Int. J. Appl. Math. Comput. Sci., 2025, Vol. 35, No. 3, 535-545

DOI: 10.61822/amcs-2025-0038

CLuM: A CLUSTERING-CUM-MARKOV MODEL FOR RESOURCE
PREDICTION IN A DATA CENTER

MADHUPRIYA GOVINDARAJAN %*, MERCY SHALINIE SELVARAJ %, NAGARATHNA RAVI*“

“Department of Computer Science and Engineering
Thiagarajar College of Engineering
Thirupparankundram, Madurai-625015, Tamil Nadu, India

e-mail: [{gmadhupriya, shalinie@tce.edu}, rathnaravi2013@gmail.com

High-end data centers are required to process the user requests and provide them with a better quality of service. The
prominent issues in building a sustainable data center are reduced carbon footprint, dynamic capacity planning to reduce
resource provisioning time and cost, minimized virtual machine migration to prevent higher downtime and enhanced return
on investment and resource utilization. Realizing true elasticity will be a solution for these issues. Better elasticity can
result if the data center is aware of the workload before its entry. Hence, the data center has to have a predictive model to
forecast the resource requirements before the arrival of the workload. We propose a novel methodology called clustering-
cum-Markov to predict the workload resource requirements proactively. It runs in the data center’s controller and collects
the statistics of the incoming workload. It characterizes the workload and predicts the necessary resources two-time slots
ahead. We evaluate the modle in our data center and also with the benchmark Google Workload dataset. The results are
compared with the state-of-the-art solutions based on various metrics, including the environment metrics. The proposed
model achieves a 99.01% precision and exhibits optimal values with respect to the environmental metrics.
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1. Introduction

As the applications and user demands are growing
exponentially in the current digital era, the data centers are
cropping up in many locations to maintain the promised
quality of service (Liu et al., 2020). Though the data
centers aid in satisfying the service level agreements
made with the users, there are several issues. They turn
out to be a major contributor to the carbon footprint
(Sun et al., 2016). Efficient capacity planning is needed
to curtail resource provisioning time, cost, and e-waste
issues. In major cases, the utilization of data center
resources is not at par with the planned capacity (Chen
et al., 2016). Over-provisioning of ready-state resources
fails to achieve the expected return on investment and
resource utilization index. Whereas, under-provisioning
of ready-state resources leads to frequent virtual machine
migrations, which may increase downtime. Hence, it
is necessary to realize a true degree of elasticity. The
rate of resources like memory, processor, disk, network
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bandwidth affects the energy consumption of the data
center (Khan et al., 2022). One naive approach is to get
the workload, analyze the required resources to process it,
and finally boot the required servers. But this will lead
to a delay in processing the workloads with a stringent
deadline. Hence, this approach will violate the service
level agreement and lead to monetary loss.

Researchers and industrialists identified this problem
of bringing about a sustainable and scalable data center
while maintaining a thriving business several years back
and chartered several plans. One such strategy is to
characterize the workloads received in the data center in
terms of their unique features like resources consumed,
intensity, etc. Based on the workload characterization, the
resources needed to satisfy the workload that will arrive in
the subsequent time frames are forecasted. Hence, we can
enable the necessary resources in the ready state for the
future workload. This solution can effectively curtail the
over-provisioning of resources and maintain the quality of
service in an energy-efficient manner.

Some of the classical resource prediction models
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include the grey forecasting model, chaotic theory, Fourier
transform, exponentially weighted moving average
model, and wavelet with Markov chains (Jheng et al.,
2014; Qazi et al., 2014; Gong et al., 2010; Nguyen et al.,
2013; Xiao et al., 2012). Later on, the network started to
show higher levels of dynamism due to wide spread usage
of technology. Hence, machine-learning-based prediction
models are adopted to identify the patterns in the workload
trace (Saxena et al., 2023). The state-of-the-art solutions
use deep learning models, which include neural networks,
autoencoders, Bayesian networks, LSTM, CNN and
BIiLSTM (Lu et al., 2019; Chen et al., 2019; 2022; Kim
et al., 2014). Though deep learning models improve
prediction accuracy, they consume resources during
prediction and frequent retraining of the entire model
to address the dynamics in the workload characteristics.
The limitation in the classical prediction models, the
energy-efficiency issues in state-of-the-art solutions, and
difficulty in modeling the workload dynamism and
evolving a sustainable data center motivates us to
investigate the problem of evolving an optimal workload
characterization and resource prediction model.

