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Medical device security has become a critical focus in the healthcare sector, as increasing connectivity introduces chal-
lenges related to patient safety, data confidentiality, and system reliability. To address these concerns, various strategies
have been developed, including risk identification, mitigation techniques, and autonomic recovery mechanisms. In this pa-
per, we propose a novel conceptual framework that leverages reinforcement learning for self-healing in implanted medical
devices (IMDs). This approach integrates automated recovery actions with real-time risk identification, providing a robust
mechanism to maintain system functionality and safeguard patient well-being in the face of adversarial threats. By using
a behavioral abstraction model of an insulin pump as a case study, our framework demonstrates the ability to maintain
continuous system functionality under a variety of attack scenarios, achieving the maximum simulated survival time of
20,165 minutes for all cases. In comparison, without the self-healing mechanism, survival times drop significantly, partic-
ularly under attacks on critical components, such as glucose sensors and meters. These results highlight the effectiveness
of the proposed approach in mitigating the impact of system failures and ensuring reliable operation of IMDs in adversarial
environments.
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1. Introduction 2024; Deja et al., 2021).

The integration of technology has significantly
improved communication and data collection for both
patients and medical practitioners. Wearable and
implanted medical devices (IMDs) are prominent
examples of this advancement. Equipped with sensors,
these devices continuously monitor patients’ health and
provide critical data to users. In many cases, they also
transmit this information directly to healthcare providers
or hospitals, enabling timely interventions and improved

As technology continues to be implemented in various
fields and solidifies its role as an indispensable
part of modern life, its application in the medical
sector has grown exponentially. This growth is
exemplified by the advent of the Internet of Medical
Things (IoMT). Similarly to the Internet of Things,
the IoMT is characterized by incorporating internet
connectivity. It is also characterized by its utilization

of advanced technology for data analysis, processing
and collection; swiftly revolutionizing healthcare by
enhancing connectivity and enabling more efficient
monitoring and management of patient care (Ahmed et al.,
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care outcomes (Muhammad ef al., 2021).

Despite its benefits, the IoMT introduces substantial
challenges, particularly in safety and security. Failures in
life-critical devices, such as insulin pumps, pacemakers,
and implantable cardioverter defibrillators (ICDs), pose
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serious threats to patient health. For instance, an insulin
pump malfunction could lead to dangerous fluctuations in
blood sugar levels, while the failure of a pacemaker or
ICD during a cardiac event could result in life-threatening
complications. Such risks highlight the pressing need
for robust quality control measures and proactive device
maintenance.

Beyond hardware malfunctions, IoMT devices are
also exposed to cybersecurity threats. Vulnerabilities
such as denial-of-service (DoS) attacks, data breaches,
and injection attacks jeopardize the safety and privacy of
patients, particularly when targeting devices that manage
life-sustaining functions, such as IMD (Pritika ez al.,
2023). The potential for exploitation due to inadequate
risk management or delayed security updates highlights
the critical importance of implementing comprehensive
security strategies (Baker, 2022).

To address these challenges, various automated
fault-recovery strategies have emerged, including
self-adaptivity, self-organization, reconfigurable systems,
and self-healing (SH) approaches. Reconfigurable
systems, primarily focusing on hardware-level fault
recovery, may face limitations in tightly constrained
IMDs where flexibility and redundancy are restricted
(NRC, 2001). In contrast, SH systems integrate fault
tolerance and self-stabilization with survivability,
offering a dynamic solution. By following a
detect-diagnose-recover loop, SH systems are well-suited
for developing comprehensive schemes that address fault
detection, mitigation, and recovery in IMDs (Psaier and
Dustdar, 2011).

In recent years, the integration of Aurtificial
Intelligence (AI) has revolutionized various domains,
including healthcare and cybersecurity. Such examples
are showcased by Fox et al. (2020) and Dénes-Fazakas
et al. (2024), who leveraged reinforcement learning
(RL) a tool to automatically calculate the amount of
insulin to be given by a patient via an insulin pump.
Furthermore, Wang et al. (2023) carried a proof of concept
feasibility trial to evaluate a proposed RL approach
towards glycemic control in type 2 diabetes patients. AI’s
capabilities in automating data processing, identifying
patterns, and generating intelligent responses make it an
ideal candidate for enhancing SH systems. By leveraging
Al, particularly RL, SH systems can achieve advanced
levels of automation and adaptability, addressing the
inherent complexities of fault recovery and security
management in IMDs.

In this work, we propose a novel approach that
integrates SH with RL to enhance security and enable
autonomous recovery in IMDs. To illustrate this approach,
we focus on insulin pumps as a case study, demonstrating
the feasibility and effectiveness as well as practical
application of our methodology. This innovative scheme
leverages the adaptability and learning capabilities of RL

agents to autonomously detect, mitigate, and recover from
potential faults or cyberattacks. By embedding intelligent
decision-making into the SH framework, the system can
respond dynamically to both expected and unforeseen
disruptions, ensuring continuous device functionality and
patient safety.

Insulin pumps are vital life-supporting devices that
require robust mechanisms to maintain their reliability
under strict performance constraints. Through this case
example, we demonstrate how the RL-based SH approach
can effectively manage risks, recover from disruptions,
and uphold the integrity of critical health data in real time.

Additionally, we delve into the specific requirements
for implementing agent-based SH in IMDs. This includes
defining essential components such as fault-detection
mechanisms, learning algorithms tailored to real-time
healthcare scenarios, and resource-efficient recovery
protocols that respect the physical and computational
constraints of IMDs.  Furthermore, we outline the
principles for designing simulation environments that
accurately model the complexities of IMD operations.
These simulations are critical for testing and validating the
effectiveness of the RL agent-based SH scheme, ensuring
its readiness for deployment in real-world healthcare
systems.

