|Y=1,S=0(x),

f
˜X|˜Y=0,˜S=0(x) = fX|Y=0,S=0(x).

(iii) fX|S=1(x) = f
˜X|˜S=1(x).

(iv) OD(x)1−π
π = ˜OD(x)1−π̃

π̃ ≡ OR(x) = π̃
1−π̃× 1−π

π .

Proof.

(i) Note that

c =

∫

P (S = 1|Y = 1, X = x)fX|Y=1(x) dx

= EX|Y=1 e(X) = E
˜X|˜Y=1 e(

˜X) = c̃,

where the first equality follows from definitions of
c and e(x), the second from assumed equality of
distributions within classes, and the last one from
equality ẽ(x) = e(x).

(ii) To prove the first part, note that P (˜S = 0) =
1 − cπ̃, which yields expressions for conditional
probabilities. Moreover, inequality of the conditional
probabilities follows from strict monotonicity of the
function f(a) = a/(1− ca) for a ∈ (0, 1).

For the second part, note that

fX|Y=1,S=0(x)

=
P (Y = 1, X = x)P (S = 0|Y = 1, X = x)

P (Y = 1, S = 0)

=
fX|Y=1(x)π(1 − e(x))

P (Y = 1, S = 0)
=

fX|Y=1(x)π(1 − e(x))

π − πc

= fX|Y=1(x)(1 − e(x))(1 − c)−1.

As analogous formula holds for f
˜X|˜Y=1,˜S=0(x), in

view of (3), fX|Y=1 = f
˜X|˜Y =1 and c = c̃,

the first part is proved. The second is even more
straightforward as

fX|Y=0,S=0(x) = fX|Y=0(x)

= f
˜X|˜Y =0(x) = f

˜X|˜Y=0,˜S=0(x).

(iii) Note that in view of (4) we have

fX|S=1(x) =
s(x)fX(x)

P (S = 1)
=

y(x)e(x)fX(x)

P (S = 1)

=
P (Y = 1, X = x)

fX(x)
× e(x)fX(x)

P (S = 1)

= fX|Y=1(x)
πe(x)

P (S = 1)
.

Replacing in the last expression fX|Y=1(x) by
f
˜X|˜Y=1(x) and repeating the above line of argument

backwards we obtain

fX|S=1(x) = f
˜X|˜S=1(x)

π

P (S = 1)

P (˜S = 1)

π̃

= f
˜X|˜S=1(x) × c̃/c = f

˜X|˜S=1(x),

where the last equality follows from (i).

(iv) Reasoning as before, we note that

ỹ(x) =
f
˜X|˜Y=1(x)π̃

f
˜X(x)

=
y(x)fX(x)π̃/π

f
˜X(x)

,
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and

1− ỹ(x) =
(1− y(x))fX(x)(1 − π̃)/(1− π)

f
˜X(x)

.

Dividing the expression above yields the conclusion.

�

Remark 1.

(i) We note that important equality in Lemma 1
(iii) can be intuitively justified by noting that
labeled (S = 1) observation X = x is picked
from the strata Y = 1 described by distribution
fX|Y=1 with probability e(x). In the case of
label-shifted distribution, distributions of positive
class and labeling mechanism are the same as for
PXY S .

(ii) Note that Lemma 1 (i) implies, as
c =P (S = 1)/P (Y = 1), that if π̃ > π then
P (˜S = 1) > P (S = 1) and vice versa. Moreover,
proportion of positives to negatives equals
π(1 − c)/(1 − π) for unlabeled population S = 0

and π̃(1− c)/(1− π̃) for ˜S = 0 (see Lemma 1 (ii)).

We also note that the stronger property than
Lemma 1.(i) holds, namely P (S = 1|Y = 1, X ∈
A) = P (˜S = 1|˜Y = 1, ˜X ∈ A). Moreover, note
that no label-shift situation π̃ = π is equivalent in the
view of Lemma 1 (i) to P (S = 1) = P (˜S = 1)
which can be routinely tested using difference of two
binomial proportion test (this does not require knowledge
of prior π).