We present a novel methodology called
clustering-cum-Markov, abbreviated as CluM, to
characterize the workload and predict the resources
that will be required in the subsequent time frame.
CluM is deployed in the data center’s controller and
monitoring system to facilitate the collection of the
statistics needed for resource prediction. CluM has
two major modules, namely, workload characterization
and resource prediction. Initially, CluM analyzes the
workload trace to infer its characteristics. Based on
the observed characteristics of the workload, resource
prediction is done. The key contributions of our work are
as follows.

e While investigating the hardness of the problem,
we find that it is an NP-hard problem. To
account for the hardness, we propose a novel
randomized machine learning model named repeated
random sampling graph-based clustering (RRSG)
for workload characterization. The model does
not involve complex operations. Hence, it is
lightweight and suitable for real-time operation. On
mathematical analysis of the model’s consensus, we
find it has an optimal error probability.

* We propose a novel heuristic model named online
adaptive multistep Markov (OAMM) for resource
prediction. The OAMM model considers not only
the present workload but also the historical trace.
It also has a methodology to adapt the Markov
state transition table to suit the dynamism. We
do not predict the resource requirements for the
immediate time frame but the second time frame.
The resources need time to power on from sleep

state. So, predicting two-time steps prior will be the
suitable approach for the real-time scenario.

* Finally, we evaluate the CluM model in our
fully functional data center to test its feasibility
in a real-time scenario. We also test on the
benchmark dataset and make a comparison with the
state-of-the-art solutions.

2. Related work

As the workload prediction in the data center is beneficial
in various ways, there exists a wide array of research
work in this area. We give a terse description of the
state-of-the-art solutions in this section.

Bi et al. (2019) propose to use Savitzky—Golay
filter to eliminate the outliers and smooth the incoming
workload. For decomposing the workload into multiple
components for analysis, the authors use wavelet
decomposition. The processed workload is given to the
stochastic configuration network to predict the expected
workload in the ensuing timeframe.

Lu et al. (2019) predict the future workload arrival
pattern using the K-RVLBPNN model, which is a
combination of K-means variant and back-propagation
neural network variant. The value of ‘K’ is determined
by the types of workloads. @ The neural network
variant introduces dynamism in the learning rate based
on the training error. The authors also classify the
workload based on the latency-sensitivity parameter,
which improves the accuracy. The L-PAW prediction
model is a combination top-sparse auto-encoder and
gated recurrent unit (Chen et al., 2019). The top-sparse
auto-encoder reduces the dimensionality of the data,
which is given as input to the gated recurrent unit for
prediction.

The online Sparse BLSTM model is used by Gupta
et al. (2020) to forecast the future CPU usage in the
data center. The authors use Levenberg—Marquardt and
gradient descent for online learning of the model. The
authors also try to reduce the number of parameters using
the sparse variant of the BLSTM model. Hieu et al. (2017)
propose a multiple linear regression model to forecast the
resources required k steps ahead in time. The model
feedbacks the predicted value for predicting the next step.

Singh et al. (2021) use the evolutionary quantum
neural network-based model to predict the workload.
The model encodes the workload into qubits and
propagates them across the network. The self-balanced
adaptive differential evolution procedure optimizes
the weights. Bi et al. (2021) propose a prediction
model, the BG-LSTM model, which is a combination
of Bi-LSTM and Grid-LSTM. The authors use a series
of pre-processing steps to reduce the standard deviation,
noise interference, and outliers using logarithmic
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operation and Savitzky—Golay filter. The processed data
is given as input to the trained BG-LSTM model.

The article by Santos et al. (2023) proposes a
scheduling policy for Kubernetes based containerized
application environment. The scheduling decision is
based on the latency in network, bandwidth, dependency
between microservices of the application as metrics.
Thus their scheduler provides an improved application
deployment and responsiveness for containerized
applications.

Xu et al. (2024) propose an artificial intelligence
(AI) based scheduler to optimize the performance of
Kubernetes clusters. It uses the deep learning technique
to monitor the performance of the workloads in the
large scale cloud systems. Based on the monitored
characteristics the reinforcement learning strategy adjust
the task scheduler for efficient resource utilization and
task execution.