Through this comprehensive approach, we aim to
establish a robust framework for integrating advanced
Al-driven self-healing capabilities into life-critical
medical technologies. = The following sections are
structured as follows: Section 2 will present related work
with cyber-intrusions in IMDs, self-healing systems,
and reinforcement learning; Section 3 introduces our
methodology, exploring the requirements for self-healing,
our RL formulations and risk mitigation scheme, and
finally defining our agent-based Self-Healing approach
and test-bench. In Section 4 we present our results, along
with further information regarding our experimental setup
and evaluation protocols. Finally, we present a discussion
and conclusions obtained from this research.

2. Related works

2.1. Cybersecurity threats and vulnerabilities in
implanted medical devices. As network connectivity
becomes integral to the healthcare sector, the risks
associated with cyberattacks have grown significantly.
In 2024, global data breaches in healthcare cost an
average of $4.88 million per incident, reflecting a 10%
increase from 2023, according to a study by IBM
(2024).  However, implementing Al-driven security
and automation measures has demonstrated promising
outcomes, with average savings of $2.22 million per
breach, highlighting the transformative potential of Al in
bolstering security.

IMDs, a critical subset of the healthcare industry,
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represent a growing market projected to reach $138.1
billion by 2030 (HGV Research, 2024a). This growth is
driven by the increasing prevalence of chronic conditions
such as diabetes and cardiovascular diseases, which
necessitate continuous monitoring and treatment through
devices like insulin pumps and pacemakers (HGV
Research, 2024b). However, the incorporation of network
connectivity into IMDs has amplified their vulnerability,
raising significant concerns about patient safety and data
security.

As previously mentioned, attacks on the healthcare
sector have become widespread with the incorporation
of network connectivity into the sector.  However,
$2.22 million savings on average were observed by
the implementation of Al on security and automation,
showcasing the positive impact of Al incorporation for
security.

IMDs, by their very nature, are life-critical
devices implanted within the patient’s body to
support vital functions. For example, implanted
cardioverter-defibrillators (ICDs) regulate cardiac
rhythms, while insulin pumps provide precise insulin
delivery. The integration of connectivity in these devices
exposes them to risks ranging from unexpected failures
to data leaks and cyberattacks (Hassija et al., 2021).
These vulnerabilities have prompted regulatory bodies
such as the US Food & Drug Administration (FDA) to
mandate security measures for IMDs FDA (2025; 2023),
and innovative approaches like authentication techniques
combined with proximity sensing (e.g., distance bounding
protocols) have been proposed to mitigate risks, such as
man-in-the-middle attacks (Camara et al., 2021). Some
methods even derive security keys from physiological
signals to enhance protection (Pirbhulal et al., 2018).

The unique risks associated with IMDs require
comprehensive threat modeling and risk assessment
strategies, such as STRIDE (Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service,
and Elevation of Privilege). High-risk IMDs, particularly
class III devices like pacemakers and ICDs, face distinct
challenges. For instance, battery depletion attacks have
been a long-standing concern, as highlighted in 2017
by the voluntary recall of nearly 500,000 implantable
pacemakers due to cybersecurity vulnerabilities (Kuehn,
2018).

Data confidentiality and integrity are additional
critical vulnerabilities. IMDs often store and transmit
sensitive patient information to healthcare providers.
Without robust authentication mechanisms and access
controls, this information becomes susceptible to
breaches. Unauthorized access could compromise not
only data confidentiality, but also data integrity, enabling
potential tampering with device functionality.

Network vulnerabilities further exacerbate these
risks, as insecure communication channels can be

exploited to disrupt device operations. However,
while enhancing security is imperative, it must be
balanced with the need for medical practitioners to
access IMDs easily during emergencies. This showcases
the complexity of securing IMDs and highlights the
need to navigate trade-offs between robust security and
operational accessibility.

In conclusion, cyber intrusions in IMDs pose
multifaceted challenges that demand innovative,
multi-layered solutions. Addressing these threats
requires a combination of advanced security measures,
regulatory compliance, and thoughtful design principles
that prioritize both patient safety and device functionality.

2.2. Advancing system resilience with self-healing.
SH systems are designed to detect, diagnose, and
recover from faults autonomously. Recovery in SH
systems does not necessarily imply a complete restoration
of functionality; rather, it may involve some loss in
performance, as noted by the term degradation introduced
by Koopman (2003). This concept refers to a system’s
ability to maintain partial functionality by prioritizing
critical tasks over non-vital ones. Common recovery
methods include disabling less important tasks, rebooting
from a previous checkpoint, and other similar approaches.

A notable example of an integrated SH system
is described by Seiger et al.  (2015; 2018), who
present PROtEUS, a process execution system that
utilizes closed feedback loops, specifically the MAPE-K
(Monitor, Analyze, Plan, Execute, and Knowledge)
framework. This system highlights the importance of
addressing inconsistencies between software evaluations
and real-world outcomes, emphasizing the necessity of
accurate detection and correction of these discrepancies
for effective SH implementation.

In another study (Dong et al., 2003), an SH
computing environment is introduced, built upon a
process comprising monitoring, analysis and verification,
and adaptation. This system employs a fault handler
tailored for different fault types, such as system-level,
component-level, or agent-level faults.  During the
monitoring phase, the fault handler detects anomalies and
triggers the subsequent analysis and verification phase.
Here, a SH handler identifies the nature of the fault and
its recovery requirements. In the adaptation phase, the
fault handler executes the appropriate recovery procedures
or consults an application-delegated manager to employ
alternative resources, such as switching to a backup
machine, to ensure continuity.

Al further enhances the capabilities of SH systems,
particularly in anomaly detection and fault prediction. By
training models on historical data to establish baseline
system behavior, Al systems can identify deviations
from normal patterns, flagging potential issues before
they escalate. This predictive functionality not only
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helps in early fault detection, but also assists in root
cause analysis, enabling proactive measures to prevent
recurrence (Johnphill et al., 2023).