In the following, we assume that the prior probability
π = P (Y = 1) is known. This is reasonable assumption
when Y = 1 corresponds to disease and its prevalence
can be estimated with arbitrary accuracy. We note in
passing that in this case distribution of negative examples
PX|Y=0 = (1− π)−1

(

PX − πPX|Y =1

)

is identifiable
although no sample pertaining to it is available. Denote
γ = P (S = 1) and γ̃ = P (˜S = 1). Then Lemma 1 (i)
can be rewritten as

π̃ =
P (˜S = 1)

P (S = 1)
× π, (6)

thus yielding plug-in estimator of π̃:

̂π̃ =
̂γ̃

γ̂
I{γ̂ > 0} × π

=
#(i : ˜Si = 1)/m

#(i : Si = 1)/n
I{γ̂ > 0} × π.

(7)

Lemma 2 below lists the basic properties of ̂π̃.

Lemma 2.

(i) We have for any δ > 0 that with probability at least
1− δ

|̂π̃ − π̃| ≤ 1

c

(

1

γ̂

√

1

n
log

(

4

δ

)

+

√

1

m
log

(

4

δ

)

)

(8)
and the rate of almost sure convergence of ̂π̃ to π̃ is
min(n,m)−1/2.

(ii) We have, with γ̃ = P (˜S = 1)

E ̂π̃ = γ̃ E
(

γ̂−1
I {γ̂ > 0})×π = π̃

(

1 +O
(

1

n

))

.

Proof.

(i) Using |̂γ̃| ≤ 1 and the triangle inequality, the proof
follows routinely from

|̂π̃ − π̃| ≤ π

{∣

∣

∣

∣

∣

̂γ̃

γ̂
−

̂γ̃

γ

∣

∣

∣

∣

∣

+
∣

∣

∣

̂γ̃ − γ̃
∣

∣

∣

1

γ

}

≤ π

{∣

∣

∣

∣

γ̂ − γ

γ̂γ

∣

∣

∣

∣

+
∣

∣

∣

̂γ̃ − γ̃
∣

∣

∣

1

γ

}

=
π

γ

{∣

∣

∣

∣

γ̂ − γ

γ̂

∣

∣

∣

∣

+
∣

∣

∣

̂γ̃ − γ̃
∣

∣

∣

}

,

on the set {γ̂ > 0}, equality π/γ = c−1 and
application of Hoeffiding’s exponential inequality
applied to binomial proportions (see Proposition 2.5
of Wainwright (2019)).

(ii) Let N1 = #{Si = 1} and M1 = #{˜Si = 1} be
the sizes of labeled samples in D and ˜D respectively,
and note that using independence of M1 and N1:

E ̂π̃ = EM1

(

E

(

̂π̃
∣

∣M1

))

× π

= E

(

M1

m

1

γ̂
I {γ̂ > 0}

)

× π

= E

(

M1

m

)

E

(

1

γ̂
I {γ̂ > 0}

)

× π.

Lemma 2 (ii) thus follows from Lemma 1 of
Mielniczuk (1985), which implies that

E

(

1

γ̂
I {γ̂ > 0}

)

=
1

γ

(

1 +O
(

1

n

))

,

and thus

E

(

M1

m

1

γ̂
I {γ̂ > 0}

)

× π

=
γ̃

γ
× π

(

1 +O
(

1

n

))

= π̃

(

1 +O
(

1

n

))

.

�
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2.2. Bayes classification rules for label-shift aug-
mented PU data. Let η(x) = P (Y = 1|S = 0, X =

x) and η̃(x) = P (˜Y = 1|˜S = 0, ˜X = x). In
the work of Wawrzeńczyk and Mielniczuk (2024), Bayes
classification function dPU

B (x) = η(x)/(1 − η(x)) based
on (X,S) was considered on strata S = 0. It follows
that the corresponding Bayes rule has the following form:
the observation is classified to the positive class, if the
condition

dPU
B (x) =

η(x)

1− η(x)
=

y(x)− s(x)

1− y(x)
> 1 (9)

is satisfied, and to the negative class in the opposite case.
Here we show that in the label shift case the rule is
modified by changing the threshold of the dPU

B (x).