Sanjalawe et al. (2025) presented a detailed summary
of the traditional scheduling methods used in cloud
environments. It also discusses the Al based scheduling
methods that can be used in large scale cloud systems
to manage the dynamic, heavy load tasks requesting for
heterogenous resources. It also states the benefits like
scalability, reliability, efficiency etc. that can be obtained
by Al techniques.

Rézycki et al. (2016) proposed a energy aware
real time scheduling method to speed up the processing
of preemptable jobs using an mathematical model.
According to the model the continuous allocation of
resources over time to the independent jobs with the
availability of resources being dynamic i.e varied over
time can provide an optimal scheduling policy for real
time jobs.

Vasiliu et al. (2017) propose a hybrid scheduler
for dynamic environments with the high data and task
heterogeneity. The task deadline is considered as on one
of the important quality metric in scheduling policy for
resource utilization. Thereby big data intensive cloud
applications can make use of this scheduler for multi task
computing challenges with balanced workload execution.

Next, we point out some eminent features that our
solution (i.e., CluM) provides on the state-of-the-art
methodologies.

* The solutions proposed by Bi er al. (2019), Lu
et al. (2019), Chen et al. (2019), or Singh et al.
(2021) do not dynamically train the model to suit
the changing workload patterns in the data center.
A small change in the workload pattern may lead
to erroneous predictions in the subsequent periods.
This may affect the availability of service as per
the service level agreement. The CluM model has
a module for online training based on the observed
changes.

* The methodology of Hieu et al. (2017) includes the
predicted values in the model without verifying the
correctness of the prediction. This may propagate
unnecessary erroneous data and garble the efficacy
of the model. The CluM model updates the model
with the observed data.

The model by Bi et al. (2021) takes high-dimensional
data as input. Hence, processing the data in a
real-time environment will consume time. The CluM
model takes up low-dimensional data as input. So,
it is feasible to implement the model in a real-time
environment.

3. CluM

In this section, we demonstrate our proposed working
methodology, called the CluM, to characterize the
workload and predict the resources required for the
upcoming workload. Before moving on to the explanation
of the methodology, we first analyze the hardness of the
problem.

Theorem 1. The problem of characterizing the workload
and predicting the resources is an NP-hard problem.

Proof. We prove the NP-hardness by reducing our
problem to the classical berth allocation problem. It
(Chen et al., 2024; Guan et al., 2002) involves allocating
berth space for serving the incoming vessels as soon
as possible, subject to constraints like optimizing the
service time. The problem that we have taken in hand
also involves allocating the resources to the incoming
workload, subject to the constraints. We can verify the
solution to the problem in polynomial time if the resources
can serve the workload efficiently. Hence, our problem
is polynomial-time reducible to the conventional berth
allocation problem. So, our problem comes under the
category of NP-hard. [ |

Hence, we model CluM as a randomized procedure
to account for our NP-hard problem. CluM comprises
of two phases, namely, workload characterization and
resource prediction. We pre-define a period. It is
imperative to set an optimal period. @~ We propose
computing the maximum time taken to power up the
resources from the sleep state in the data center. The
maximum time is set as the period. This will allow
time to predict and power up the necessary resources to
the ready state to serve the incoming workload, thereby
maintaining the service level agreements. Once in a
period, we aggregate the incoming requests into jobs.
Based on the latency sensitivity of the requests, the
task scheduler schedules the requests (task scheduling is
not under the scope of the article, as we focus on the
prediction of the resources). At the end of the period,
we assign the scheduled tasks to the servers. Immediately
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Algorithm 1. Workload characterization.

Require: Incoming request.
Step 1. Aggregate the incoming requests into job.
Step 2. Schedule the job.
Step 3. Run background process and measure
CPU usage, memory usage, bandwidth usage and
makespan.
Step 4.
procedure.
RRSG (P):

Input the parameters (P) to the RRSG

1. Most likely cluster list = ().
2. Compute the number of samples = log%/2t2.

3. If the number of clusters is C, then pick

randomly number of samples/C  samples
from each cluster.
4. Fuclid = Euclidean distances between the

samples and the test sample

5. Most likely cluster list = most likely cluster list
U Cluster_ID(Min{Euclid}).

6. Repeat from step 2 for a pre-defined number of
runs each time picking a set of random samples.

7. Normalize the distances in most likely cluster list
to arange of O to 1.

8. Use most frequent (MoF) consensus to deduce
the final output.

Output: Cluster membership of the job.

after assigning, the workload characterization module gets
triggered.