In summary, SH systems represent a critical
advancement in fault tolerance, with applications ranging
from process management to embedded systems. By
integrating Al, these systems can achieve heightened
levels of automation, accuracy, and efficiency, making
them a cornerstone of resilient computing environments.

2.3. Reinforcement learning. RL has emerged as a
powerful tool for addressing complex decision-making
problems, particularly in environments marked by
uncertainty, dynamic interactions, and long-term
objectives. Unlike supervised learning, which relies on
labeled data to train models, RL empowers an agent to
learn autonomously by interacting with its environment.
Through this process, the agent receives feedback in
the form of rewards or penalties, enabling it to optimize
its behavior over time to achieve a desired outcome
(Sutton and Barto, 2018). This trial-and-error learning
mechanism allows RL to uncover strategies that are
not explicitly programmed, making it uniquely suited
for tasks with intricate dependencies and sequential
decision-making requirements. RL is particularly suitable
for environments where the optimal strategy cannot be
predefined and must be discovered through exploration
and exploitation of possibilities.

RL has been successfully implemented across a
variety of domains requiring intelligent decision-making
capabilities. ~ As an example, it has been utilized
to facilitate real-time decision-making for navigation,
collision avoidance, and route optimization in self-driving
cars (Sallab et al., 2017). These successes highlight
RL’s capacity to operate effectively in scenarios where
conventional methods fall short, such as those involving
delayed rewards, high-dimensional state spaces, or
evolving environments.

This versatility of RL extends to healthcare, where
it has been explored for applications such as treatment
planning, medical imaging analysis, and personalized
medicine (Yu et al., 2018). RL enables data-driven
decision-making that allows for patient-specific needs,
improving the precision and effectiveness of medical
interventions. In the context of IMDs, RL has potential
to enhance their functionality, security, and resilience by

e Fault Recovery: RL can optimize self-healing
strategies by learning efficient recovery actions
tailored to device-specific constraints.

* Resource Efficiency: IMDs face tight constraints
when it comes to computational and power
limitations. RL can intelligently allocate resources,
ensuring minimal power consumption while
maintaining operational accuracy.

 Security Enhancements: For instance, RL has been
proposed to improve the reliability of insulin pumps
by classifying insulin dosages as genuine or false,
reducing risks of misadministration and enhancing
patient safety (Rathore et al., 2020).

In this way, the adaptability of RL makes it particularly
suitable for IMDs, enabling continuous learning and
improvement over time. As patient conditions or
device usage patterns evolve, RL allows IMDs to
dynamically respond to these changes, maintaining
optimal performance and mitigating potential risks. Its
ability to automate complex decision-making processes
while accounting for operational constraints makes RL a
key technology for advancing the reliability and security
of medical devices. In conclusion, RL represents a
cutting-edge approach to addressing challenges in IMDs
and beyond. Its ability to navigate uncertainty, adapt
to evolving conditions, and optimize long-term outcomes
positions RL as a cornerstone technology for the next
generation of intelligent and resilient systems.

It happens that RL approaches are often a source of
complaints by system designers as they require extensive
computations and a large amount of memory. Fortunately,
in IMDs these requirements can be largely reduced by the
following factors:

e The number of IMDs states is finite and not very
large.

* The number of automated recovery actions is also
finite and frequently less than the number of states.

e If the number external or internal risks states of
an IMD is finite, then we are able to pre-compute
good policies for this type of IMD on a main-frame
computer and to transfer the results of learning to
the IMD. Later, these policies are individualized to
a given patient by further RL.

* When the number of the risks states is infinite or
very large, one can approximate the policy function
for a selected type of the IMD on a main-frame
computer and transfer it, largely reducing memory
requirements.

The reader may find more on these topics in the works
of Chen et al. (2019) and Zabihi et al. (2023), where
similar aspects arising in the internet of things are
discussed, as well as in that of Kegyes et al. (2021),
where computational aspects of RL applied in the industry
4.0 can be found. A general survey is presented by
Rafajtowicz (2022).

3. Methodology

3.1. Requirements for agent-based self-healing of
implanted medical devices. Run-time threat detection



Mitigating cyber-intrusions in medical devices with agent-based self-healing

and risk probability estimation are crucial for enhancing
the security and reliability of IMDs. Previous research
has introduced non-intrusive methods for threat detection
and risk probability estimation, leveraging timing samples
collected from a device’s trace port (Rao et al., 2017).
These techniques have effectively supported multi-modal
software design and adaptive risk modeling, enabling
automatic threat mitigation. However, they fail to address
recovery actions, which are an essential component of
comprehensive SH systems.

Carreon-Rascon and Rozenblit (2022) proposed a
set of requirements for SH systems was, combining
authentication and mitigation schemes to enable
automated recovery actions in IMDs. The integration
of RL agents into SH systems for IMDs introduces
unique opportunities for adaptability and intelligence,
but it also brings additional challenges. To address
these, agent-based SH systems must satisfy several
domain-specific requirements:

e Least Intrusive Monitoring: Monitoring
mechanisms in IMDs must avoid interfering with
device functionality or compromising patient safety.
Conventional approaches often involve direct access
to system instructions or memory, which can disrupt
operations. Instead, non-intrusive techniques, such
as utilizing trace port data, ensure effective oversight
without compromising performance.

e Least Harmful Recovery Actions: Recovery
mechanisms must prioritize safety and predictability.
Rather than allowing RL agents to directly modify
system instructions, recovery actions should utilize
predefined reset interfaces. These interfaces restore
the device to a validated safe state, reducing the risk
of unintended consequences and maintaining system
integrity.

e Precise Component and Functionality Identifica-
tion: Efficient and targeted recovery is essential.
Thus, classification algorithms play a critical role
in pinpointing the impacted areas, ensuring recovery
efforts are directed where they are most needed.