Theorem 1.

(i) The Bayes rule for ( ˜X, ˜S) = (x, 0) has the following
form. Classify (x, 0) to class Y = 1 if the condition

dPU
B (x) >

π

1− π

1− π̃

π̃

=

P (S=1)

P (˜S=1)
− π

1− π
=

π
π̃ − π

1− π
=: θ

(10)

is satisfied, or formulating the rule equivalently,
y(x) > (θ + s(x))/(1 + θ).

(ii) The Bayes risk of ˜dPU
B equals

P (˜S = 0)E
˜X|˜S=0 min

(

η̃( ˜X), 1− η̃( ˜X)
)

=
1

2
P (˜S = 0)− 1

2
E

˜X ˜S

∣

∣

∣2η̃( ˜X)− 1
∣

∣

∣ .

Note that, if no label shift occurs, then the threshold
θ = 1, thus the result generalizes Theorem 1 (ii) of
Wawrzeńczyk and Mielniczuk (2024).

Proof.

(i) Let ˜dPU
B (x) = η̃(x)/(1 − η̃(x)) be a Bayes

classification function corresponding to η̃(x). The
pertaining Bayes rule has the following form

1 <
η̃(x)

1− η̃(x)
=

P (˜Y = 1|˜S = 0, ˜X = x)

P (˜Y = 0|˜S = 0, ˜X = x)

=
P (˜Y = 1, ˜S = 0, ˜X = x)

P (˜Y = 0, ˜S = 0, ˜X = x)

=
f
˜X(x)

f
˜X(x)

× ỹ(x)− s̃(x)

1− ỹ(x)
=

ỹ(x)(1 − e(x))

1− ỹ(x)

=
y(x)(1 − e(x))

1− y(x)

1− π

π

π̃

1− π̃
,

where the last equality follows from Lemma 1
(iv). This is, using Lemma 1 (i), equivalent to the
following event

y(x)− s(x)

1− y(x)
>

π

π̃

1− π̃

1− π

=
P (S = 1)

P (˜S = 1)

(1− πP (˜S = 1)/P (S = 1))

1− π

=
P (S = 1)− πP (˜S = 1)

P (˜S = 1)(1− π)
=

P (S=1)

P (˜S=1)
− π

1− π
.

(ii) The proof follows from Theorem 1 of Wawrzeńczyk
and Mielniczuk (2024).

�
Theorem 1 (i) can be explained in the following way.
As P

˜X|˜S=0 is label shifted distribution of PX|S=0 and

decisions on S = 1 and and ˜S = 1 are error-free, the
Bayes rule for the target population is Bayes rule for the
source with changed threshold. The Bayes rule in question
is dPU

B (x), and the modified threshold for label shifted
population is in this case (see, e.g., Elkan (2001))

P (Y = 1|S = 0)

P (Y = 0|S = 0)

P (˜Y = 0|˜S = 0)

P (˜Y = 1|˜S = 0)
=

π

1− π

1− π̃

π̃
,

where the last equality follows from Lemma 1 (i). This
coincides with (10). Note that, surprisingly at the first
sight, the threshold does not depend on c. This is due
to the fact that the imbalance ratio for the target and
training sample equal (π̃/(1 − π̃))/(π/(1 − π)) is the
same as imbalance ratio for their corresponding unlabeled
subsamples (see Remark 1 (ii)).

Note that if π̃ > π then the rule becomes less
conservative than in the no-label-shift case. Moreover, it
follows from the proof above that the Bayes rule which
(erroneously) does not take into account the label shift will
classify to positive class if

y(x)− s(x)

1− y(x)
> 1 ≡ ỹ(x)− s̃(x)

1− ỹ(x)
>

π̃

1− π̃

1− π

π
.

Rule in (10) yields its empirical analogue for label-shift
case: classify as positive (Y = 1) when

ŷ(x) − ŝ(x)

1− ŷ(x)
>

N1

n
m
M1

− π

1− π
, (11)

where N1,M1 are sizes of labeled samples in D and ˜D,
respectively and ŷ(x), ŝ(x) are estimators of y(x) and
s(x) discussed below.