3.1. Workload characterization. Algorithm [T] gives
an overview of the execution of workload charac-
terization. We further explain in detail in the
ensuing paragraphs. Workload characterization learns
a representation of the nature of the workload, which
in turn aids in the process of capacity planning. The
accuracy of the resource prediction greatly depends on
the representation. There are several ways to generate
a representation, which include business characterization,
functional characterization, and resource characterization.
As we intend to predict the optimal resource requirements,
we take up the resource characterization technique.
Resource characterization-based representation interprets
the workload with respect to its consumption of the server
resources.

A background process runs in the data center
to measure the CPU usage, bandwidth consumption,

memory usage, and makespan of the job. These four
parameters are passed on to the workload characterization
module.

As the workload is dynamic, we use a machine
learning (ML) model to identify the intricate patterns
in the workload. ML models are broadly classified as
supervised, unsupervised, and semi-supervised. Though
supervised and semi-supervised models can model a
system in a better way, we choose unsupervised models.
As the environment is dynamic and differs across the
zones, a labeled dataset-based training may not be a
universal approach. The unsupervised clustering-based
model can model the network dynamism, identify the
pattern in the historical trace, detect outliers, and analyze
new characteristics. We prefer a graph-based clustering
algorithm to other clustering methods. A graph-based
clustering models the correlation between the parameters
by plotting them across various axes and groups the
similar data. Graph-based models do not require fixing
an initial number of clusters. The incoming data don’t
need to fit in the existing clusters. It can form new
clusters, which is a necessary trait for dynamic data
center. We propose a novel variant of graph-based
clustering algorithm named RRSG. The above-mentioned
four parameters are passed to the RRSG model.

3.1.1. RRSG. In this section, we describe the
speculation behind the proposal of the RRSG model. We
also outline its working methodology in this section.

The native model of graph clustering involves
plotting the normalized training samples on the graph
space and forming clusters based on the intragroup and
intergroup variance. The formation of the clusters is based
on the computation of the distance between the sample
and the centroid of the clusters. The centroid-based
representation of the clusters has the following issues:

* The jobs from the users are diverse, and hence, a
single centroid will not be sufficient to test the cluster
membership of the incoming data.

* The greedy solution to the above issue is to compare
the new sample with all members in the graph
space. But this will consume computation and time
cycles and is deemed to be unsuitable in real-time
conditions. Even the computation of the centroid
each time has to input all the members of the cluster.

We give a randomized solution for the issues stated
above.

In the RRSG model, the cold start problem is
addressed through an initial graph-based clustering
(Zhuang et al., 2025) approach. At the beginning, when
no clusters exist, a graph is constructed by randomly
selecting a set of initial samples and plotting them in
the graph space. These initial samples serve as the first
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nodes in the graph. As new incoming samples arrive, the
model computes distances between these samples and the
initial graph nodes (representing initial clusters). If an
incoming sample’s distance is sufficiently small to one of
the existing nodes, it is added to that node’s cluster. If not,
a new node (cluster) is created in the graph.

The benchmark dataset considered is the Google
cluster traces 2019 dataset. It is a dataset that represents
the complex relation between the various jobs and the
machine resources required for them. Here the nodes
of the graph represent the jobs and the relationship,
edges between the nodes represent the resources needed
and dependent for them. Here resources represent the
CPU, memory and the total completion time of the jobs
are taken as significant parameters which are captured
by the RRSG model. The initial clusters are set by
selecting random samples from this dataset and then for
every sample data from the dataset the Euclidean distance
measure is calculated to find its position in the graph space
as either in existing cluster or a new cluster. This way
the analysis of the benchmark dataset is proceeded with
that similar to the steps applied for the TCE (Thiagarajar
College of Engineering) data center workload analysis.

The RRSG model picks up a few random samples
from each cluster. To quantify the number of random
samples, we adopt the Hoeffding lemma. The Hoeffding
lemma is as follows:

2
number of samples > 720‘,

where 1 — « is the confidence interval, ¢ is the desired
variation between the actual value and the expected value.
Here t is inversely proportional to number of samples.
Hence, to achieve a small ¢, we need a large
number of samples. But this will lead to increase in
computation time and complexity. Hence, it is advisable
not to choose a small value for ¢. Repetition of runs
will guarantee the reduction of error probability which
we prove in the further discussion through Theorem 2.
If the number of clusters is C, then pick randomly
number of samples/C samples from each cluster.