* Risk-Based Recovery Strategies: Recovery actions
must be adaptable and proportional to the severity
of the threat or fault. For minor faults, localized
reconfigurations may suffice, while more critical
disruptions may necessitate reverting to a previously
validated safe state.  This risk-based approach
optimizes recovery efforts and resource utilization.

By combining the foundational principles of traditional
SH systems with the advanced capabilities of RL agents,
agent-based SH systems for IMDs can address the
unique demands of these life-critical devices. This
hybrid approach ensures robust fault detection, precise

diagnostics, and controlled recovery, all while respecting
the safety requirements and resource constraints inherent
to IMDs. Through this enhanced framework, SH systems
can become a cornerstone of resilient and secure medical
device design, safeguarding both patient health and
operational reliability.

3.2. Principles of simulation design. In this research,
we utilize a behavioral abstraction to model an IMD and
its associated environment. The model is designed to
include all key components and functionalities of an IMD,
ensuring a comprehensive representation of its operational
environment. Each primary component of the IMD (e.g.,
sensors, human interface, controller) is instantiated with
predefined characteristics and behaviors. Additionally, the
simulation incorporates representations of the patient, to
generate physiological signals and simulate responses to
the IMD’s actions, and an adversary, to simulate different
types of cyber attacks.

We propose a general simulation framework that
includes four main components, each serving a distinct
role:

 Interactive Environment (IMD): The IMD itself
acts as the interactive environment, comprising
various interconnected components such as sensors
to monitor physiological data, a controller for
decision-making and actuation, and interfaces for
human interaction. These elements collectively
mimic the IMD’s functionality in real-world
scenarios, capturing both normal operations and
responses to threats.

* Passive Environment (Patient): The patient is
modeled as a passive entity generating physiological
signals, such as glucose levels for an insulin pump
or cardiac rhythms for a pacemaker. The patient
component interacts with the IMD, providing input
data for sensors and receiving outputs, such as insulin
injections from the IMD.

* Adversary: The adversary represents a range of
potential cyber threats, simulating various types of
attacks that the IMD may encounter. These include
denial-of-service (DoS) attacks, data tampering,
injection attacks, or battery depletion threats. By
modeling diverse attack scenarios, the adversary
component challenges the IMD’s robustness and
tests the SH system’s effectiveness.

* Agent (Self-Healing Mechanism): The agent
embodies the SH mechanism, designed to
detect, diagnose, and recover from faults or
attacks autonomously. It interacts with the IMD,
analyzing trace port data, identifying anomalies, and
implementing recovery actions based on predefined
strategies or learned behaviors.
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To ensure that the simulation effectively models
real-world conditions while facilitating robust testing of
the proposed SH framework, several core principles are
followed:

e Modularity: The simulation is structured into
modular components, allowing for flexibility in
updating or replacing specific elements. For
example, different patient models can be integrated
to simulate various physiological conditions, or
adversary models can be modified to represent
emerging attack vectors.

e Realism: Each component is designed to mimic
real-world behaviours as closely as possible.
Physiological signals generated by the patient model
are based on empirical data, and attack scenarios are
informed by documented vulnerabilities and threats
in IMDs. This ensures that the simulation provides
meaningful insights into the system’s performance in
practical applications.

* Scalability: The simulation is built to accommodate
varying levels of complexity, from simple IMD
operations to scenarios involving multiple
adversaries or complex patient conditions. This
scalability allows for progressive testing and
evaluation of the self-healing mechanism under
diverse conditions.

* Interactivity: The dynamic interaction between
components (e.g., IMD, patient, adversary, and
agent) is a central feature of the simulation.
The agent’s ability to detect and respond to
threats depends on real-time data exchanges and
feedback loops, ensuring a realistic representation of
operational challenges.

e Adaptability: The framework supports integration
with machine learning models, such as reinforcement
learning agents, to enhance self-healing capabilities.
This adaptability ensures the simulation remains
relevant as new algorithms and techniques are
developed.

By adhering to these principles and incorporating
additional features, the simulation provides a
comprehensive platform for designing, testing, and
refining agent-based SH systems for IMDs.

3.3. Reinforcement learning agent-based self-healing
for implanted medical devices. The general workflow
for the RL Agent-based SH for IMDs is showcased in
Figure I It includes two core components: a risk
assessment network fig and a control network feontrol.
Together, these components work to estimate the system’s
risk and determine optimal recovery actions to ensure the

reliable, secure, and continuous operation of the IMD.
The overall training process is divided into two sequential
stages, first a supervised learning for risk estimation and
secondly RL for control optimization.

The risk assessment network leverages a transformer
architecture (Vaswani et al., 2017) to estimate the
probability that the system is under attack or in a
compromised state. Leveraging from this architecture
(showcased in Fig. [) allows us to model temporal
correlations in our data. This network uses the state of the
IMD, represented as S;_7.¢, which is a time-series vector
capturing operational data from various components over
a sliding time window of size 7. The input state S;_ 7.
includes operational data from all M/ components, defined
as

Spomia = {S{_puy : t}ij\im (1)

where s¢_., represents the data from component i during
the time interval [t —T', t]. We denote S as the state space,
which is the set of all possible state sequences S;_7.;.

The network outputs a risk probability, ;, € [0, 1],
representing the likelihood of the system being in a
vulnerable state:

e = frisk(St—1:430), 2

where 6 are the learnable parameters of the network.
This output serves as a quantitative measure of system
vulnerability.

To train this network, supervised learning is
employed with labeled data to minimize the binary
cross-entropy loss:

N

1
Ly = *N Zl[yn IOth + (]- - yn) log(l - Tt)]v 3)

where y,, is the ground-truth label indicating whether
the system is under attack, and NN is the total number
of training samples. This process ensures the network
accurately estimates the system’s current risk, which is
crucial for informing the control network.