3. Experiments
3.1. Datasets. To estimate the performance of the
label shift methods, we based our experiments on several
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Table 1. Dataset statistics.
Name Samples Features Class prior π
MNIST 3v5 13454 784 0.53
MNIST OvE 70000 784 0.51
CIFAR CT 12000 512 0.50
CIFAR MA 60000 512 0.40
STL MA 13000 512 0.40

datasets with varying characteristics (summarized in
Table 1). MNIST1 dataset is considered in two variants:
3v5, when 3’s are positive and 5’s are negative, and
OvE, where the classes are split between Odd and
Even examples. Similarly, CIFAR2 dataset is split into
two tasks: Car-Truck (CT), where automobile (car)
images are positive, and trucks are negative; as well
as Vehicle-Animal (VA) split differentiating between
vehicles (airplane, automobile, ship and truck) and
animals (bird, cat, deer, dog, frog and horse). STL3

dataset has identical classes as CIFAR, and there, only
Machine-Animal (MA) split is considered. Note that (see
Table 1) classes for the first four data sets are almost
exactly balanced, for the remaining two the ratio of
positive to negative elements is 2 to 3.

We used several settings for the label frequency: c ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. For MNIST datasets, PU labeling
was biased according to example’s boldness score, i.e.,
mean value of a pixel over the whole image. The portion
of the most bold positive examples which corresponded to
the desired label frequency was labeled, yielding control
of c. In the case of CIFAR dataset, the labeling process
utilized redness score (defined as r(x) = (R(x)−G(x))+
(R(x) − B(x)), where R(·), G(·), B(·) correspond to
mean R, G and B channel pixel values of input image x)
as a labeling measure. The same metric was used also for
STL labeling.

We simulate label shift phenomenon as follows. We
assume several π̃ values (π̃ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, as
well as the original dataset, corresponding to π̃ = π). At
test time we obtain label shifted dataset:

• π̃ > π. In order to increase the prior in the test
dataset, we drop a portion of negative examples.
We randomly sample 1−π̃

π̃ × #(Ytest = 1) <
#(Ytest = −1) negative examples. As the ratio
of positives to negatives is now approximately
nπ/[nπ(1 − π̃)/π̃)], we obtain a label shifted
example with prior π̃.

• π̃ < π. Symmetric case. We decrease the proportion
of positive examples to π̃ by sampling π̃

1−π̃ ×
#(Ytest = −1) < #(Ytest = 1) positives.

1http://yann.lecun.com/exdb/mnist/.
2https://www.cs.toronto.edu/˜kriz/cifar.html.
3https://cs.stanford.edu/˜acoates/stl10/.

• π̃ = π. We preserve the original test dataset.

3.2. Baseline models. VAE-PU-Bayes (Wawrzeńczyk
and Mielniczuk, 2024) (abbreviated as VP-B) based on the
results of Na et al. (2020) was selected as a state-of-the-art
PU method working under SAR assumption. Estimation
of s(x) is performed using a simple feedforward Neural
Network (NN).

3.3. Estimation of π̃. We start by considering
estimators of π̃ which will be then incorporated into
proposed classifiers. The first estimator is ̂π̃ defined
in (7) and is called the direct estimator of π̃ in the
following. Alternatively, one can apply classical EM
algorithm (see the work of Saerens et al. (2002)), to
estimate labeled-shifted prior probability π̃ in this setting.
For this aim y(x), which in classical case is estimated by,
e.g., NN based on fully observable sample (Xi, Yi), i =
1, . . . , n is estimated here by one of the PU estimators
of posterior probability under selection bias. We use the
variational PU-Bayes classifier VP-B (Wawrzeńczyk and
Mielniczuk, 2024) for this purpose. For other possible
variational classifiers designed for this framework; see the
works of Na et al. (2020) or Wawrzeńczyk and Mielniczuk
(2023). Note that as π it is assumed known, it replaces
in the original algorithm fraction of positive observation
in the sample, which is not available. The resulting EM
estimator is denoted by ̂π̃EM .