The ensuing step is to compute the Euclidean
distances between the samples and the test sample. The
minimal distance and the respective cluster gets added
to the most likely cluster list. The most likely clus-
ter list contains the probable clusters of the test sample.
The above procedure is repeated over several runs each
time picking a set of random samples based on without
replacement strategy. At the end of the runs, we have
to choose one cluster for the sample from the most likely
cluster list. Normalize the distances in most likely cluster
list to arange of O to 1.

We use most frequent (MoF) consensus to deduce the
final output. MoF outputs the most frequent cluster seen
in the list as the output. There is also a possibility that

the test sample may belong to a new cluster. We use the
50-50 rule to test the formation of a new cluster. If the
normalized minimal distances of the most frequent cluster
exceed 0.5, we create a new cluster and add the sample to
1t.

The time complexity of the RRSG model is
O(#(samples) x #(runs)). Also, we substantiate the
performance of the consensus by evaluating its error
probability.

Theorem 2. The error probability of the consensus is

_ k(n—2r)2
e 2n2

where k is the number of runs, r is the number of data
points in the correct cluster and n is the total number of
data points in all the clusters.

Proof.  Let the total number of runs = k. Assume that
the total number of data points across all the clusters =
n. Assume that the number of data points in the correct
cluster = r. The probability that the correct cluster is
output = --. The probability that the incorrect cluster is
output =1 — =.

Let I; be an indicator random variable that states if
the cluster output is incorrect in the j*" run, j € 1, dots, k

I 1, if incorrect cluster is the output,
T 0, otherwise,

I=>"1,.

j=1
As the the runs do not depend on each other, I is a
binomial random variable and its parameters are (k,1 —
)

n ’ . .

The output of one run is independent of the output
of other runs, hence I;s are pairwise independent. By
Chernoff bound, probability of returning an incorrect
cluster equals

_ k(n—2r)2

2
6_2]@(1_%_%) =e 2n2

]

A few examples that illustrate the error probability

reduces with the increase of runs are as follows: n =

10000, » = 600, k = 10, then error probability = 0.0208;

n = 10000, » = 600, k& = 20, then error probability
= 0.0004.

3.2. Resource prediction. We give an outline of the
resource prediction phase in Algorithm[2l Further in the
section, we first explain how we model our system and
then give details of the OAMM model that predicts the
resource.
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Algorithm 2. Resource prediction.

Require: Cluster membership of historical job trace over
n time frames and number of clusters C.
Step 1. Build the transition probability table to evolve
the Markov model.
Step 2. Building the Markov model:

Step 2.1. Instantiate C™ states to include all
the possible combinations of clusters in the historical
job trace over n time frames.

Step 2.2. Compute the transition probabilities
based on the observation during experimental period.
Step 3. Sparsification of the Markov model:

Step 3.1. Remove the states with nil transition
probability.

Step 3.2. Use greedy methodology to curtail
80% of the states.

Step 3.3. Square the transition probability
matrix for (n + 2)-th time frame.

Step 4. Dynamic update of the Markov model:

Step 4.1. If the misclassification of the cluster
goes beyond 50% over a period, then recompute the
transition probabilities.

Step 5. Search for the cluster sequence of historical
job trace in the transition table.
Step 6. If (there is a match):

Output the cluster of the highest probability
among the probabilities in the tuple.
Else:

Compute cosine similarity between the states and
historical cluster sequence.

The state with highest similarity is the desired
tuple.
Step 7. Output the cluster of the highest probability
among the probabilities in the tuple.
Step 8. If (there is a single cluster with high
probability):

Check the resource usage table to find the
required resources.
Step 9. If (multiple clusters have high probability):

Check the resource usage table and fetch the
statistics of the clusters.
Step 10. Output the required resources as
Mazx(statistics of the clusters).
Output:Resource prediction for (n+2)-th time frame.

In this section, we first explain how we model our
system and the OAMM model that predicts the resource.

We model the system as a stochastic process as
follows.

Let X; be the random variable, where X denotes
the resource usage at time ’t’. The number of clusters
= (), the count of previous time instances included in the
prediction = n (n is decided based on trial and error),

the number of states = C™. For instance, if n = 3 and
C = 4, then the transition probability table having four
clusters and considering three time frames, should have
64 possible states.