The control network (i.e., our RL agent) determines
the optimal recovery actions to mitigate risks and maintain
system functionality. Similarly to the risk assessment
network, the control network leverages a transformer
architecture to process the time-series state S;_.;, but
focuses instead on generating an action vector denoted by
Ay. This vector comprises binary decisions for each IMD
component, indicating whether a corrective action (e.g., a
reset) should be applied:

At = {aé}j\io 7(]’% € {Oa 1} . (4)

A value of al 1 signifies that a recovery action is
applied to component 7, while a; = 0 indicates no action
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Fig. 1. Self-healing system with the reinforcement learning scheme:
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the overall framework of the self-healing system for implanted

medical devices (IMDs) consists of a risk assessment and a control network. The risk assessment network evaluates the system’s
states and estimates current risk, while the control network determines recovery actions based on feedback. These components
operate in a loop to maintain system stability by continuously monitoring and mitigating risks (a); the architecture of the
transformer-based model used in the risk assessment and control networks. The model includes input embeddings, positional
encoding, multi-head attention mechanisms, feed-forward layers, and normalization to estimate risks and determine corrective

actions effectively (b).

is taken. Let A denotes the action space, which is the set
of all possible action A;.

The control network is trained using reinforcement
learning to maximize a reward function designed to
encourage effective risk reduction while penalizing
unnecessary corrective actions. The reward rew; at time
t is defined based on the current risk r; and and previous
risk 7,1 (outputs of risk assessment network fyisx) as

A if |y — | <A
rew; =< B if|ry — 1| > A and 1y < rpoq,
c if|7"t*7”t71|>)\ and 7y > e,
(%)

where A, B, and C' are constants representing rewards for
stable, reduced, and increased risk, respectively (i.e., B >
A > (), and A is a threshold for significant risk changes.

The control network learns a stochastic policy
as defined by Kala (2024), denoted g4, which is
parameterized by ¢. The policy 74, is a function
mapping from the state space S to the space of probability
distributions over the action space A, denoted P(A).
Formally,

7y : S — P(A). (6)

For any given state S;_7.; € S, where 1" represents the
time window; 7y (S;—7:¢) yields a probability distribution
over all possible actions A’ € A. The probability of
selecting a specific action A; € A in state S;_p.; € S
under policy 7, is denoted by my(As|Si—7.¢). This is a

scalar value representing this specific probability. The list
of actions is centered around resetting the components to
work under a set of given instructions that ensure each
component is performing the necessary tasks (e.g., sensor
storing and passing on data to the controller, controller
calculating insulin dosage, insulin dosage transmitted to
the insulin pump, etc.).

The objective of the reinforcement learning agent is
to find the policy parameters ¢ that maximize the expected
cumulative discounted reward. This objective function,
J(¢), is defined as

H
J(@) = Erer,[ > 7 orews]. @)

k=tq

Here, 7 represents a trajectory of states, actions, and
rewards, i.e.,

Sto*Titov Ato y I€We s

S(t0+1)7T:tga A(t0+1) y T€Wio 41,

Su-r:H, A, reWH.

The trajectory is generated by the agent following policy
g Wwithin the environment. The expectation E,c, 5 18
taken over all possible such trajectories. rewy is the
scalar reward obtained at timestep k as defined in Eqn. 3
~ € (0,1] is the discount factor, ¢¢ is the initial timestep
of an episode, and H is the episode horizon.

To optimize J(¢) using a gradient ascent method (as
part of the policy gradient method), we need its gradient
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with respect to ¢. According to the Policy Gradient
Theorem (Kala, 2024), this gradient V4.J(¢) is given by

H
Z (Vg log me(Ae]Si—1:t)) Gt

t=to
()

V¢>J<¢) = ETN%

In this expression,
e S;_7. is the state sequence observed at timestep ¢;

e A; is the action taken at timestep ¢, sampled
according to the policy’s probability distribution
7T¢><'|St—T:t);

o Ty (A¢|Si—1.t) is the specific probability of selecting
action A, in state Sy_7.; under policy m4;

o Vg logmy(Ae]Si—7:t) is the gradient of the natural
logarithm of this action probability with respect to
the policy parameters ¢. This term indicates how to
adjust ¢ to increase the log-probability of action Ay;

¢ (7 is the discounted cumulative future reward (also
known as the return) starting from timestep ¢:

H
Gy = Z’yk*trewk. 9)

k=t

This sum G; weighs future rewards according to
the discount factor v, accounting for the fact that
rewards obtained sooner are generally more valuable.
The gradient term Vg, logmy(Ai|Si—7.) is then
weighted by this return G.

The expectation E,., , signifies that, in practice,
this gradient is estimated by averaging the quantity
Zito (Vi log my(Ai]Si—1:.t)) Gy over  multiple
trajectories sampled by executing the policy 7.

The combination of supervised learning for risk
estimation and RL for control optimization ensures a
robust SH mechanism for IMDs. The risk assessment
network provides timely and accurate vulnerability
metrics, while the control network mitigates threats
through adaptive recovery strategies. This enhances the
reliability, security, and operational resilience of IMDs,
which is crucial for maintaining patient safety in dynamic
and potentially adversarial environments.

34. Overview of the proposed architecture. Our
system’s architecture is designed to compute threat
probabilities from sequential trace port data.  For
this purpose, we utilize a transformer-based neural
network to leverage their self-attention ability to learn
context, capture complex patterns, and model temporal
dependencies in sequential data. Unlike methods such as

sliding windows that may truncate important contextual
information, the transformer’s encoder can process and
retain relationships across extended data sequences. As
shown in Fig. Il our approach utilizes only the encoder
layers of the standard transformer architecture (Vaswani
et al., 2017); we omit the decoder layers as our goal
is to analyze and classify the input sequence rather than
generate a new one.