3.4. Empirical Bayes rules classifiers. We define
several classifiers based derivations in Section 2.1 . In our
experiments, we aimed to evaluate the proposed methods
and choose the one most adequate to handle the biased
label shift PU problems.

CLS estimator. This is an empirical analogue of the
Bayes rule defined in (11) with ̂π̃ defined in (7). We
use VP-B to estimate y(x) and a separate NN to estimate
s(x). The proposal is named the cut-off label shift (CLS)
estimator.

CLS-EM estimator. The estimator is defined similarly
to CLS, the only difference being that threshold is changed
from ̂π̃ to ̂π̃EM .

ALS estimator. We note that due to (4) and (5) we have

ỹ(x) =
s̃(x)

s(x)
× y(x). (12)

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://cs.stanford.edu/~acoates/stl10/
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Table 2. MSE of direct and EM estimators of π̃ (mean over all datasets).
c 0.1 0.3 0.5 0.7 0.9
Estimator Direct EM Direct EM Direct EM Direct EM Direct EM
π̃
0.1 0.025 0.047 0.014 0.033 0.008 0.027 0.006 0.025 0.003 0.025
0.3 0.037 0.029 0.025 0.019 0.014 0.014 0.011 0.015 0.005 0.014
0.5 0.042 0.023 0.027 0.017 0.016 0.012 0.012 0.012 0.005 0.009
0.7 0.055 0.034 0.030 0.028 0.019 0.024 0.014 0.021 0.006 0.018
0.9 0.070 0.047 0.039 0.041 0.025 0.037 0.018 0.032 0.008 0.029
No shift 0.036 0.024 0.021 0.017 0.013 0.012 0.010 0.010 0.004 0.007
Mean error 0.044 0.034 0.026 0.026 0.016 0.021 0.012 0.019 0.005 0.017

Plugging-in this expression in expression for the
classification function ˜dPU

B (x) we obtain (see (9))

ỹ(x)− s̃(x)

1− ỹ(x)
> 1 ≡

s̃(x)
(

y(x)
s(x) − 1

)

1− s̃(x)
s(x)y(x)

> 1.

This gives rise to the competing empirical Bayes rules:
estimate y(x) and s(x) based on D and s̃ based on ˜D
and apply the formula above with plugged in estimators to
construct empirical Bayes rule. We use VP-B to estimate
y(x) and separate NNs to estimate s(x) and s̃(x). We
note that in contrast to the classifiers introduced above one
needs to estimate posterior s̃(x). We call this estimator the
augmented label shift (ALS) estimator.

3.5. General experiment settings. For each
experimental setting (i.e., a combination of dataset,
label frequency c, target label shift prior π̃ and label
shift estimator), we performed 10 experiments, each
initialized with a different random seed (equal to
experiment number). Data was split between train and
test following 70-30 split. Because prediction for labeled
examples is trivial in this setting (as S = 1 implies
Y = 1), instead of using traditional metrics, we define
a set of U-metrics. U-metrics are calculated based
only on unlabeled stratum of test set, which alleviates
trivial prediction impact and puts focus on the classifier
performance on the key test subset. As an example,
U-accuracy is an accuracy calculated only on the S = 0
stratum: U-ACC = nU

−1
∑

xU∈U I{d(xU , s) = yU}.
The whole method and experiment code is available in a
public GitHub repository4.

4. Results of experiments
Table 2 and Fig. 1 contrast the π̃ estimation performance
of the direct and EM estimators. Both achieve generally
good results, and in both cases, their quality increases as
label frequency rises. This is especially apparent for the

4https://github.com/wawrzenczyka/VAE-PU-label
-shift.

direct estimator and due to the fact that for low c values the
number of labeled samples is low, and thus estimation of
P (S = 1) in the denominator of (6) becomes sensitive to
small deviations. Also, this is consistent with form of the
bound in (8), where c appears in the denominator of the
bound. Due to this property, EM outperforms the direct
estimator up until c = 0.3, where the direct estimator
starts to prevail. As evident in Fig. 1, the direct estimator
also tends to perform better for lower shift priors, with
EM outperforming direct estimator for the higher prior
values. Both this property and the significant variability
of results are heavily impacted by the low label frequency
performance of both estimators: compare MSEs of both
estimators for c = 0.1 and c = 0.9 in Table 2. An
important thing to note is that using the EM estimator
is associated with the additional cost of the iterative EM
procedure—it increases the computational complexity of
the estimation, making it significantly slower compared to
the direct method.