We compute the transition probabilities of our
stochastic model from the observed changes in the
characteristics of the workload over an experimental
period. Even though the above methodology considers all
the possible states, one issue is the count of states keeps
increasing intractably with increasing clusters. To have
the situation under control, we use a greedy methodology
to minimize the number of states. Initially, we remove
the states that have nil transition probability. Next, we
compute the sum of the incoming transition probabilities
of every state. The summed-up transition probabilities are
sorted in decreasing order. We apply Pareto’s 80-20 rule,
i.e., 20% causes lead to 80% effect to curtail the states.
We keep the top 20% of the sorted states and discard the
rest of the states from the Markov model.

3.2.1. OAMM model. As we try to predict the
resource requirements for the (n + 2)-th period, we
square the transition probability matrix as per the
Chapman—Kolmogorov equation (Miroshin, 2016).

The RRSG model outputs the cluster to which
the current period workload belongs. OAMM model
combines this output with the clusters of the previous n
time frames. A search for the tuple of the combination
in the transition table is done. The cluster of the highest
probability among the probabilities in the output tuple
is our desired value. There are high chances that the
workload in the (n + 2)-th time frame will belong to
this cluster. There is a possibility that no exact match
for the historical cluster sequence will be available in the
transition table because it may have been removed during
the process of sparsification. In such cases, perform a
cosine similarity between the historical cluster sequence
with the states. The state with high similarity is the desired
tuple.

The OAMM model maintains one more table
structure, named resource usage whose dimension is
C x 4. There is one row for every cluster. The first
column states the ID of the cluster. The subsequent
columns have statistical values of the members of the
cluster. The statistical values include standard deviation,
mean, lower bound of the resource confidence interval,
and upper bound of the confidence interval. The data
center has to be ready with the resource capacity given
in the upper bound column. For instance, if cluster;
has 4 data points and their resource consumption in terms
of CPU and memory are {(18.5, 56.6), (20.6, 56.9),
(19.5, 58.1), (18.3, 60.3) }, then the upper bound resource
consumption with 95% confidence interval is (20.1, 59.3).
Hence, the data center has to get ready resources that
can provide 20.1% CPU and 59.3% memory. If the tuple
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from the transition table has multiple entries with equally
high probability, then the upper bound of the resource
confidence interval of all the equally probable clusters is
fetched from the resource usage table. The maximum
values among them are chosen as the required resources.
For instance, cluster, and clustery, have 0.4 and 0.4
transition probabilities respectively. Their upper bound
resource consumption entries are (30.2, 63.3) and (60.2,
45.5). The maximum of CPU and memory usages is (60.2,
63.3). Hence, the data center has to get resources ready
that can provide 60.2% CPU and 63.3% memory. Here
we take the maximum rather than average to not give a
chance of not meeting the service level agreement and
losing business.

To handle the dynamism, the OAMM model has
procedure to update the transition table. Initialize a value
of time frames, F'. Initialize a counter with the value
0, and keep track of the number of times the prediction
of the cluster is incorrect over F. If the percentage of
misclassification goes beyond 50%, then the transitions
over the period F, are included in the computation of
transition probabilities. The transition probabilities are
recomputed. To fix a value for F, use the committed
availability percentage in the service level agreement
because misclassification may lead to downtime. Use the
following formula to compute F":

F x period =~ 1% of acceptable downtime per week.

As is evident from the above formula, we set the value of
F to ensure that the downtime is minimal per week.

Statistical analysis metrics of the workloads
observed in the data center are used as data in the RRSG
and OAMM model. The workload characterization
module (RRSG) wused to capture the dynamic
characteristics of the workloads handled in the data
center performs Predictive analysis using graph-based
clustering ML method to predict the pattern of resources
utilized in the historical traces of the workloads. It also
detects outliers and analyse new pattern characteristics.

The resource usage table used in the OAMM model
consists of the mean, standard deviation and confidence
level of data points in the cluster obtained by the RRSG
graph based clustering method.

Since this OAMM model predicts the resource
requirements for the next future request, the statistical
analysis techniques of descriptive, inferential and
predictive analysis are performed over the workload data’s
collected from the data center. Mean and standard
deviation of descriptive analysis and confidence interval
of inferential analysis were computed over the data points
in the cluster and used as resource requirement prediction
data metrics.