A key component of the transformer architecture
is its self-attention mechanism, which allows the model
to weigh the importance of different parts of the input
sequence when processing a specific position. The input
for an attention layer consists of three matrices from the
embedding of the trace port data: Queries (@), Keys (K),
and Values (V). In the encoder, these are all derived
from the output of the previous layer. The attention
score is calculated using the following scaled dot-product
formula:

T

Attention(Q, K, V) = softmax(QK )V, (10)

Vi,

where dj, is the dimension of the keys, and the scaling
factor 1/4/d}, prevents the dot products from becoming
too large.

This attention mechanism is further enhanced by
employing Multi-Head Attention, which involves running
the attention mechanism multiple times in parallel with
different learned linear projections of the original Q,
K, and V matrices. With this, the model attends to
information from different representational subspaces at
different positions in parallel. The outputs are then
concatenated and once again projected, resulting in the
final values. The process is defined as

MultiHead(Q, K, V')

= Concat(heady, . .. ,head,)W?°, (11)

where
head; = Attention(QW <, KW/, VW) (12)

and WiQ,WiK,VWiK,WO are learnable parameter
matrices of linear projections.

Our model is composed 2 encoder layers, both
composed of two primary sub-layers: the multi-head
self-attention mechanism described above, followed by
a position-wise, fully connected feed-forward network,
in this case a Multi-Layer Perceptron (MLP). Layer
normalization is applied around each of the two
sub-layers to facilitate effective training. For our specific
implementation, the transformer model uses 6 attention
heads in the multi-head attention mechanism, and a
hidden dimension of 96.



Mitigating cyber-intrusions in medical devices with agent-based self-healing

3.5. Test bench: A simulated insulin pump. To
evaluate the proposed SH framework, a behavioral
abstraction of an insulin pump was developed as a
case study, as depicted in Fig. This abstraction
models the essential components and functionalities of an
insulin pump system, ensuring a close representation of
real-world operations. The main components and their
roles are shown below:

* Glucose sensor: A component of the Continuous
Glucose Monitoring (CGM) system. It is responsible
for measuring glucose levels in the interstitial fluid
surrounding the patient’s cells. This near real-time
data serves as the foundation for insulin delivery
decisions. Functionality includes measuring glucose
levels with optional Gaussian noise to simulate
variability, and performing auxiliary tasks such as
read/write operations, and data integrity checks.

* Blood glucose meter: this component simulates the
analog to digital glucose level, which transform the
sensor reading to blood glucose levels.

e Data hub & human interface: Acts as an
intermediary between the sensors and the controller.
It processes and transmits sensor data while allowing
user input. Functions include reading, writing, and
maintaining the synchronization of data streams,
ensuring seamless communication within the system.

e Controller: Processes sensor data and calculates
the required insulin infusion rate based on current
glucose levels, insulin sensitivity, and programmed
parameters. It ensures precise control to maintain the
patient’s glucose levels within healthy ranges.

e Pump: Implements the insulin infusion by executing
the instructions from the controller. The pump
dynamically adjusts its status (e.g., “Idle” or
“Delivering”) based on insulin requirements. It
performs self-checks and mutex locks to ensure safe
operation.

* Infusion set: Directly delivers insulin to the patient’s
body. The infusion set verifies insulin delivery
operations and maintains logs for traceability. Safety
measures include locking mechanisms to prevent
accidental over-delivery.

Each component has predefined instructions specifying its
default operational mode. These instructions can be reset
via an interface controlled by the RL agent, enabling a
return to the default state when necessary.

The test bench also incorporates a simulation model
for the patient in order to emulate human physiological
responses, enabling comprehensive validation of the
system. The simulation accounts for:

* Meal Intake Simulation: Models the patient’s
eating patterns, incorporating meal schedules,
carbohydrate content, and glucose uptake rates. The
system generates glucose input dynamically during
meal times.

* Blood Glucose Dynamics: Simulates fluctuations
in glucose levels based on food intake and insulin
infusion. The model employs differential equations
to capture the interaction between glucose and
insulin levels, adapting to both meal events and basal
conditions.

* CGM Feedback Loop: Produces real-time glucose
data in order to emulate the CGM system; produces
measurements at five-minute intervals. This
feedback enables timely insulin adjustments to
maintain glucose levels within the target range.

To test the robustness of the SH framework, the
test bench incorporates an adversary simulation module
to introduce faults or tamper with system components.
Example attack scenarios include:

* Sensor Tampering: Disabling the glucose sensors
to prevent measurements, and thus rendering it
incapable of detecting glucose levels.

* Meter Tampering: Compromising the blood
glucose meter, thus disrupting accurate glucose level
measurements.

* HID Attacks: Disabling data transmission between
components, causing systemic communication
failures.

* Controller and Pump Disruptions: Preventing
insulin rate calculations or delivery operations,
potentially leading to hypo- or hyperglycemia.

To expand upon this, each component works by
following a set of steps or instructions that need to be
followed to perform their given tasks. For example, a
sensor must read and write the glucose measurement.
If this instruction is tampered with, other components
are not able to access the stored data, disrupting the
controller’s calculation thread from calculating the correct
insulin dose.

For the set of corrective actions we have defined
a set of predefined instructions for each component.
This allows our corrective actions to reestablish the
component’s functionalities.

Finally, the adversary records the attack history
and dynamically determines the feasibility of subsequent
attacks, enabling realistic tampering scenarios for our
evaluation.
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Fig. 2. Insulin pump behavioral abstraction. The figure illustrates the operational components of an insulin pump system, including the
blood glucose sensor, blood glucose meter, controller, insulin pump, infusion set, and data hub & HID. The adversary disrupts
the system by disabling functionalities (medium-grey arrow), while the self-healing agent counteracts these disruptions by

recovering functionalities (light-grey arrows).