Figure 2 compares the performance of the three
estimators proposed in Section 3.4. It is evident that
the ALS estimator lags behind the other two methods in
terms of U-balanced accuracy. This is likely to be related
to its more complex formulation, requiring training of
two additional models for the estimation of both s(x)
and s̃(x). CLS and CLS-EM are significantly more
comparable in performance. To help differentiate between
them, we report average rank in Table 3, as well as the
difference of accuracy between the method and the best
classifier in Table 4. Both metrics are averaged over all
label frequencies and label shift priors. According to both
metrics, CLS outperforms the competitor, with a mean
rank of around 1.5 and approximately two times smaller
difference from the best estimator. CLS estimator is more
consistent over the performed experiments and various
datasets, but CLS-EM also has evident benefits in some
cases - it often slightly edges out the CLS estimator for
high label frequencies. We note also consistently better
performance of CLS for π̃ = 0.9 (the fifth row of Fig. 2).
For the case of no shift (π̃ = π, the last row of Fig. 2) their
performance is strikingly similar, with slight superiority

https://github.com/wawrzenczyka/VAE-PU-label-shift
https://github.com/wawrzenczyka/VAE-PU-label-shift
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Fig. 1. Comparison of π̃ estimation errors (MSE) (averaged over all label frequencies).

Table 3. U-balanced accuracy ranks.
Estimator CIFAR CT CIFAR VA MNIST 3v5 MNIST OvE STL VA Mean rank
ALS 2.64 2.74 2.72 2.73 2.76 2.72
CLS 1.61 1.66 1.48 1.37 1.49 1.52
CLS-EM 1.75 1.60 1.80 1.89 1.75 1.76

Table 4. U-balanced accuracy difference from best estimator.
Estimator CIFAR CT CIFAR VA MNIST 3v5 MNIST OvE STL VA Mean ifference
ALS 0.086 0.089 0.156 0.197 0.142 0.134
CLS 0.010 0.011 0.015 0.010 0.010 0.011
CLS-EM 0.018 0.021 0.033 0.024 0.030 0.025

of CLS-EM for c ≥ 0.7 in the case of CIFAR VA and
STL VA.

Table 5 shows the maximum standard error of the
mean U-Balanced accuracy for each estimator, when
the maximum is taken over c. The reported errors are
small when compared to U-balanced accuracy, which
indicates that the results are stable and reliable. The
highest standard error is observed for the ALS estimator,
which matches the results presented in Fig. 2: the CLS
and CLS-EM estimators are more consistent in their
performance.

Using MNIST 3v5 as an example, we analyzed how
different labeling biases affect the performance of the
estimators. While creating the dataset as described in
Section 3.1, instead of labeling the most bold examples,
we sampled the examples without replacement with
step weights. The “standard” labeling reported before
corresponds to 0−1 step weight: the boldest nL examples
are sampled with weight 1, while the remaining have their

weights set to 0. Similarly, 0.5 − 0.5 step corresponds
to the SCAR scenario, as both the top nL examples and
the remaining ones are sampled with equal weight of
0.5. The results are presented in Table 6. We observe
that the performance of the estimators is consistent across
different labeling biases, with performance generally
improving as the datasets get closer to the SCAR scenario
(except for the select cases of the ALS estimator), which
is obviously the easiest task to solve. This illustrates the
robustness of the estimators to different labeling biases
regardless of the shift prior.