4. Experimental setup and performance
evaluation

We discuss the experiments done to assess the efficacy
of the CluM model in this section. We execute the
experiments in our data center. Besides this, to verify the
working of the CluM model in the large-scale data center,
we train the model using the benchmark Google Workload
dataset.

The Thiagarajar College of Engineering (TCE) data
center uses the high computing blade servers with Xeon
processors mounted on the racks. There are five high
computing blade servers that run the cloud services,
namely, SaaS, PaaS, and IaaS. Every server has the system
architecture with the components of Xeon processor, 300
GB hard disk and 98 GB RAM. The resource of the
data center hosts the PaaS, SaaS and IaaS services by
launching Virtual Machines (VMs) on top of the physical
resources of the blade server using Xen hypervisor.

Xen has a Para Virtualization based architecture
thereby having a knowledge of the resources allocated to
the VM. PVM based virtualization architecture is used to
create VMs to render SaaS, PaaS, and IaaS services. Xen
hypervisor is a Type 1 hypervisor that has the capability to
access and tune the system resources CPU, memory and
bandwidth requirement of the client service launched in
the VM.

The proposed RRSG model is deployed on the
hypervisor to capture the patterns of the workload traces.
The workload that executed in the TCE data center for
the duration of one week and its resource consumption is
captured by the RRSG model using the Xen hypervisor.
The work load is observed in the data center for 24x7
every day, as it hosts all the services for the entire
day. When the network bandwidth reaches nearly 1 GB
of service request and response traffic, at that time
the CPU and memory usage is almost 97% and 94%
respectively. This is the peak load time and others are
normal load. All these load values are captured as samples
by the RRSG model. The number of samples collected
are approximately 550 samples per hour of workload
characteristics representing the VMs CPU, memory and
total time taken by the process are captured for analysis.

The benchmark Google Cluster traces version 3 has
the workload requests handled by the Google clusters in
May 2019 (Wilkes, 2019). The workload represents jobs
and their resource requests. Each job is a collection of
tasks represented with Linux processes that can execute on
a single machine or a collection. The resource represents
the CPU and memory usage of the job. We process
the data to evaluate the makespan, which is nothing
but the representation of the time elapsed between the
commencement and ending execution of the job.
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Table 1. Accuracy metrics of workload characterization.

Table 3. CPU based accuracy metric of resource prediction

Model Precision(%) Recall(%) F-measure (%) models for data center.

K-means 91.57 85.92 88.67 Model Precision(%) Recall(%) F-measure(%)
CURE 95.31 93.22 94.25 K-RVLBPNN 81.23 83.45 82.33
Graph-based 92.67 89.56 91.08 L-PAW 88.76 86.19 87.46
Decision tree 88.41 95.11 91.64 Sparse BLSTM 91.36 92.56 91.96
K-NN 84.7 66.18 73.84 BG-LSTM 95.01 94.16 94.58
RRSG 98.71 97.52 98.11 CluM 99.23 98.01 98.61

Table 2. Time-based metrics of workload characterization.

Model Training Testing Total
time (s) time (s) time (s)
K-means 27.9 3.7 31.6
CURE 35.6 4.5 40.1
Graph-based 71.4 4.0 75.4
Decision tree 67.3 6.4 73.7
K-NN 59.4 5.9 65.3
RRSG 10.1 1.3 114

4.1. Accuracy: Workload characterization. We
examine the RRSG model to verify the accuracy of
characterizing the workload. Tables[I]and 2l highlights the
values of various accuracy and time metrics of the RRSG
model and other machine learning models that we observe
in our data center.

As seen in accuracy and time-based metrics from
Tables [I] and 2] the RRSG model exhibits better
performance. The performance of the K-Means clustering
algorithm depends on the pre-determined value of "K’,
whereas the RRSG model has a module to test if
the data belongs to a new cluster. Clustering Using
REpresentatives (CURE) algorithm involves identifying
the outliers using random samples.  Even though
CURE’s performance with respect to accuracy is better
when compared to other models, its time complexity
is O(n?logn), which leads to higher time than other
models. The k-NN classifier also investigates the test
data with the data points in its space. The RRSG model’s
time complexity is dependent on the count of runs and the
samples taken in each run, which are less than the total
number of data points in the clustering space. Hence, it
shows better values in the total time metric. Graph-based
clustering involves comparing the test data with the
centroid or an average of the points in the clusters. The
centroid is not sufficient to model the characteristics of all
the data in the clusters and introduces a convex bias into
the model. As the data center workload is dynamic and
slight variations in their characteristics create a significant
difference, the decision tree tends to have many branches,
which leads to the overfitting issue.