4. Results

4.1. Experimental setup. The experimental setup
involves two aspects, the configuration and the evaluation
of the risk assessment network, as well as the control
network; each of these networks is designed to address
specific aspects of the self-healing framework. For the
risk assessment network, two datasets were generated
to model normal and abnormal behaviours. = More
specifically, normal data represents typical system
behavior without interference, while abnormal data
captured scenarios where attacks disrupted operations.
Abnormal data collection spanned the time from the
start of each simulation run to the point of system
failure (e.g., hyperglycemia due to sensor deactivation).
Each two-week simulation run yielded 100 samples,
creating a comprehensive dataset to represent both types
of behaviour. This dataset was then divided into a training
set (80%) and a validation set (20%). Training was
performed using the Adam optimizer (Kingma, 2014)
with a learning rate of 0.001, a batch size of 256, and
a binary cross-entropy loss criterion. The network was
trained for 10 epochs to ensure convergence.

The control network was evaluated without splitting
the data into training and validation subsets, as it relied
on continuous trace port data. This network used the
pre-trained risk assessment network as a critic to optimize
corrective actions.  Similarly to the risk assessment
network, training for the control network was conducted
with the Adam optimizer at a learning rate of 0.001
over a simulated period of one week (7 days x 1440
minutes/day). Trace port data was sampled 12 times per
hour (to represent the sampling of the CGM), providing

fine-grained inputs to the control network. The training
involved 1000 episodes and used a discount factor v of
0.99 to prioritize long-term rewards. The control network
architecture consisted of two layers designed to process
feedback from the risk assessment network effectively.

The transformer model used in both networks is
comprised of two layers with positional encoding to
handle sequential data. It incorporated six attention
heads for efficient processing of input features and
utilized a dropout rate of 0.1 to prevent over fitting.
This architecture ensured robust temporal and contextual
understanding of the trace port data.

4.2. Risk assessment network training. To determine
an appropriate number of epochs for training, we
conducted a training session of 20 epochs and monitored
the model’s performance on a validation set by observing
the Fl-score values obtained. As illustrated in Fig. B
the model showed rapid performance improvements in
the initial epochs, reaching an Fl-score above 0.9 by
epoch 2 and reached close to its maximum by epoch 5.
Beyond epoch 10, we observed only marginal gains, and
performance remained mostly stable.

Based on these observations, we set training
to 10 epochs for the final model. This choice
was made to balance computational efficiency with
model performance, avoiding overfitting while ensuring
convergence. As the network’s purpose is to provide
timely risk assessments during RL training, early
convergence and stability were prioritized.
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Fig. 3. Learning curve showing F1-score of the risk assessment network over 20 training epochs. Performance plateaus after epoch 10,

justifying early stopping.

4.3. Evaluation protocols. Evaluating the safety and
resilience of an IMD is of upmost importance, specially
its ability to maintain life-critical functions under adverse
conditions. Ensuring the IMD’s capacity to deliver these
life critical services, even in the presence of continuous
threats, is a critical measure of its reliability. Inspired
by risk mitigation strategies such as mode switching to
isolate non-vital functionalities, the safest operational
approach during sustained threats involves defaulting to
predefined values established by medical practitioners.
These default settings aim to ensure the continued delivery
of life-sustaining functions to the patient.

For the introduction of attacks during the evaluation
phase, To assess the performance of our agent-based SH
framework, we conducted simulations that spanned a two
week period while introducing a specific type of attack
during this time.

To be more specific, an attack is generated for each
simulation at start time. For each two week period, each
five minute time step a new attack is generated based
on random probability given that the previous threat was
successfully recovered from. With this approach, we aim
at simulating an environment under continuous threats to
test the resiliency and reaction of our system.

For each attack scenario, a series of fifty test
iterations were carried out. The average survival time of
the patient, meaning the run-time for the simulation to
continue without a health related interruption ending the
simulation early, for each repetition is recorded to evaluate
the effectiveness of the agent’s actions. As a baseline, the
same procedure is performed without employing the SH
framework, allowing for a direct comparison.

This evaluation method reflects our hypothesis that
disabling critical functionalities without a mechanism for
recovery will adversely affect the patient’s health, leading
to shorter survival times. In contrast, the integration of our
SH agent is expected to mitigate the impacts of attacks,

thereby ensuring patient survivability, demonstrating the
robustness of the proposed framework.

4.4. System stability with the RL system. The
evaluation results are presented in Table [1 they provide
a comprehensive overview of the system’s performance
under different attack scenarios. From this result, we can
make two key observations. First, the results demonstrate
the effectiveness of the RL agent in ensuring system
stability and patient survival.  Across all simulated
attack scenarios, the RL agent successfully mitigates the
impacts of the attacks, enabling the simulation to reach its
maximum runtime of 20,165 minutes without failure. This
highlights the RL system’s capability to accurately detect
the attack patterns and implement corrective measures that
sustain the IMD’s critical functionalities. In contrast, the
survival times without the agent (shown in red on the
radar chart) showcase a significant decrease, reflecting
the consequences of unmitigated attacks on the patient’s
health. This disparity proves the RL agent’s role in
safeguarding the IMD.

Secondly, the results allow us to categorize the
criticality of each attack based on the survival times
recorded in the absence of the agent. Among the various
attack types, disabling the glucose meter has the most
severe impact, leading to the shortest survival times. This
indicates the crucial role of blood glucose sensing in
maintaining precise insulin delivery. Faulty or absent
glucose readings can cause miscalculated insulin doses,
resulting in life-threatening hyper- or hypoglycemia.
Conversely, tampering with the infusion pump has the
least impact on survival time.  This suggests that
delays in insulin delivery, while suboptimal, are less
immediately detrimental compared to inaccurate glucose
measurements. Delays may allow some insulin regulation
to continue, although at a reduced efficacy, minimizing the
immediate risk to the patient.
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Table 1. Average survival times observed in the study un-
der two conditions: with and without the reinforce-
ment learning-based self-healing framework. The re-
sults highlight the system’s performance and resilience
across various attack scenarios, and are visually show-
cased in radar chart (below).