5. Summary
In this paper, we discuss the issue of label shift
phenomenon in the context of augmented PU data. In
the general result section, we investigated probabilistic
structure of label-shifted augmented PU data, proving
that the label shift for general populations carries over to
their unlabeled subpopulations. Moreover, we constructed
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Fig. 2. U-balanced accuracy in label shift scenario for each estimator.
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Table 5. Maximum standard error of the mean U-balanced accuracy for each estimator.
Estimator Dataset No shift π̃ = 0.1 π̃ = 0.3 π̃ = 0.5 π̃ = 0.7 π̃ = 0.9

ALS

CIFAR CT 0.014 0.027 0.025 0.032 0.008 0.010
CIFAR VA 0.019 0.017 0.017 0.016 0.016 0.016
MNIST 3v5 0.024 0.025 0.024 0.016 0.022 0.020
MNIST OvE 0.025 0.024 0.023 0.027 0.022 0.017
STL VA 0.016 0.029 0.031 0.014 0.014 0.015

CLS

CIFAR CT 0.007 0.028 0.013 0.006 0.005 0.008
CIFAR VA 0.003 0.007 0.006 0.005 0.006 0.009
MNIST 3v5 0.013 0.027 0.025 0.012 0.016 0.019
MNIST OvE 0.012 0.021 0.013 0.012 0.012 0.013
STL VA 0.009 0.018 0.011 0.006 0.009 0.014

CLS-EM

CIFAR CT 0.005 0.013 0.008 0.006 0.007 0.011
CIFAR VA 0.003 0.004 0.005 0.003 0.005 0.007
MNIST 3v5 0.012 0.025 0.017 0.015 0.013 0.017
MNIST OvE 0.013 0.021 0.016 0.013 0.009 0.006
STL VA 0.007 0.021 0.018 0.007 0.009 0.013

Table 6. Mean U-balanced accuracy for MNIST 3v5 with various step probabilities and shift priors, averaged by label frequency.
Estimator Step size No shift π̃ = 0.1 π̃ = 0.3 π̃ = 0.5 π̃ = 0.7 π̃ = 0.9

ALS

0 – 1 (standard) 0.701 0.629 0.666 0.684 0.717 0.696
0.1 – 0.9 0.717 0.576 0.585 0.568 0.739 0.716
0.3 – 0.7 0.747 0.583 0.576 0.555 0.781 0.745
0.5 – 0.5 (SCAR) 0.760 0.577 0.587 0.551 0.775 0.745

CLS

0 – 1 (standard) 0.837 0.815 0.853 0.841 0.819 0.772
0.1 – 0.9 0.889 0.867 0.898 0.885 0.878 0.855
0.3 – 0.7 0.913 0.908 0.920 0.909 0.902 0.890
0.5 – 0.5 (SCAR) 0.919 0.918 0.930 0.916 0.914 0.909

CLS-EM

0 – 1 (standard) 0.822 0.836 0.850 0.828 0.787 0.704
0.1 – 0.9 0.865 0.894 0.906 0.872 0.817 0.720
0.3 – 0.7 0.890 0.933 0.926 0.896 0.850 0.759
0.5 – 0.5 (SCAR) 0.900 0.940 0.931 0.905 0.865 0.784

the correct Bayesian rule for the label-shifted sample
showing that it is Bayes classifier for the augmented PU
data with appropriately modified threshold. Our findings
led us to propose three potential classifiers built upon
the state-of-the-art VAE-PU-Bayes method: ALS, CLS
and CLS-EM. As an intermediate step, we also consider
the problem of π̃ estimation, which is a key component
of the proposed classifiers; we propose the direct and
EM estimators in order to solve this problem. In the
experiment section, we show that both the direct and EM
estimators perform well in terms of π̃ estimation. We also
conclude that the CLS estimator generally outperforms
the competing methods, and CLS-EM is a viable
alternative in high label frequency scenarios. Future
research in this area might investigate the possibility of
creating even more stable label shift prior estimators, as
well as label shift detection. Moreover, allowing for

different propensity scores for training and target sample
is of both theoretical and practical interest.
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Wawrzeńczyk, A. and Mielniczuk, J. (2022). Revisiting
strategies for fitting logistic regression for positive and
unlabeled data, International Journal of Applied Math-
ematics and Computer Science 32(2): 299–309, DOI:
10.34768/amcs-2022-0022.
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