4.2. Accuracy: Resource prediction. We investigate
the accuracy of predicting the CPU and memory resource

Table 4. Memory based accuracy metric of resource prediction
models for data center.

Model Precision(%) Recall(%) F-measure(%)
K-RVLBPNN 82.59 83.94 83.26
L-PAW 86.29 89.13 87.69
Sparse BLSTM 90.23 92.26 91.23
BG-LSTM 94.76 92.61 93.67
CluM 98.56 98.31 98.43

requirements using the Google Workload dataset and
real-time workload in the data center (Tables [BH4).
The CPU-Precision, CPU-Recall, CPU-F-measure,
Memory-Precision, Memory-Recall, Memory-F-measure
of the proposed model with the datacenter is obtained as
99.23%, 98.01%, 98.61%, 98.56%, 98.31% and 98.43%,
respectively. These values show the proposed CluM
model performs better than the conventional methods.

4.3. Response time. Response time is the average
time taken to allocate the resources for the incoming
workload. Figure [I] shows the response time that we
observe in the data center over a period. We measure
response time under three experimental conditions. We
want to check if the sparsification of the Markov model
has a notable effect or not. Hence, we include it as
one of the experiments. As seen in Fig. [II there is
not much difference in response time in CluM and no
CluM experimental conditions because CluM predicts the
necessary resources. Small hikes in response time are due
to incorrect predictions at those instances. CluM without
sparsification increases the response time as it involves an
exhaustive search across all the possible Markov states.

4.4. Availability. Availability is the ratio between the
server uptime and total experimental time. Figure2lshows
the availability percentage that we observe in the data
center over a period. As seen in Fig.[2] there is not much
difference in availability index in both the experimental
conditions because the CluM model predicts the necessary
resources proactively with better accuracy.

4.5. Environmental metrics. We observe some
environment-related metrics to verify if the CluM model is
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suitable to realize sustainable data center. Our data center
has sensors to measure the temperature, relative humidity,
and heat flux. It is necessary to maintain an optimal
temperature and relative humidity throughout the day. The
heat flux should be minimal in a sustainable data center.
Figures 3l 4 and [3 show the average environment-metric
values that we observe during two weeks. We operate the
data center with the CluM model for a week and without
the CluM model next week. Both the weeks were normal
working days in our institution. To further ascertain if the
data center receives a similar amount of workload over the
two experimental weeks, we set a tracker to track the load.
Figure [6] depicts the load handled by the data center over
the two weeks (Week 38 and 39 in the figure). As seen
in the figure, there is no significant difference in the load.
As seen in Figs. Bl and[3l the CluM model improves the
data center environmental conditions.

The proposed CluM model uses RRSG based on
graph based clustering, to determine the characteristics
of the workload in a simple and efficient way. The
Markov model of resource prediction for the future and
near future is obtained from the past and present set of
workloads. As the hidden Markov model extracts the time
dependent temporal patterns of the workload, it is most
suitable for the dynamic behavior based request of the
data center. This is one of the significant benefit of the
proposed CluM model when compared to its conventional
methods.  Furthermore this model performance can
be evaluated against the deep learning models to see
their performance in capturing the dynamic behaviour of
workload prediction.
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5. Conclusion

We propose the CluM methodology to predict the
resources required to serve the workload in the future
time frame. The proposed methodology contains two
modules, namely, workload characterization and resource
prediction. CluM fetches the statistics and gives them
as input to the RRSG model. The trained RRSG
model characterizes the workload to identify its nature.
Based on the current workload characteristics and the
characteristics of the historical trace, the OAMM model
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predicts the nature of the workload that is to arrive
two-time steps ahead. Based on the characteristic
prediction, we approximate the resources requirements.
As future work, we anticipate working on improving
the model with respect to the resource prediction accuracy.
We also plan to probe into other statistical metrics
and identify the metrics that will aid to enhance the
prediction efficiency. Through CluM, we predict the CPU
and memory requirements. We further plan to extend
the model to predict if the workload can be served in
an interleaved or parallel fashion without violating the
latency requirement of the workload. This will further
reduce the resource requirements and create significant
improvements towards sustainable data centers.
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