Attack With agent Without agent

Disable Sensor | 20165.00 & 0.00  1652.40 £ 943.20

Disable Meter 20165.00 £0.00  1357.20 £ 489.60

Disable HID 20165.00 £ 0.00 1753.20 £+ 1303.76

Disable Infusion | 20165.00 £ 0.00  1796.40 4+ 913.04

Disable Pump 20165.00 £ 0.00 1688.40 + 1082.78
Disable HID Disable Meter

20k

Disable Infusion Disable Sensor

Disable Pump

Without Agent -®- With Agent

These findings showcase the nuanced interactions
between the IMD’s components and their role in
sustaining patient health. Sensor tampering has a direct
and critical effect, leading to rapid health deterioration,
whereas actuator tampering, such as with the infusion
pump, introduces delays that are less harmful over the
short term.

These results highlight the need for continued
investigation into these dynamics. For example,
understanding why sensor tampering results in
significantly shorter survival times could guide the
prioritization of defense mechanisms. Similarly,
exploring whether specific mitigation strategies could
reduce the effects of actuator tampering could further
improve the system’s resilience.

In conclusion, the RL-based SH framework
demonstrates robust performance, achieving maximum
simulated survival time under all attack scenarios. The
system effectively stabilizes IMD operations, even in the
face of critical attacks. These findings help pave the way
for future research aimed at optimizing IMD defenses and
deepening our understanding of attack criticality across
different system components.

5. Discussion

In this study, we introduce a conceptual idea and its early
implementation for a SH approach for IMD, utilizing RL.
This approach aims at addressing automatic recovery for
IMD, leveraging from previous studies to incorporate an
all encompassing approach (identification, mitigation, and
recovery) to safeguard these devices without the need for
direct human intervention.

The results of this study highlight the potential
of RL as a robust framework for SH in IMDs. By
evaluating survival times under various attack scenarios,
we demonstrated that the RL-based system consistently
maintained system stability and patient safety, achieving
maximum simulated survival time in all tested cases.
These findings highlight the framework’s ability to
identify, mitigate, and recover from system disruptions
effectively, even under adversarial conditions.

The analysis of the attack types revealed critical
insights into the relative importance of different IMD’s
components. We found that sensor tampering, particularly
with the glucose meter, posed the most significant threat
to patient health due to its direct impact on insulin dosing
accuracy. In contrast, actuator tampering, such as with
the infusion pump, introduced delays that were the least
immediately catastrophic. These distinctions provide a
nuanced understanding of system vulnerabilities, which
can guide the prioritization of defense mechanisms in
future designs.

Despite these promising results, several aspects
warrant further exploration to solidify the framework’s
practicality and generalizability. While the proposed
RL-based framework demonstrates strong performance,
this study is subject to several limitations that open
avenues for future research. The experiments relied
on a simulated environment to model both the IMD
(in this case an insulin pump) and the patient’s
physiological responses. While this approach offers
controlled and repeatable conditions, it may not
fully capture the complexity of real-world scenarios,
such as unpredictable patient behaviors, environmental
factors, hardware limitations, among others. Future
work should incorporate real-world testing or more
complex physiological models to validate the framework’s
robustness in practical applications.

The study evaluated a predefined set of attacks,
including tampering with sensors, the controller, and
the infusion pump. Although these scenarios represent
common vulnerabilities, the amount of potential threats
is far broader, including network-based attacks, long-term
degradation of components, and simultaneous multi-point
failures. Expanding the attack repertoire, as well as
incorporating more sophisticated attacks, will provide
a more comprehensive assessment of the framework’s
adaptability in future studies.
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The RL agent applied a uniform approach to
mitigation, resetting components to predefined default
states. While effective in this study, real-world IMDs
may benefit from more dynamic strategies tailored to
specific attack types and patient conditions. Incorporating
adaptive strategies based on contextual information,
patient history, and risk assessments could enhance both
safety and efficiency.

The current framework was tested on an insulin
pump system. While the results are promising, it
remains to be seen how the approach generalizes to other
types of IMDs, such as pacemakers, neurostimulators,
or implantable drug delivery systems. Extending
the framework to diverse devices will demonstrate
its versatility and scalability across the broader field
of medical cyber-physical systems. Furthermore, the
performance results of our current framework versus other
reinforcement learning approaches remain to be seen. As
such, this is left as a future direction in our research.

Additionally, different methods, like logistic
regression, should also be tested in this problem.

6. Conclusion

In this paper, we proposed a conceptual framework for
achieving self-healing in IMDs. Our approach operates
in two phases: the first involves a risk assessment
network to detect potential threats and evaluate the system
vulnerabilities, while the second utilizes a control network
trained under the supervision of the risk assessment
network to execute corrective actions. Together, these
components create a robust system capable of identifying
and mitigating risks in real time.

To validate the effectiveness of our self-healing
framework, we developed a behavioral abstraction model
of an insulin pump as a case study. This model simulated
the core functionalities and operational dynamics of a
real-world IMD, providing sufficient data to train the
risk assessment network and test the control network’s
ability to respond to adversarial conditions. The results
demonstrated the framework’s ability to sustain the
continuous and reliable operation of the insulin pump,
even under a variety of attack scenarios.

By successfully maintaining system stability and
ensuring uninterrupted life-critical functionalities, our
approach highlights the potential of reinforcement
learning when it comes to improving the resilience of
IMDs. The insights obtained during this study lay
the foundations for future research into self-healing
mechanisms, not only for insulin pumps but also for a
wider range of medical cyber-physical systems. Moving
forward, we hope this methodology could play a pivotal
role in improving the safety and reliability of IMDs,
ensuring patient health and well-being in increasingly
connected and complex healthcare environments.
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